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Dempster-Shafer theory

Dempster-Shafer (DS) theory, also referred to as Evidence Theory, is
1 Representing independent pieces of evidence

(a) Let X be a variable taking one and only one value in a finite set,
called the frame of discernment

(b) Evidence (uncertain information) about X can be represented by a
mass function m : 2Ω → [0, 1] such that∑

A⊆Ω

m(A) = 1

(c) Every subset A of such that m(A) > 0 is a focal set of m
(d) if m(∅) = 0, m is normalized

2 Aggregating mass functions using Dempster’s rule
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1 Representing independent pieces of evidence
2 Aggregating mass functions using Dempster’s rule

(a) Let m1 and m2 be two mass functions and

κ =
∑

B∩C=φ

m1(B)m2(C)

their degree of conflict
(b) If κ < 1, then m1 and m2 can be combined as

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C), ∀A 6= φ

and (m1 ⊕m2)(∅) = 0
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Three main directions of DS theory for pattern recognition
1 Classifier fusion: classifier outputs are expressed as mass func-

tions and combined by Dempster’s rule (e.g., Liu et al., 2018)
2 Evidential calibration: the decisions of statistical classifiers are

converted into mass functions (e.g., Xu et al., 2016)
3 Evidential classifier: the elements of each feature vector is consid-

ered as independent pieces of evidence and converted into mass
functions. The mass functions are combined by Dempster’s rule
(e.g., Denœux, 2010)
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Evidential classifier

1 Evidential classifiers can provide more informative outputs for
(a) Exploit for uncertainty quantification
(b) Make a decision allowing for ambiguous rejection

2 The performance of evidential classifiers depends on the training
data set and reliability of object representation

3 Deep learning, especially convolutional neural network (ConvNet),
has achieved remarkable success on object representation
(a) Robustness: strong tolerance to translation and distortion
(b) Automation: a data-driven method with no human assistance

Zheng Tong, Philippe Xu, Thierry Denœux ConvNet and Dempster-Shafer Theory for Object Recognition



7/30

Introduction
ConvNet-BF Classifier

Numerical Experiments

Objective

1 Build a novel classifier based on evidential classifier and ConvNet
2 Make a decision allowing for ambiguous rejection. Ambiguous

rejection means the novel classifier cannot assign a pattern to
one of the class membership because of conflict evidences from
the input feature vector
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Architecture of a ConvNet-BF classifier
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Object representation

ConvNet: import into FCs
and a softmax layer for clas-
sification (e.g., LeCun et al.,
2015)
ConvNet-BF classifier: con-
sider elements of the fea-
ture vector as independent
pieces of evidence for gen-
erating mass functions

Y. LeCun,Y. Bengio, and G. Hinton. Deep learning. Nature 521.7553 (2015): 436-444.
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Generation of mass functions

1 Compute the distance between the fea-
ture vector and each prototype pi

2 Convert the activated distance into the
mass mi associated to prototype pi

3 Combine the n mass functions mi , i =
1, . . . ,n by Dempster’s rule

4 Output m = (m(ω1), . . . ,m(ωM),m(Ω))T

T. Denœux. A neural network classifier based on Dempster-
Shafer theory. IEEE transactions on SMC A, 30(2):131-150,
2000.
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Evidence-theoretic rules

1 Rejection

(a) Maximum credibility: maxj=1,··· ,M m({ωj}) < 1− λ0

(b) Maximum plausibility: maxj=1,··· ,M m({ωj}) + m(Ω) < 1− λ0

(c) Maximum pignistic probability:
maxj=1,··· ,M m({ωj}) + m(Ω)

M < 1− λ0

2 Assignment to class ωj

m({ωj}) = max
j=1,··· ,M

m({ωj})
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End-to-end learning I

1 Compute a normalized error Eν (x) as

Eν (x) =
1

2N

I∑
i=1

M∑
q=1

(Preν,q,i − Tarq,i )
2

Preν,q,i = m
′

q,i + νm
′

M+1,i

2 Compute the derivatives of Eν (x) w.r.t the connection parameters
between the mass-function generator and CovNet as

∂Eν(x)

∂pi
k

=
∂Eν(x)

∂si
∂si

∂pi
k

=
∂Eν(x)

∂si · 2(ηi )2si ·
P∑

k=1

w i
k (xk − pi

k )

∂Eν(x)

∂w i
k

=
∂Eν(x)

∂si
∂si

∂w i
k

=
∂Eν(x)

∂si ·
(
ηi)2

si ·
(
xk − pi

k
)2
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End-to-end learning II

3 Compute the derivatives of Eν (x) w.r.t the parameters in the last
convolutional layer of the ConvNet part as

∂Eν(x)

∂wm
i,j,k

=
∂Eν(x)

∂f m
i,j,k

·
∂f m

i,j,k

∂wm
i,j,k

= wm
i,j,k ·

∂Eν(x)

∂f m
i,j,k

k = 1, · · · ,P

and

∂Eν(x)

∂bm
k

=
∂Eν(x)

∂f m
i,j,k

·
∂f m

i,j,k

∂bm
k

=
∂Eν(x)

∂f m
i,j,k

k = 1, · · · ,P

4 The derivatives of Eν (x) w.r.t the parameters in the mass-function
generator can be found in the work of Denœux
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Determination of λ0

A data-driven method for a complete learning set
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The CIFAR-10 dataset

Consist 60,000 RGB images of size 32 ×
32 in 10 classes
There are 50,000 training images, and
we randomly selected 10,000 images as
validation data for the ConvNet-BF clas-
sifier
There are 10,000 testing images

A. Krizhevsky and G. Hinton, Learning multiple layers of features from tiny images. Tech. report,

University of Toronto, 2019.
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Test results of the CIFAR-10 dataset

NIN=network in network, a type of ConvNet

Curves of credibility, plausibility, and Pignistic probability presents the results of ConvNet-BF
classifiers with different decision rules

Rejection is not considered as an error
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Test results of the CIFAR-10 dataset

Labelsn = 10,000 Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck
Airplane - 0.03 0.03 0.01 0.02 0.05 0.04 0.01 0.04 0.05

Automobile 0 - 0.04 0.04 0.08 0.08 0.04 0.06 0.03 0.07
Bird 0.02 0.04 - 0.05 0.04 0.07 0.03 0.08 0 0.04
Cat 0.02 0.03 0.13 - 0.06 0.44 0.11 0.04 0.05 0.06

Deer 0.01 0.04 0.07 0.12 - 0.03 0.12 0.34 0.04 0.08
Dog 0.02 0.03 0.05 0.49 0.11 - 0.06 0.09 0.01 0.04
Frog 0.02 0.04 0.08 0.06 0.12 0.06 - 0.06 0.06 0.05

Horse 0.01 0.02 0.04 0.06 0.31 0.1 0.05 - 0.04 0.04
Ship 0.04 0.05 0.02 0.04 0.12 0.05 0.04 0.18 - 0.02
Truck 0.02 0 0.06 0.09 0.03 0.06 0.07 0.06 0.04 -

Actions

Rejection 0.2 0.13 0.14 1.05 0.84 1.07 0.14 1.14 0.18 0.11
* The table reports the errors and rejection rates of a ConvNet-BF classifier in maximum credibility rule
** The total error rate is 5.99%, while the rejection rate is 5%
*** A rejection action is not considered as a error
**** The unit in the table is %
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Exploiting in the view of DS theory

1 Conflicting evidences from the ConvNet part
(a) Confusing features from convolutional and pooling layers when there

are two or more similar patterns
(b) The maximally conflicting evidence corresponds that m(ωi ) = m(ωj ) =

0.5
2 The additional m(Ω) provides the possibility to verify whether a

ConvNet-BF classifier is well trained
(a) m(Ω) equals 1 when the ConvNet part cannot provide any useful

evidence
(b) m(Ω) decreases during the training
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The CIFAR-100 and MNIST data set

1 The CIFAR-100 data set is just like the CIFAR-10, except it has
100 classes containing 600 images each (e.g., Krizhevsky and
Hinton, 2009)

2 The MNIST data set of handwritten digits consists of a training set
of 60,000 examples and a test set of 10,000 examples (e.g., Li,
2012)
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Test results of the CIFAR-100 data set

NIN=network in network, a type of ConvNet

Curves of credibility, plausibility, and Pignistic probability presents the results of ConvNet-BF
classifiers with different decision rules

Rejection is not considered as an error
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Test results of the CIFAR-100 data set

Table: Confusion matrix for the Cifar100 data set (unit:%)

Labelsn=500 Orchids Poppies Roses Sunflowers Tulips
Orchids - 0.24 0.23 0.28 0.15
Poppies 0.14 - 0.43 0.10 0.90
Roses 0.27 0.12 - 0.16 0.13

Sunflowers 0.18 0.15 0.12 - 0.22
Tulips 0.08 1.07 0.76 0.17 -

Actions

Rejection 0.09 0.37 0.63 0.12 0.34
* The table reports the errors and rejection rates of a ConvNet-BF classifier in maximum credibility rule
** The total error rate is 36.30%, while the rejection rate is 5%
*** A rejection action is not considered as a error
**** The unit in the table is %

Zheng Tong, Philippe Xu, Thierry Denœux ConvNet and Dempster-Shafer Theory for Object Recognition



28/30

Introduction
ConvNet-BF Classifier

Numerical Experiments

CIFAR-10
CIFAR-100 and MNIST

Test results of the MNIST data set

NIN=network in network, a type of ConvNet

Curves of credibility, plausibility, and Pignistic probability presents the results of ConvNet-BF
classifiers with different decision rules

Rejection is not considered as an error

Zheng Tong, Philippe Xu, Thierry Denœux ConvNet and Dempster-Shafer Theory for Object Recognition



29/30

Conclusions and Perspective
References

Conclusions and Perspective

1 Conclusions

(a) The proposed classifiers can reduce the errors by rejecting a part of
the incorrect classification

(b) The proposed classifiers are prone to assign a rejection action when
there are conflicting features

(c) The method opens a way to explain the relationship between the
extracted features and class membership of each pattern

2 Perspective

(a) Other evidence-theoretic rules for set-valued classification

(b) Pixel-wise recognition using the proposed model
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Thank you!
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