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Problems in DNNs

@ Deep neural networks (DNNs) achieve state-of-the-art results in many
applications:

o Object classification
e Semantic segmentation
o ...

@ Such achievements are due to their reliable feature representations
with multiple layers, which progressively extract high-level features
from raw data.

@ However, they still face the problems of data uncertainty.
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Introduction

Data uncertainty

@ Ambiguous raw data and their representations — incorrect decision

m/cat or dog?
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© Incomplete data — difficulty in novelty detection and model fusion
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Objectives

@ Many theories have been combined with DNNs to solve these
uncertainty problems:

Bayesian probability

Imprecise probability

Fuzzy sets

Dempster-Shafer (DS) theory

@ The DS theory of belief functions, also referred to as evidence theory,
is applied to a wide range problems involving uncertainty in machine
learning.

Ph.D. defense M A 6]



Introduction

Key features of DS theory in machine learning

Generality: DS theory is based on the idea of combining sets and
probabilities. It extends both
@ Probabilistic reasoning
e Propositional logic, computing with sets (interval
analysis)
DS theory can do much more than sets or probabilities.

Operationality: DS theory is easily put in practice by breaking down the
available evidence into elementary pieces of evidence, and
combining them by a suitable operator called Dempster’s
rule of combination.

@ We aim to develop new DNNs based on DS theory with the capacity
to deal with data uncertainty.
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Outline

@ Background

o Dempster-Shafer theory
e Deep neural network
e Evidential neural network

© Evidential deep neural networks

o Object classification
e Semantic segmentation

© Evidential multi-model fusion
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Dempster-Shafer theory Information representation

Mass, belief, and plausibility functions

A mass function on Q is a mapping m : 22 — [0, 1] such that

> m(A)=1.

ACQ

If m(0) =0, mis said to be normalized.

Every subset A C Q such that m(A) > 0 is called a focal set of m.

Belief and plausibility functions are defined as

Bel(A) =Y _m(B), PI(A)= >  m(B).

BCA BNA£D
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Let Q = {w1,...,wwm} be a class set called the frame of discerment.
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Dempster-Shafer theory Operations of belief functions

Dempster’s rule of combination

@ Two independent mass functions my and my on Q is combined as

their orthogonal sum

>_Bnc=a M (B)m2(C)
1= > gnc=p m(B)m(C)

for all A# () and (my @ my)(0) = 0.

@ Property w.r.t normalized contour function pl:

(m ® mo)(A) =

pml@’nZ(w) X Pml(W)Pm2(W), w e Qa
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SIS EITIRA NIl Operations of belief functions

Refinement

Definition
A frame © is a refinement of Q iff there is a mapping p : 22 — 2° such
that:

e {p({w}),w € Q} C 2° is a partition of O,
e VAC Q,p(A) = | J p({w}).

w€EA

.
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Dempster-Shafer theory Operations of belief functions

Compatible frames and vacuous extension

@ Two frames of discernment are said to be compatible if they have a
common refinement.

@ In machine learning, add an “anything else” element in different
frames to make them compatible.

o [ o} | ——
O T I B R R
0 Lt  J[ w8 J[ W8 [ e} ]
o m2 1 is called the vacuous extension of m? on Q0 such that

m? ({wi}) = M ({0)), m® ({wd}) = m® ({wd, w}),
m? ({wd}) = m® ({wd)).
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Dempster-Shafer theory Decision-making with belief functions

Definitions and notations

@ A decision problem with a set of states of the nature 2 is formalized:
o A set of acts F
o A utility function u: F x  — R, such that uf, is the utility of
selecting act f € F when the true state is w.
Ur1 Ufp Us3  MiNUg; mMaxug;
i 037 025 0.23 0.23 0.37
f, 049 070 0.20 0.20 0.70

@ With a mass function of DS theory m describing the uncertainty on
Q, the lower and upper expected utilities of act f is defined as

E.(f)=>Y_ m(B) min. g ;. Em(f) = ) m(B) max uf ;.

. €B
BCQ [BHS BCQ wj€

@ The generalized Hurwicz expected utility is a weighted average of
lower and upper expected utilities

Emu(f) = VE,(f) + (1 — v)En(f).
Ph.D. defense March 14, 2022 11/51



Dempster-Shafer theory Decision-making with belief functions

Precise and imprecise classification with belief functions

@ A problem of precise classification can be formalized as
o Asetof acts F = {f,..., oy}
o A utility function u described by a utility matrix Uy s with general
term uj;

Class
w1 W2 W3
f, 1 0 0
f, 0 1 0
f, 0 0 1

@ A problem of imprecise classification can be formalized as

o Aset of acts is F = {fa, A € 22\(}}
o A utility function u described by a utility matrix Uze_1)xm with
general term Uy j

o How to extend Upxm to Upa_1)m?
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Decision-making with belief functions
Ordered weighted average aggregation

@ Term Uy is an ordered weighted average aggregation of the utilities
of each precise assignment in A as

A]

-~ A
Uaj = Zé’k Uk
k=1

@ Parameters g are determined to maximize the entropy subject to

A
\A\—l '

@ -y measures the tolerance to imprecision; it controls the imprecision of
the decisions:

e v = 0.5 gives the average (minimum tolerance degree)
o v =1 gives the maximum (maximum tolerance degree)
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Decision-making with belief functions
Example of Upa_1)pm with v = 0.8

Classes

w1 w2 w3

Fron) 1 0 0

Frunn) 0 1 0
Fluss) 0 0 1

Fleot n) 0.8 0.8 0

Fluot ws) 0.8 0 0.8

Flion s} 0 0.8 0.8

fa 0.682 0.682 0.682
Ph.D. defense March 14, 2022 14 /51



Outline

@ Background

e Dempster-Shafer theory
o Deep neural network
e Evidential neural network

© Evidential deep neural networks

o Object classification
e Semantic segmentation

© Evidential multi-model fusion
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Deep neural network Convolutional neural network

Probabilistic CNN classifier for object classification

CNN backbone softmax layer
p(wr)
p(w2)
p(wm)

@ A CNN stage is a combination of convolutional and pooling layers.

First stage Second stage Stages Final stage

' ! Convolutions i . _ e
H 1 “iﬁ v 5z ‘r' 8
= B, | 0
Featur

tor

Con¥

el
1 L
(‘un\'nlullun\@ 1

@ A CNN backbone is composed of at least one stage for feature
extraction.

@ A probabilistic CNN classifier converts the feature vector from a
backbone into a probability distribution using a softmax layer for
decision-making.

Ph.D. defense T



Deep neural network Fully convolutional network

Probabilistic FCN model for semantic segmentation

@ A FCN backbone (encoder-decoder architecture) extracts pixel-wise
feature maps from an input image.

Input image Encoder Decoder softmax layer

Ll

@ An encoder-decoder architecture consists of

o CNN stages to extract features from the input image
e Upsampling layers to upsample features into pixel-wise feature maps

@ How to transform the features from a backbone into mass functions?
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Fully convolutional network
Outline

@ Background

e Dempster-Shafer theory
e Deep neural network
o Evidential neural network

© Evidential deep neural networks

o Object classification
e Semantic segmentation

© Evidential multi-model fusion
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Evidential neural network

Principle
O @ A learning set is summarized by n
0O Oo o .
Om O o ®0 prototypes in the form of feature vectors.
O mg O 4 @0 @ e Each prototype p’ has membership degree
o O X{:r'/PiO O hJ’- to each class w; with Zjl\i1 hj’. =1.
@ Each prototype p' is a piece of evidence
A A A about the class of x; its reliability
A 5 . . ; ;
A decreases with the distance d' between p’
a and x.
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Evidential neural network

Propagation equations

@ Mass functions associated to p':

m'({w;}) = hir"exp(—(n'd")?)
m'(Q) =1 - ' exp(—(n'd')?)

@ Combination:

n
=@
i=1

@ The combined mass function:

m= (m(wy),...,mwuy), m(Q))T

Ph.D. defense el ), 207
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Evidential neural network

Evidential neural network (DS layer)

o Evidential classifier can be implemented as neural network layer,
called a DS layer.

Input layer

i
S

{1 /_1/-1
O : | 0
O @

K ! = HO) HO|| #
0 o
// @

© / O\ wr=m

—/ O
1Y ! =

@ The performance of an evidential classifier heavily depends on its
input feature vector.
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Evidential convolutional neural network classifier

©® Background

e Dempster-Shafer theory
e Deep neural network
e Evidential neural network

@ Evidential deep neural networks

e Object classification
e Semantic segmentation

© Evidential multi-model fusion
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Proposed classifer
Network architecture

@ Aim to solve the uncertainty problems in object classification.
o Basic idea: plug a "DS layer” at the output of a CNN backbone,
called an “evidential CNN classifier (E-CNN)".

Stages from a CNN backbone Dempster-Shafer layer Utility layer

First stage Stages Final stage
N

: IT’U:@%TL

Contolutions Pooling

@ The decision-making process with mass functions and utility theory is
implemented as a neural network layer, called a utility layer.

@ The connection weights in the utility layer is U4 and do not need to
be updated during training because 4 j depends on the tolerance to
imprecision .
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Evidential convolutional neural network classifier Proposed classifier

Learning

@ Given a sample x with class label w,, using the generalized Hurwicz
criterion, the prediction loss is defined as

L (m w* = Z)/k IOgEm u(fw ) (1 - yk) |0g(1 - Em,l/(fwk))

where yy equals 1 if wy, = wy, otherwise 0.

@ The loss £, (m,w,) is minimized when E, ,(f,,) = 1 for wx = w, and
B (£,) = 0 if w) # w,.

Examples Outputs of a DS layer

m({w}) mfw2}) m({ws}) m(Q)

Expected utility

JEm.l({Wl}) ]Em.l({wz}) ]Em,l({wfl})

Examples

Loss (wx = w1)

#1 0.70 0.10 0.10 0.10 #1 0.70 0.10 0.10 0.303
#2 0.97 0.01 0.01 0.01 #2 0.97 0.01 0.01 0.026
#3 0.50 0.50 0 0 #3 0.50 0.50 0 0.602
#4 0.40 0.40 0 0.2 #4 0.40 0.40 0 0.796

@ In practice, the error propagation can be performed automatically in
TensorFlow.

Zheng Tong Ph.D. defense March 14, 2022 24 /51



Evidential convolutional neural network classifier Experimental evaluation

Evaluation metrics for classification performance

@ Averaged utility measures the utilities of all assignments in testing set

T:
[T

1 I
AU(T) = > Uagiyy,
=1

@ When only considering precise acts, AU is equal to classification
accuracy.

@ Averaged cardinality measures the imprecision of the decisions in T:

Tl

AC(T) = |;|Z Q)]
=1

Ph.D. defense M A 56l



Evidential convolutional neural network classifier Experimental evaluation

Evaluation metrics for novelty detection

An outlier x has large d’ to each
d prototypes.

x
°

o O 0 Op o @ The DS layer outputs m(2) ~ 1 for x.
om 0O o @0 @ The final decision is act fq for x and set
= 8| o0 © Q means “everything”
g O PO O ’
@ A good classifier should have a high rate
A of assignment fq in an outlier testing set
A, A and a low rate of assignment fq in an
A AA inlier testing set.
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Evidential convolutional neural network classifier Experimental evaluation

Dataset in the image-classification experiment

CIFAR-10 to train and evaluate classification performance:

@ 10 classes

@ 5000 tiny images of each class for training and validation

@ 1000 tiny images of each class for testing

R g Tong, S Ph.D. defense el ), 207
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Evidential convolutional neural network classifier Experimental evaluation

Results of precise classification

NIN [ FitNet-4 \ ViT-L/16
Input: 32 x 32 x 3

16 x 16 x 3 x 4 patches
5 x 5 Conv. NIN 64 ReLU 3 x 3 Conv. 32 ReLU 3 x 3 Conv. 32 ReLU
3 x 3 Conv. 32 ReLU 3 x 3 Conv. 32 ReLU
3 x 3 Conv. 32 ReLU 3 x 3 Conv. 32 ReLU
3 x 3 Conv. 48 ReLU 3 x 3 Conv. 48 RelLU
3 x 3 Conv. 48 ReLU 3 x 3 Conv. 48 RelLU
2 x 2 max-pooling with 2 strides
5 x 5 Conv. NIN 64 ReLU 3 x 3 Conv. 80 ReLU 3 x 3 Conv. 80 ReLU
2 x 2 mean-pooling with 2 strides 3 x 3 Conv. 80 ReLU 3 x 3 Conv. 80 ReLU
3 x 3 Conv. 80 ReLU 3 x 3 Conv. 80 ReLU
3 x 3 Conv. 80 ReLU 3 x 3 Conv. 80 ReLU
3 x 3 Conv. 80 ReLU 3 x 3 Conv. 80 ReLU
2 x 2 max-pooling with 2 strides
5 x 5 Conv. NIN 128 RelLU 3 x 3 Conv. 128 ReLU 3 x 3 Conv. 128 RelLU
2 x 2 mean-pooling with 2 strides 3 x 3 Conv. 128 ReLU 3 x 3 Conv. 128 RelLU
3 x 3 Conv. 128 ReLU 3 x 3 Conv. 128 ReLU
3 x 3 Conv. 128 ReLU 3 x 3 Conv. 128 RelLU
3 x 3 Conv. 128 ReLU 3 x 3 Conv. 128 RelLU
8 x 8 max-pooling with 2 strides | 4 x 4 max-pooling with 2 strides-+position embedding
Average global pooling Transformer encoder
Model NIN FitNet-4 ViT-L/16
odels Probabilistic Evidential Probabilistic Evidential _Probabilistic Evidential
Utility 0.8959 0.8978 0.9353 0.9361 0.9921 0.9908
prvalue 0.0489 0.0492 0.0452

(McNemar's test)

Ph.D. defense March 14, 2022 28 /51
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Evidential convolutional neural network classifier Experimental evaluation

Results of imprecise classification

10 o 1.00

Evidential NIN NIN L bk
9 Evidential FitNet-4 Probabilistic FitNet
g —#—Evidential ViT-L/16 - & - Probablistic ViT-L/16|
096
Z
37 5 z
x| z ]
T 6 = g
s
g E § 092
g5 H £
g o E ——c - -@---- - -l @cmmn- o
24 gh1l .~ —o- Evidential NIN
< 5 0.88 - @ -Probabilistic NIN
3 z Evidential FitNet-4
! Probabilistic FitNet-4
2 4 Evidential ViT-L/16
1 084 X . |- & - Probabilistic ViT-L/16)
& l 05 0.6 0.7 08 09 1

The tolerance to imprecision v € [0.5,1.0] models the user's tolerance
degree to imprecision:

@ v = 0.5 for precise classification

@ v =1 for completely imprecise classification (all samples assigned to
set Q)

@ Higher v corresponds to more imprecise decisions
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Evidential convolutional neural network classifier Experimental evaluation

Examples of precise and imprecise classification

#1(w* =cat) #2(w*=dog) #3(w* =deer)

~v=0.5 {dog}/0 {dog}/1 {deer}/1
v=0.6 {cat,dog}/0.6 {cat,dog}/0.6 {deer}/1
~v=0.7 {cat,dog}/0.7 {cat,dog}/0.7 {deer,horse}/0.7
~v=0.8 {cat,dog}/0.8 {cat,dog}/0.8 {deer,horse} /0.8
~v=0.9 {cat,dog}/0.9 {cat,dog}/0.9 {cat,deer,dog,horse}/0.71
7=1.0 Q/1.0 Q/1.0 Q/1.0

M & *
Zheng Tong Ph.D. defense March 14, 2022
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Evidential convolutional neural network classifier Experimental evaluation

Datasets for novelty detection

CIFAR-100 and MNIST for novelty-detection performance:
@ 100 classes containing 600 images each in CIFAR-100
@ 10 classes of handwritten digits containing 600 images each in MNIST
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333323333333333
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Experimental evaluation
Results of Novelty detection (FitNet-4 backbone)
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—#— Evidential FitNet-4 for Cifar 10

~—@— Evidential FitNet-4 for Cifar 100
Evidential FitNet-4 for MNIST

~ M - Probabilistic FitNet-4 for Cifar 10

~ ® - Probabilistic FitNet-4 for Cifar 100
Probabilistic FitNet-4 for MNIST

Ph.D. defense

@ The classifiers were trained

using the CIFAR-10 dataset; the
outliers are from the CIFAR-100
and MNIST datasets.

@ A sample is rejected as outlier if

it is assigned to set €.

@ A good classifier has a high rate

of assignment to 2 in an outlier
set and a low rate of assignment
to Q in an inlier set.
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Evidential convolutional neural network classifier Conclusions about object classification

Conclusions about object classification

@ Similar phenomena are also observed in the classification problems of
signal processing and semantic relationship.

@ Conclusions: our approach
e Improves the CNN performance by assigning ambiguous patterns with
uncertain information to multi-class sets.
o Rejects outliers together with ambiguous patterns.
e Outperforms the probabilistic CNN classifiers on imprecise classification

and novelty detection.
e Has similar or even better performance than the probabilistic classifiers

on precise classification.
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Evidential fully convolutional network
Outline

©® Background

e Dempster-Shafer theory
e Deep neural network
e Evidential neural network

@ Evidential deep neural networks
o Object classification
e Semantic segmentation

© Evidential multi-model fusion
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Evidential fully convolutional network Proposed method

Network architecture

| Extract pixel-wise feature (Step 1) | Construct mass functions (Step 2) | Generate expected utility for decision making (Step 3) |
r T T 1

Expected utility vector of a pixel
Mass functions of a pixel E[(F)HE(f1)- Elfa)}
M=y M o}

Feature vector of
apixel 1x1 xP

A pixel in a mask
A pixel in an input Ix1 x1
1x1 %3

Output mask
Pixel-wise Pixel-wise

Input image ixel-wi R
P ¢ Pixel-wise mass functions expected utilities

feature maps
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Evidential fully convolutional network Experiment results

Segmentation results (Pascal VOC)

1.00
Pixel utility (PU) Utility of loU 098
P-FCN-325 0.8912 £ 0.0019 0.5941 % 0.0033 056

P-FCN-16s  0.9001 + 0.0015  0.6243 + 0.0025
P-FCN-8s  0.9033 & 0.0017  0.6269 + 0.0021 E 0.94
E-FCN-32s  0.8973 £ 0.0021 0.6128 + 0.0024 052

E-FCN-16s 0.9045 + 0.0014 0.6304 + 0.0019

E-FCN-8s  0.9074 + 0.0015 0.6337 + 0.0020
100 ==Probabilistic FON-325-51 100

#-Probabilistic lf(jN-If)s-sI /
o | S /|
- Evidential FCN-16s-sl
S 60 #-Evidential FCN-8s-s| / S 60
< { °©
B ! B
40 40
A
20 20
0 = 0
0.5 0.6 0.7 0.8 0.9 1
4
(a) Outlier set

Zheng Tong
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——Evidential FCN-32s
——Evidential FCN-16s
—4—Evidential FCN-8s
-m-Probabilistic FCN-32s
-m-Probabilistic FCN-16s
-M-Probabilistic FCN-8s

+-Probabilistic FCN-32s-sl
-#-Probabilistic FCN-16
#-Probabilistic FCN-8s-sl
#-Evidential FCN-32s-s]
#-Evidential FCN-1

#-Evidential FCN-8s-sl

0.6 0.7

0.8

(b) Inlier set

March 14, 2022
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Evidential fully convolutional network Experiment results

Segmentation examples on Pascal VOC

Raw image

7=0.6

7=0.7

7=0.9
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Evidential fusion of heterogeneous deep neural networks
Outline

©® Background

e Dempster-Shafer theory
e Deep neural network
e Evidential neural network

© Evidential deep neural networks

o Object classification
e Semantic segmentation

© Evidential multi-model fusion
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Evidential fusion of heterogeneous deep neural networks Fusion approach

Problem definition

@ Many DNNs have been trained using different datasets. How to use
these existing networks?

@ This is a hard problem, because classifiers trained on different learning
sets have different frames of discernment.

Q% Common frame with 305 classes

Q': Tiny ImageNet
Q2 Cifar-10

reel

Volleyball —{police wagon, limousine, sport car, convertible airplane

rocker — {albatross, king in, goose, black stork} deer

lemon — {Egyptian cat, tabby cat, Persian cat} horse
—>{German shepherd rador retriever, golden retrievet,  ship

Yorkshire terrier, chihuah ndard poodie}
— {bullfrog, tailed frog}
—{school bus, freight car, moving van, waggon}

Q3 Flower-102 with
02 species of flowers

@ Here, we focus on the fusion of the DNNs with different sets of
classes.

Ph.D. defense T



Evidential fusion of heterogeneous deep neural networks Fusion approach

Evidential fusion approach (classification problem)

Input image

Feature vector 1# with

the size 1x1 x P!

Feature vector 2# with
the size 1x1 x P?

Feature vector V# with
the size 1x1 x P"

b)) E=) /

Mass functions 1# with

1 = (m!(@3h, mt (D), m({w}

=) /=) / =)

Mass functions 2# with

m? = (m? (03D, m? (w3}, -, m ({wh

—»/-m

Mass functions V# with

) "‘mj))

\. | Mass-function Class of
fusion mudule input image
@) m@?)

Aggregated mass functions fit
or probability mass functions pj,

m? = (m ((@§)), m’ (@D, m! (@l })m(@"))

@ A mass-function fusion module refines V different frames into a

common one Q° and computes the vacuous extensions of different

masses in the common frame.

@ The contour functions of these vacuous extensions are aggregated by
Dempster's rule, as py.

Zheng Tong

Ph.D. defense
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Evidential fusion of heterogeneous deep neural networks Fusion approach

Compatible frames with an “anything else” elements

@ Not all frames of discernment are compatible.

@ We add an “anything else” elements wy in the v-th frames,

v=1,...,V.

Frame Class

CIFAR-10 QF airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck, wé

Tiny ImageNet Q2 reel, volleyball, rocker, police wagon, limousine, ..., (200
classes), w3.

Flower-102 Q3 bengal, boxer, ..., (102 species of flowers), w3.

Common frame Q° airplane, deer, horse, ship, reel, volleyball, rocker, police wagon,
limousine, ..., (200 classes from Tiny ImageNet), buttercup,
alpine sea holly, ..., (102 species of flowers).

e Each DS layer has an extra output m“({wg}).

Ph.D. defense Y



Evidential fusion of heterogeneous deep neural networks Fusion approach

Learning with soft labels

@ Learned network weights may not be very suitable for the new task:
o An extra output m"({wg}) in each DS layer
e Soft labels in the dataset
Cifar-10+Tiny ImageNet with cat class — {Egyptian cat, tabby cat,
Persian cat}
@ Fine-tuning processes:

o We merge the learning sets of different DNNs into a single one
o Given a learning sample with a nonempty label A, C QO, the
aggregated contour function py is normalized as

/( ’_): pV(W,') i—=1 MO

pyl\w MO ’ !
Zj:1 pv(wj)

P

e The prediction loss is

L(py,A.) = —log > ply(w)

wWEA,

Ph.D. defense M 0 A 6]



Evidential fusion of heterogeneous deep neural networks Experiment of multi-model fusion

Comparison study

@ Probability-to-mass fusion (PMF): probabilistic networks (softmax
output), combination of probabilities (after extension to Q°) by
Dempster's rule.

@ Bayesian-fusion (BF): probability networks (softmax output),
probabilities computed on Q° as uniform distributions, combination
by Dempster’s rule.

@ Probabilistic feature-combination (PFC): concatenation of feature
vectors extracted by the three networks + softmax layer.

e Evidential feature-combination (EFC): concatenation of the feature
vectors extracted by the three networks + DS layer.

Ph.D. defense M A 6l



Evidential fusion of heterogeneous deep neural networks Experiment of multi-model fusion

Results (ResNet-101 backbones)

Classifier Tiny ImageNet Flower-102 CIFAR-10 Overall
Before fusion Evidential CNN 18.66 4.68 4.61 -
Probabilistic CNN 18.70 4.69 4.66 -
After fusion Proposgcli method ) 18.52 4.68 3.94 10.31
without E2E learning Probability-to-mass fusion 18.54 4.69 4.42 10.40
Bayesian-fusion 19.18 5.07 6.04 11.10
Proposed method 18.50 4.67 3.82 10.27
After fusion Proba.bility—t_o—mass fusion 18.49 4.68 4.28 10.35
with E2E learning Bayesian-fusion 18.87 4.99 5.74 10.89
Probabilistic feature-combination 18.59 5.74 4.89 10.94
Evidential feature-combination 21.68 5.46 7.57 12.56

Ph.D. defense
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Evidential fusion of heterogeneous deep neural networks Experiment of multi-model fusion

Examples

Before fusion
Instance/label

p’ from Tiny ImageNet p’ from CIFAR-10 p’ from Flower102

p on Q°
after fusion

p'(Egyptian cat) = 0.47 p/(cat) = 0.87 p/(buttercup) = 0.001

p'(Egytian cat) = 0.86

p(chihuahua) = 0.51 p/(dog) = 0.12 p(camellia) = 0 p/(chihuahua) = 0.13
Egyptian cat .1y — 0,001 p(wd) =0.001  p'(wd) =0.99 p'(w8) = 0.001
- p/(king penguin) = 0.45 p/(bird) = 0.73 p/(buttercup) = 0 p/(king penguin) = 0.98
" p/(academic gown) = 0.53  p/({frog}) =0.10 p(camellia) = 0.001  p’(academic gown) = 0.01
King pengui (1) — 0.001 P(wR) = 0004  p(w) =0.99 p/(wd) = 0.001
= p(bull frog) = 0.38 p/(frog) = 0.97 p'(buttercup) = 0.001  p/(bull frog) = 0.39
ﬁ p/(tailed frog) = 0.60 p/(cat) = 0.01 p/(camellia) = 0 p/(tailed frog) = 0.61
bullfroe  pi(ug) =0 P(wf) =0 p(wf) =099 P(w§) =0
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Combining simple DNNs for a complex classification task

@ Objective: solve a complex problem with some simple DNNs, instead
of a very deep one.

@ Approach:
o Decompose a complex classification problem into simple ones
e Solve each problem by a simple DNN
e Combine these DNNs by the evidential fusion approach

-o-EFM -#-PFM PFC

1.

Error rate/%
g

o Lm “e EFM = PFM —+ PFC]|
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Number of shallow CNNs

Number of shallow CNNs
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Conclusions about multi-model fusion

@ Similar results were found in other semantic-segmentation
experiments.
@ Conclusions: our approach

o Combines DNNs trained from heterogeneous datasets.
e Outperforms other decision-level or feature-level fusion strategies for
combining DNNs.
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Conclusions and perspectives

General conclusions

o Evidential DNNs
o Assign ambiguous samples to multi-set
o Reject outliers together with ambiguous samples
e Have similar or even better performance for precise problems of
classification and segmentation.
@ Evidential fusion of heterogeneous DNNs
o Combines DNNs with different sets of classes
o Outperforms other decision-level or feature-level fusion strategies for
combining DNNs.
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Perspectives

o Evidential DNNs

o Combine with other up-to-date CNNs and FCNs to achieve better
performance

e Combine with other types of DNNs, such as recurrent neural networks
for natural language processing

o Compare other uncertainty quantification methods with the DS layer,
such as probabilities with a Dirichlet distribution

e More metrics to evaluate the performance of evidential DNNs, such as
top k-categorical accuracy and learning curves

e Can be trained by a small dataset?

@ Evidential fusion
o Compares with more information-fusion methods, such as
error-correcting output codes
e Obtains the semantic relationship automatically.

Zheng Tong Ph.D. defense March 14, 2022 49 /51



Conclusions and perspectives

Publications

@ International journals:
@ Z. Tong, Ph. Xu, T. Denceux. An evidential classifier based on Dempster-Shafer
theory and deep learning. Neurocomputing, August 2021, 450, 275-293
@ Z. Tong, Ph. Xu, T. Denceux. Evidential fully convolutional network for semantic
segmentation. Applied Intelligence, April 2021, 51, 6376-6399

@ International conferences:
@ Z. Tong, Ph. Xu, T. Denceux. ConvNet and Dempster-Shafer Theory for Object

Recognition. In: International Conference on Scalable Uncertainty Management
(SUM 2019) , pp. 368-381. Springer, Cham, France, 2019

@ Z. Tong, Ph. Xu, T. Denceux. Fusion of evidential CNN classifiers for image
classification. In: International Conference on International Conference on Belief
Functions (BELIEF 2021) . Springer, Shanghai, China, 2021. (Best paper award)

@ Available codes:

@ Evidential CNN https://github.com/tongzheng1992/E-CNN-classifier
@ Evidential FCN https://github.com/tongzheng1992/E-FCN
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Conclusions and perspectives

Thank you!
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