
Evidential deep neural network in the framework of
Dempster-Shafer theory

Zheng Tong
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Introduction

Problems in DNNs

Deep neural networks (DNNs) achieve state-of-the-art results in many
applications:

Object classification
Semantic segmentation
...

Such achievements are due to their reliable feature representations
with multiple layers, which progressively extract high-level features
from raw data.

However, they still face the problems of data uncertainty.
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Introduction

Data uncertainty

1 Ambiguous raw data and their representations → incorrect decision

/cat or dog? /cat species?
2 Imprecise and unreliable data → effects on learning systems

3 Incomplete data → difficulty in novelty detection and model fusion
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Introduction

Objectives

Many theories have been combined with DNNs to solve these
uncertainty problems:

Bayesian probability
Imprecise probability
Fuzzy sets
Dempster-Shafer (DS) theory
...

The DS theory of belief functions, also referred to as evidence theory,
is applied to a wide range problems involving uncertainty in machine
learning.
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Introduction

Key features of DS theory in machine learning

Generality: DS theory is based on the idea of combining sets and
probabilities. It extends both

Probabilistic reasoning
Propositional logic, computing with sets (interval
analysis)

DS theory can do much more than sets or probabilities.

Operationality: DS theory is easily put in practice by breaking down the
available evidence into elementary pieces of evidence, and
combining them by a suitable operator called Dempster’s
rule of combination.

We aim to develop new DNNs based on DS theory with the capacity
to deal with data uncertainty.
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Dempster-Shafer theory

Outline

1 Background

Dempster-Shafer theory
Deep neural network
Evidential neural network

2 Evidential deep neural networks

Object classification
Semantic segmentation

3 Evidential multi-model fusion
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Dempster-Shafer theory Information representation

Mass, belief, and plausibility functions

Let Ω = {ω1, . . . , ωM} be a class set called the frame of discerment.

A mass function on Ω is a mapping m : 2Ω → [0, 1] such that∑
A⊆Ω

m(A) = 1.

If m(∅) = 0, m is said to be normalized.

Every subset A ⊆ Ω such that m(A) > 0 is called a focal set of m.

Belief and plausibility functions are defined as

Bel(A) =
∑
B⊆A

m(B), Pl(A) =
∑

B∩A̸=∅

m(B).
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Dempster-Shafer theory Operations of belief functions

Dempster’s rule of combination

Two independent mass functions m1 and m2 on Ω is combined as
their orthogonal sum

(m1 ⊕m2)(A) :=

∑
B∩C=Am1(B)m2(C )

1−
∑

B∩C=∅m1(B)m2(C )

for all A ̸= ∅ and (m1 ⊕m2)(∅) = 0.

Property w.r.t normalized contour function pl :

pl(ω) = Pl(ω), ∀ω ∈ Ω.

pm(ω) :=
pl(ω)∑M
j=1 pl(ωj)

,

pm1⊕m2(ω) ∝ pm1(ω)pm2(ω), ω ∈ Ω,
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Dempster-Shafer theory Operations of belief functions

Refinement

Definition

A frame Θ is a refinement of Ω iff there is a mapping ρ : 2Ω → 2Θ such
that:

• {ρ({ω}), ω ∈ Ω} ⊆ 2Θ is a partition of Θ,

• ∀A ⊆ Ω, ρ(A) =
⋃
ω∈A

ρ({ω}).
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Dempster-Shafer theory Operations of belief functions

Compatible frames and vacuous extension

Two frames of discernment are said to be compatible if they have a
common refinement.

In machine learning, add an “anything else” element in different
frames to make them compatible.

mΩ1↑Ω0
is called the vacuous extension of mΩ1

on Ω0, such that

mΩ1
({ω1

1}) = mΩ0
({ω0

1}), mΩ1
({ω1

2}) = mΩ0
({ω0

2, ω
0
3}),

mΩ1
({ω1

0}) = mΩ0
({ω0

4}).
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Dempster-Shafer theory Decision-making with belief functions

Definitions and notations

A decision problem with a set of states of the nature Ω is formalized:
A set of acts F
A utility function u : F × Ω → R, such that uf ,ω is the utility of
selecting act f ∈ F when the true state is ω.

ufi ,1 ufi ,2 ufi ,3 min ufi ,j max ufi ,j
f1 0.37 0.25 0.23 0.23 0.37
f2 0.49 0.70 0.20 0.20 0.70

With a mass function of DS theory m describing the uncertainty on
Ω, the lower and upper expected utilities of act f is defined as

Em(f ) =
∑
B⊆Ω

m(B) min
ωj∈B

uf ,j , Em(f ) =
∑
B⊆Ω

m(B) max
ωj∈B

uf ,j .

The generalized Hurwicz expected utility is a weighted average of
lower and upper expected utilities

Em,ν(f ) = νEm(f ) + (1− ν)Em(f ).
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Dempster-Shafer theory Decision-making with belief functions

Precise and imprecise classification with belief functions

A problem of precise classification can be formalized as

A set of acts F = {fω1 , . . . , fωM
}

A utility function u described by a utility matrix UM×M with general
term uij

Class
ω1 ω2 ω3

fω1 1 0 0
fω2 0 1 0
fω3 0 0 1

A problem of imprecise classification can be formalized as

A set of acts is F = {fA,A ∈ 2Ω\∅}
A utility function u described by a utility matrix U(2Ω−1)×M with
general term ûA,j

How to extend UM×M to U(2Ω−1)×M?
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Dempster-Shafer theory Decision-making with belief functions

Ordered weighted average aggregation

Term ûA,j is an ordered weighted average aggregation of the utilities
of each precise assignment in A as

ûA,j =

|A|∑
k=1

gk · uA(k)j .

Parameters gk are determined to maximize the entropy subject to

|A|∑
k=1

|A| − k

|A| − 1
gk = γ.

γ measures the tolerance to imprecision; it controls the imprecision of
the decisions:

γ = 0.5 gives the average (minimum tolerance degree)
γ = 1 gives the maximum (maximum tolerance degree)
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Dempster-Shafer theory Decision-making with belief functions

Example of U(2Ω−1)×M with γ = 0.8

Classes
ω1 ω2 ω3

f{ω1} 1 0 0
f{ω2} 0 1 0
f{ω3} 0 0 1

f{ω1,ω2} 0.8 0.8 0
f{ω1,ω3} 0.8 0 0.8
f{ω2,ω3} 0 0.8 0.8

fΩ 0.682 0.682 0.682
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Deep neural network

Outline

1 Background

Dempster-Shafer theory
Deep neural network
Evidential neural network

2 Evidential deep neural networks

Object classification
Semantic segmentation

3 Evidential multi-model fusion
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Deep neural network Convolutional neural network

Probabilistic CNN classifier for object classification

A CNN stage is a combination of convolutional and pooling layers.

A CNN backbone is composed of at least one stage for feature
extraction.

A probabilistic CNN classifier converts the feature vector from a
backbone into a probability distribution using a softmax layer for
decision-making.
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Deep neural network Fully convolutional network

Probabilistic FCN model for semantic segmentation

A FCN backbone (encoder-decoder architecture) extracts pixel-wise
feature maps from an input image.

An encoder-decoder architecture consists of

CNN stages to extract features from the input image
Upsampling layers to upsample features into pixel-wise feature maps

How to transform the features from a backbone into mass functions?
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Deep neural network Fully convolutional network

Outline

1 Background
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Evidential neural network

Principle

A learning set is summarized by n
prototypes in the form of feature vectors.

Each prototype pi has membership degree
hij to each class ωj with

∑M
j=1 h

i
j = 1.

Each prototype pi is a piece of evidence
about the class of x ; its reliability
decreases with the distance d i between pi

and x .
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Evidential neural network

Propagation equations

Mass functions associated to pi :

mi ({ωj}) = hijτ
i exp(−(ηid i )2)

mi (Ω) = 1− τ i exp(−(ηid i )2)

Combination:

m =
n⊕

i=1

mi

The combined mass function:

m = (m(ω1), . . . ,m(ωM),m(Ω))T
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Evidential neural network

Evidential neural network (DS layer)

Evidential classifier can be implemented as neural network layer,
called a DS layer.

The performance of an evidential classifier heavily depends on its
input feature vector.
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Evidential convolutional neural network classifier

Outline

1 Background
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Deep neural network
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2 Evidential deep neural networks

Object classification
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3 Evidential multi-model fusion
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Evidential convolutional neural network classifier Proposed classifier

Network architecture

Aim to solve the uncertainty problems in object classification.

Basic idea: plug a “DS layer” at the output of a CNN backbone,
called an “evidential CNN classifier (E-CNN)”.

The decision-making process with mass functions and utility theory is
implemented as a neural network layer, called a utility layer.

The connection weights in the utility layer is ûA,j and do not need to
be updated during training because ûA,j depends on the tolerance to
imprecision γ.
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Evidential convolutional neural network classifier Proposed classifier

Learning

Given a sample x with class label ω∗, using the generalized Hurwicz
criterion, the prediction loss is defined as

Lν(m, ω∗) = −
M∑
k=1

yk logEm,ν(fωk
) + (1− yk) log(1− Em,ν(fωk

))

where yk equals 1 if ωk = ω∗, otherwise 0.

The loss Lν(m, ω∗) is minimized when Em,ν(fωk
) = 1 for ωk = ω∗ and

Em,ν(fωl
) = 0 if ωl ̸= ω∗.

Examples Outputs of a DS layer
m({ω1}) m({ω2}) m({ω3}) m(Ω)

#1 0.70 0.10 0.10 0.10
#2 0.97 0.01 0.01 0.01
#3 0.50 0.50 0 0
#4 0.40 0.40 0 0.2

Examples
Expected utility

Loss (ω∗ = ω1)Em,1({ω1}) Em,1({ω2}) Em,1({ω3})
#1 0.70 0.10 0.10 0.303
#2 0.97 0.01 0.01 0.026
#3 0.50 0.50 0 0.602
#4 0.40 0.40 0 0.796

In practice, the error propagation can be performed automatically in
TensorFlow.
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Evidential convolutional neural network classifier Experimental evaluation

Evaluation metrics for classification performance

Averaged utility measures the utilities of all assignments in testing set
T :

AU(T ) =
1

|T |

|T |∑
i=1

ûA(i),yi

When only considering precise acts, AU is equal to classification
accuracy.

Averaged cardinality measures the imprecision of the decisions in T :

AC (T ) =
1

|T |

|T |∑
i=1

|A(i)|
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Evidential convolutional neural network classifier Experimental evaluation

Evaluation metrics for novelty detection

An outlier x has large d i to each
prototypes.

The DS layer outputs m(Ω) ≈ 1 for x .

The final decision is act fΩ for x and set
Ω means “everything”.

A good classifier should have a high rate
of assignment fΩ in an outlier testing set
and a low rate of assignment fΩ in an
inlier testing set.
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Evidential convolutional neural network classifier Experimental evaluation

Dataset in the image-classification experiment

CIFAR-10 to train and evaluate classification performance:

10 classes

5000 tiny images of each class for training and validation

1000 tiny images of each class for testing
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Evidential convolutional neural network classifier Experimental evaluation

Results of precise classification

NIN FitNet-4 ViT-L/16

Input: 32 × 32 × 3

16 × 16 × 3 × 4 patches

5 × 5 Conv. NIN 64 ReLU 3 × 3 Conv. 32 ReLU 3 × 3 Conv. 32 ReLU
3 × 3 Conv. 32 ReLU 3 × 3 Conv. 32 ReLU
3 × 3 Conv. 32 ReLU 3 × 3 Conv. 32 ReLU
3 × 3 Conv. 48 ReLU 3 × 3 Conv. 48 ReLU
3 × 3 Conv. 48 ReLU 3 × 3 Conv. 48 ReLU

2 × 2 max-pooling with 2 strides

5 × 5 Conv. NIN 64 ReLU 3 × 3 Conv. 80 ReLU 3 × 3 Conv. 80 ReLU
2 × 2 mean-pooling with 2 strides 3 × 3 Conv. 80 ReLU 3 × 3 Conv. 80 ReLU

3 × 3 Conv. 80 ReLU 3 × 3 Conv. 80 ReLU
3 × 3 Conv. 80 ReLU 3 × 3 Conv. 80 ReLU
3 × 3 Conv. 80 ReLU 3 × 3 Conv. 80 ReLU

2 × 2 max-pooling with 2 strides

5 × 5 Conv. NIN 128 ReLU 3 × 3 Conv. 128 ReLU 3 × 3 Conv. 128 ReLU
2 × 2 mean-pooling with 2 strides 3 × 3 Conv. 128 ReLU 3 × 3 Conv. 128 ReLU

3 × 3 Conv. 128 ReLU 3 × 3 Conv. 128 ReLU
3 × 3 Conv. 128 ReLU 3 × 3 Conv. 128 ReLU
3 × 3 Conv. 128 ReLU 3 × 3 Conv. 128 ReLU

8 × 8 max-pooling with 2 strides 4 × 4 max-pooling with 2 strides+position embedding

Average global pooling Transformer encoder

Models
NIN FitNet-4 ViT-L/16

Probabilistic Evidential Probabilistic Evidential Probabilistic Evidential

Utility 0.8959 0.8978 0.9353 0.9361 0.9921 0.9908
p-value

(McNemar’s test)
0.0489 0.0492 0.0452

Zheng Tong Ph.D. defense March 14, 2022 28 / 51



Evidential convolutional neural network classifier Experimental evaluation

Results of imprecise classification

The tolerance to imprecision γ ∈ [0.5, 1.0] models the user’s tolerance
degree to imprecision:

γ = 0.5 for precise classification

γ = 1 for completely imprecise classification (all samples assigned to
set Ω)

Higher γ corresponds to more imprecise decisions
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Evidential convolutional neural network classifier Experimental evaluation

Examples of precise and imprecise classification

#1(ω∗ =cat) #2(ω∗=dog) #3(ω∗ =deer)

γ=0.5 {dog}/0 {dog}/1 {deer}/1
γ=0.6 {cat,dog}/0.6 {cat,dog}/0.6 {deer}/1
γ=0.7 {cat,dog}/0.7 {cat,dog}/0.7 {deer,horse}/0.7
γ=0.8 {cat,dog}/0.8 {cat,dog}/0.8 {deer,horse}/0.8
γ=0.9 {cat,dog}/0.9 {cat,dog}/0.9 {cat,deer,dog,horse}/0.71
γ=1.0 Ω/1.0 Ω/1.0 Ω/1.0
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Evidential convolutional neural network classifier Experimental evaluation

Datasets for novelty detection

CIFAR-100 and MNIST for novelty-detection performance:

100 classes containing 600 images each in CIFAR-100

10 classes of handwritten digits containing 600 images each in MNIST
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Evidential convolutional neural network classifier Experimental evaluation

Results of Novelty detection (FitNet-4 backbone)

The classifiers were trained
using the CIFAR-10 dataset; the
outliers are from the CIFAR-100
and MNIST datasets.

A sample is rejected as outlier if
it is assigned to set Ω.

A good classifier has a high rate
of assignment to Ω in an outlier
set and a low rate of assignment
to Ω in an inlier set.
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Evidential convolutional neural network classifier Conclusions about object classification

Conclusions about object classification

Similar phenomena are also observed in the classification problems of
signal processing and semantic relationship.

Conclusions: our approach

Improves the CNN performance by assigning ambiguous patterns with
uncertain information to multi-class sets.
Rejects outliers together with ambiguous patterns.
Outperforms the probabilistic CNN classifiers on imprecise classification
and novelty detection.
Has similar or even better performance than the probabilistic classifiers
on precise classification.
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Evidential fully convolutional network
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Evidential fully convolutional network Proposed method

Network architecture
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Evidential fully convolutional network Experiment results

Segmentation results (Pascal VOC)

Pixel utility (PU) Utility of IoU

P-FCN-32s 0.8912 ± 0.0019 0.5941 ± 0.0033
P-FCN-16s 0.9001 ± 0.0015 0.6243 ± 0.0025
P-FCN-8s 0.9033 ± 0.0017 0.6269 ± 0.0021

E-FCN-32s 0.8973 ± 0.0021 0.6128 ± 0.0024
E-FCN-16s 0.9045 ± 0.0014 0.6304 ± 0.0019
E-FCN-8s 0.9074 ± 0.0015 0.6337 ± 0.0020
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Evidential fully convolutional network Experiment results

Segmentation examples on Pascal VOC
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Evidential fusion of heterogeneous deep neural networks
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Evidential fusion of heterogeneous deep neural networks Fusion approach

Problem definition

Many DNNs have been trained using different datasets. How to use
these existing networks?

This is a hard problem, because classifiers trained on different learning
sets have different frames of discernment.

Here, we focus on the fusion of the DNNs with different sets of
classes.
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Evidential fusion of heterogeneous deep neural networks Fusion approach

Evidential fusion approach (classification problem)

A mass-function fusion module refines V different frames into a
common one Ω0 and computes the vacuous extensions of different
masses in the common frame.

The contour functions of these vacuous extensions are aggregated by
Dempster’s rule, as pV .
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Evidential fusion of heterogeneous deep neural networks Fusion approach

Compatible frames with an “anything else” elements

Not all frames of discernment are compatible.

We add an “anything else” elements ωv
0 in the v -th frames,

v = 1, . . . ,V .
Frame Class

CIFAR-10 Ω1 airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck, ω1

0.

Tiny ImageNet Ω2 reel, volleyball, rocker, police wagon, limousine, . . . , (200
classes), ω2

0.

Flower-102 Ω3 bengal, boxer, . . . , (102 species of flowers), ω3
0.

Common frame Ω0 airplane, deer, horse, ship, reel, volleyball, rocker, police wagon,
limousine, . . . , (200 classes from Tiny ImageNet), buttercup,
alpine sea holly, . . . , (102 species of flowers).

Each DS layer has an extra output mv ({ωv
0}).
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Evidential fusion of heterogeneous deep neural networks Fusion approach

Learning with soft labels

Learned network weights may not be very suitable for the new task:
An extra output mv ({ωv

0}) in each DS layer
Soft labels in the dataset
Cifar-10+Tiny ImageNet with cat class → {Egyptian cat, tabby cat,
Persian cat}

Fine-tuning processes:
We merge the learning sets of different DNNs into a single one
Given a learning sample with a nonempty label A∗ ⊆ Ω0, the
aggregated contour function pV is normalized as

p′V (ωi ) =
pV (ωi )∑M0

j=1 pV (ωj)
, i = 1, . . . ,M0

The prediction loss is

L(p′V ,A∗) = − log
∑
ω∈A∗

p′V (ω)
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Evidential fusion of heterogeneous deep neural networks Experiment of multi-model fusion

Comparison study

Probability-to-mass fusion (PMF): probabilistic networks (softmax
output), combination of probabilities (after extension to Ω0) by
Dempster’s rule.

Bayesian-fusion (BF): probability networks (softmax output),
probabilities computed on Ω0 as uniform distributions, combination
by Dempster’s rule.

Probabilistic feature-combination (PFC): concatenation of feature
vectors extracted by the three networks + softmax layer.

Evidential feature-combination (EFC): concatenation of the feature
vectors extracted by the three networks + DS layer.
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Evidential fusion of heterogeneous deep neural networks Experiment of multi-model fusion

Results (ResNet-101 backbones)

Classifier Tiny ImageNet Flower-102 CIFAR-10 Overall

Before fusion
Evidential CNN 18.66 4.68 4.61 -
Probabilistic CNN 18.70 4.69 4.66 -

After fusion
without E2E learning

Proposed method 18.52 4.68 3.94 10.31
Probability-to-mass fusion 18.54 4.69 4.42 10.40
Bayesian-fusion 19.18 5.07 6.04 11.10

After fusion
with E2E learning

Proposed method 18.50 4.67 3.82 10.27
Probability-to-mass fusion 18.49 4.68 4.28 10.35
Bayesian-fusion 18.87 4.99 5.74 10.89
Probabilistic feature-combination 18.59 5.74 4.89 10.94
Evidential feature-combination 21.68 5.46 7.57 12.56
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Evidential fusion of heterogeneous deep neural networks Experiment of multi-model fusion

Examples

Instance/label
Before fusion p′ on Ω0

after fusionp′ from Tiny ImageNet p′ from CIFAR-10 p′ from Flower102

Egyptian cat

p′(Egyptian cat) = 0.47 p′(cat) = 0.87 p′(buttercup) = 0.001 p′(Egytian cat) = 0.86
p′(chihuahua) = 0.51 p′(dog) = 0.12 p′(camellia) = 0 p′(chihuahua) = 0.13
. . . . . . . . . . . .
p′(ω1

0) = 0.001 p′(ω2
0) = 0.001 p′(ω3

0) = 0.99 p′(ω0
0) = 0.001

king pengui

p′(king penguin) = 0.45 p′(bird) = 0.73 p′(buttercup) = 0 p′(king penguin) = 0.98
p′(academic gown) = 0.53 p′({frog}) = 0.10 p′(camellia) = 0.001 p′(academic gown) = 0.01
. . . . . . . . . . . .
p′(ω1

0) = 0.001 p′(ω2
0) = 0.004 p′(ω3

0) = 0.99 p′(ω0
0) = 0.001

bull frog

p′(bull frog) = 0.38 p′(frog) = 0.97 p′(buttercup) = 0.001 p′(bull frog) = 0.39
p′(tailed frog) = 0.60 p′(cat) = 0.01 p′(camellia) = 0 p′(tailed frog) = 0.61
. . . . . . . . . . . .
p′(ω1

0) = 0 p′(ω2
0) = 0 p′(ω3

0) = 0.99 p′(ω0
0) = 0
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Evidential fusion of heterogeneous deep neural networks Combining simple DNNs for a complex task

Combining simple DNNs for a complex classification task

Objective: solve a complex problem with some simple DNNs, instead
of a very deep one.

Approach:

Decompose a complex classification problem into simple ones
Solve each problem by a simple DNN
Combine these DNNs by the evidential fusion approach
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Evidential fusion of heterogeneous deep neural networks Conclusions about multi-model fusion

Conclusions about multi-model fusion

Similar results were found in other semantic-segmentation
experiments.

Conclusions: our approach

Combines DNNs trained from heterogeneous datasets.
Outperforms other decision-level or feature-level fusion strategies for
combining DNNs.
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Conclusions and perspectives

General conclusions

Evidential DNNs

Assign ambiguous samples to multi-set
Reject outliers together with ambiguous samples
Have similar or even better performance for precise problems of
classification and segmentation.

Evidential fusion of heterogeneous DNNs

Combines DNNs with different sets of classes
Outperforms other decision-level or feature-level fusion strategies for
combining DNNs.
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Conclusions and perspectives

Perspectives

Evidential DNNs

Combine with other up-to-date CNNs and FCNs to achieve better
performance
Combine with other types of DNNs, such as recurrent neural networks
for natural language processing
Compare other uncertainty quantification methods with the DS layer,
such as probabilities with a Dirichlet distribution
More metrics to evaluate the performance of evidential DNNs, such as
top k-categorical accuracy and learning curves
Can be trained by a small dataset?

Evidential fusion

Compares with more information-fusion methods, such as
error-correcting output codes
Obtains the semantic relationship automatically.
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Conclusions and perspectives

Publications

International journals:

Z. Tong, Ph. Xu, T. Denœux. An evidential classifier based on Dempster-Shafer

theory and deep learning. Neurocomputing, August 2021, 450, 275-293

Z. Tong, Ph. Xu, T. Denœux. Evidential fully convolutional network for semantic

segmentation. Applied Intelligence, April 2021, 51, 6376-6399

International conferences:

Z. Tong, Ph. Xu, T. Denœux. ConvNet and Dempster-Shafer Theory for Object

Recognition. In: International Conference on Scalable Uncertainty Management

(SUM 2019) , pp. 368-381. Springer, Cham, France, 2019

Z. Tong, Ph. Xu, T. Denœux. Fusion of evidential CNN classifiers for image

classification. In: International Conference on International Conference on Belief

Functions (BELIEF 2021) . Springer, Shanghai, China, 2021. (Best paper award)

Available codes:

Evidential CNN https://github.com/tongzheng1992/E-CNN-classifier

Evidential FCN https://github.com/tongzheng1992/E-FCN
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Thank you!
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