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Problem definition

@ Convolutional neural networks (CNNs) achieve remarkable success on
image classification.

@ Such CNNs are trained with different datasets, such as CIFAR-10 and
ImageNet.

@ The aim of the study:

@ Combine CNNs trained from such heterogenous datasets with
Dempster-Shafer theory.

o Allow the introduction of new datasets with different sets of classes at any
stage.
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Dempster-Shafer theory

Dempster-Shafer (DS) theory, also referred to as Evidence Theory,

@ Represent independent pieces of evidence by a mass function
m: 2 — [0, 1] on the frame of discernment ©, such that > aco MA)=1.

@ Aggregate two mass functions my and m, using Dempster’s rule as

_ >_Bnc=a M (B)m2(C)
>_Buco M(B)mz(C)

@ Refine a frame Q to another one © and compute the vacuous extension

as
1) — {mQ(A) f3ACQ, B=U,car({w}).

(m1 S¥) mz)(A)

0 otherwise,
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Introduction

Evidential convolutional neural network

@ Plug in a “DS layer” at the backbone output of a CNN.
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@ A DS layer converts features into mass functions.
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o @ Zheng Tong, Philippe Xu, and Thierry Denceux.
“An evidential classifier based on Dempster-Shafer theory and deep
learning”.

In: Neurocomputing 450 (2021). pp. 275-293.
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Evdential fusion of convolutional neural networks

e Evdential fusion of convolutional neural networks
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Evdential fusion of convolutional neural networks

Basic idea

@ Combine different pre-trained networks for a general one.

@ Adding a mass-function fusion module at the mass-function outputs of
evidential CNNs.
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Evdential fusion of convolutional neural networks

Learning with soft labels |

@ Fine-tune with union of learning sets: learned parameters in pre-trained
evidential CNNs could not be suitable for the new frame.

@ After merging, some label become imprecise A, C €, called soft label.

@ Given N CNN backbones, the n-th CNN architecture with a DS layer
outputs a mass function m” on the frame of discernment ©”,
n=1,...,N.

@ Let Q be a common refinement of the N frames ©1, ..., ©N, the vacuous
extension of m” in Q is m™<,

@ Aggregate these vacuous extension into one on the common refinement
as m.

@ Converts m into pignistic probability as

BetPy({w})) = 3 %.

ACQweA
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Learning with soft labels

@ The combination of evidential CNNs outputs

{BetPz({w1}), ..., BetPz({wm})}, and the final prediction is
W = arg maxyeq BetPx({w}).

@ We define the loss function w.r.t the pignistic probability for a sample with
label A, C Q as:

L(p,A.) = —log > BetPx({w}).

wEA,

It achieves 0 when the sum of the pignistic probabilities of the classes in
A, equalsto 1.
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Datasets

Q0 Common frame with 244 classes

) @ CUB

Q!: Cifar-10 —{200 species of birds}

airplane

automobile

deer

frog

horse

ship Q% Oxford-IIIT Pet

truck
- ¥
-4 }
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Experiment details: CNN architectures

@ Implementation details:
@ Design a mass-fusion evidential CNN (MFE-CNN) classifiers with three
pre-trained CNN backbones.
e For each MFE-CNN classifier, its three CNN backbones refer to FitNet-4
(360,230,70).
@ All of the three CNN architectures have 128 output units.
@ Comparison study:
Probability-to-mass fusion (PMF) method
Bayesian fusion (BF) method
Probability-feature-concatenation (PFC) method
Mass-feature-concatenation (MFC) method
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Results

Classifier CIFAR-10 CUB  Oxford-IlIT pet Overall
Before fusion E—F!tNit—4 6.50 25.07 10.17 -
P-FitNit-4 6.58 25.18 10.56 -
MFE-FitNit-4 5.07 25.07 9.82 12.65
PMF-FitNit-4 5.86 25.16 10.13 13.12
BF-FitNit-4 6.10 27.84 11.08 14.31
After fusion E2E MFE-F?tN?t-4 4.49 25.07 9.81 12.37
E2E PMF-FitNit-4 5.47 25.14 10.11 12.92
E2E BF-FitNit-4 6.26 27.76 10.87 14.32
E2E PFC-FitNit-4 6.20 25.11 9.78 13.21
E2E EFC-FitNit-4 6.86 25.10 11.30 13.80

Classifier aero mobile bird cat deer dog frog horse ship truck
E-FitNit-4 2.4 3.9 64 135 9.0 101 56 68 35 27
P-FitNit-4 1.6 2.6 87 157 96 125 42 53 19 26
E2EMFE 2.2 3.9 19 63 85 39 55 65 35 27
After fusion E2EPMF 1.6 25 50 128 9.0 92 42 53 1.8 26
E2E BF 1.5 25 81 140 9.0 11.0 41 5.2 1.8 25

Before fusion
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Class examples

Instance/label Before fusion MF on Q
MF from CIFAR-10 MF from CUB MF from Oxford after fusion
m({airplane}) = 0.506 m({caspinan}) = 0.698 m({samyod}) = 0 m({airplane}) = 0.101
. m({bird}) = 0.382 m({horned grebe}) = 0.109 m({pyrenees}) =0.001 m({caspinan}) = 0.672
bird m(e') — 0.065 m(62) = 0.098 m(63) = 0.905 m(Q) = 0.007
m({airplane}) = 0.009 m({caspinan}) = 0.423 m({samyod}) =0 m({caspinan}) = 0.415
n m({bird}) = 0.823 m({horned grebe}) = 0.452 m({pyrenees}) = 0.001  m({horned grebe}) = 0.450
/caspian
m(e') = 0.092 m(62) = 0.084 m(¢3) = 0.951 m(Q) = 0.009
m({cat}) = 0.742 m({caspinan}) = 0.002 m({byssinian}) = 0.412  m({byssinian}) = 0.414
m m({dog}) = 0.131 m({horned grebe}) = 0 m({bengal}) = 0.503  m({bengal}) = 0.505
‘M/byssinian -
m(©') = 0.032 m(6) = 0.931 m(63) = 0.038 m(Q) = 0.005
m({cat}) = 0.158 m({albatross}) = 0.001 m({rogdoll}) = 0.682 m({rogdoll}) = 0.369
c u ] m({dog}) = 0.705 m({horned grebe}) =0 m({keeshond}) = 0.254 m({keeshold}) = 0.485
/keeshond ... . . .
m(©') = 0.058 m(63) = 0.975 m(63) = 0.001 m({cat}) = 0.021
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Conclusions and perspectives

@ Conclusions:
o Combine different pre-trained CNNs trained from heterogeneous databases
with different sets of classes.
o Keep at least as good performance as those of the individual models on their
respective databases after combination.
e Outperform other fusion strategies.
© Perspectives:

o Use different CNN backbones and datasets to test the fusion method.
o Extend the idea to semantic segmentation.
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