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Abstract: Intelligent compaction (IC) has been successfully used for soil and base compaction of highways. However, the application of IC
technology to monitor the construction quality of asphalt pavement faces complications with compaction processing. This study monitored
the compaction process of asphalt layers using an IC-based method. The compaction data were first collected during the construction of a
local road in Mardan, Pakistan, including IC data, in-place density, and temperature at the asphalt layer surface. The collected IC data were
then used to compute the intelligent compaction measurement values (ICMVs). The support vector regression analysis was performed to
predict the roller amplitude and in-place density using the ICMVs. To explore the correlations in compaction measuring/monitoring indica-
tors, this study also explored the correlations between the ICMVs with core density, temperature, and amplitude. Experiment results indicated
that the predicted roller amplitude values from the support vector regression model were close to the measured ones. There were high cor-
relations between the roller amplitudes and temperatures with the compaction measurement values (CMVs). In contrast, the correlation
between the in-place core densities and CMV values was low. Additionally, the CMVs of the backward pass were higher than the forward
one in each compaction cycle because the pavement density increased and the air void decreased after each forward pass. DOI: 10.1061/
(ASCE)MT.1943-5533.0004558. © 2022 American Society of Civil Engineers.
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Introduction

Conventional density quality control (QC) methods are still used
for density checks during the compaction processes of asphalt
layers, such as measuring the densities of drilled cores or using
nuclear or nonnuclear gauges to obtain in-place densities. However,

these methods have been limited by their disadvantages, such as
low generality and time consumption (Mooney and Adam 2007;
Mooney and Rinehart 2007). In addition, random sampling is not
representative since they typically cover only 1% or even less of the
entire construction area. Another problem is that QC density tests
are generally performed after compaction, making the remedial
measure expensive. The intelligent compaction (IC) method has
been introduced in the past years as an alternative to the traditional
QC techniques to improve the compaction quality during pavement
construction.

The IC technology was initially used for soil compaction in the
1970s and is now adopted for the whole construction procedure of
asphalt pavement (Scherocman et al. 2007; Mooney 2010; Xu and
Chang 2013; Hu et al. 2019, 2021). The IC technology first collects
the roller-ground interaction (vibration) data with an accelerometer
and then computes the compaction indicators of investigated areas.
Thus, the compaction quality is evaluated in real-time during the
compaction procedure, making it possible to determine the areas
with low compaction quality, which need extra compaction oper-
ations. All compaction indicators are synchronized with the other
data using a global positioning system (GPS), such as the number
of passes, frequency, speed of roller, and temperature of the asphalt
layers. Thanks to these advantages, IC is accurate and timely for
testing asphalt compaction density.

In the IC technique, there are three types of indicators to quan-
tify compaction status: (1) acceleration signal-based indicators
(Pettersson and Sandström 2004; Hu et al. 2017; Ma et al. 2021;
Yuan et al. 2021; Ma et al. 2022), such as compaction measurement
value (CMV), compaction control value (CCV), acceleration intel-
ligent compaction value (AICV), and vibration compaction value
(VCV); (2) stiffness-based indicators (White et al. 2007), such as
compaction stiffness and vibration modulus; and (3) energy-based
indicators (Mooney 2010), such as Omega value and machine drive
power (MDP). Many studies have reported the possibility of using
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the IC technique to control and monitor the compaction quality of
asphalt pavement by computing the relationships between the in-
telligent compaction measurement values (ICMVs) and the pave-
ment in-place density (Beainy et al. 2010; Savan et al. 2015; Hu
et al. 2017, 2019). It was found that ICMVs correlated well with
nuclear gauge densities (Chang et al. 2014). ICMV is an acceler-
ation signal-based indicator to quantify compaction status. In con-
trast, weak correlations between the CMV/CCV and core density
were observed, contributing to the complex field construction proc-
esses. For instance, the field IC measurements are highly affected
by the stiffness of the underlying support layers and vary from one
location to another, even with the same roller compactor, materials,
and paving pattern (Chang et al. 2011; Yuan et al. 2021; Zhang
et al. 2021b). Recently, neural network–based models have been
used to solve this problem, in which the densities of asphalt pave-
ments were accurately predicted with the joint information of the
measured vibration, mixture temperature, mixture type, and com-
paction pressure (Commuri et al. 2011; Zhang et al. 2021a).

This study aims to demonstrate the correlations between
intelligent compaction values of asphalt pavement and in situ mea-
sured parameters, which has the potential to provide a method for
real-time monitoring of compaction status. The nondestructive
pavement probe (NDPP) software first collected compaction infor-
mation, and core sampling was used to measure compaction den-
sity. Support vector regression analysis was then performed to
predict the temperature, core density, and amplitude using the
NDPP data. The predicted results from the support vector regres-
sion were compared with the in situ test results. Also, the correla-
tion between the ICMVs and the measured data was discussed.

Methodology

This study first adopted the NDPP data acquisition software on the
Android platform, which collected the operational status of the
roller compactor in real-time, including vibration data, speed, GPS
coordinates, amplitude, etc. At the same time, the information on
field temperature and core density was obtained through the field
measurement from the Mardan project. The collected vibration data
were then used to extract the fundamental operating frequency and
subharmonics at different frequencies using the fast Fourier trans-
formation (FFT) analysis (Rader and Brenner 1976; Beainy et al.
2010). The fundamental operating frequency and subharmonics
were then adopted to compute two signal-based indicators of com-
paction status, CMVand CCV. Finally, a support vector regression
(SVR) was implemented to predict the correlations between the
parameters of the roller compactor (e.g., amplitude, pavement
temperature) and core density.

NDPP Mobile Application

The NDPP signal acquisition framework is software that can be
downloaded and installed on both the Android and Apple plat-
forms. It outputs latitude and longitude through a GPS for position-
ing. The data were then converted into a local working coordinate
system based on the construction site. It can also use built-in
sensors to collect the velocity values and vibration acceleration
in three directions of XYZ with a required acquisition frequency
(1–1,000 Hz). Each sensor in the framework measures a physical
quantity and changes it into a signal that an electronic instrument
can deliver. It has the characteristics of high accuracy, vital conven-
ience, and diversified measurements. In this study, the NDPP signal
monitoring software collected the compaction information, includ-
ing the roller’s vibration acceleration, coordinates, speed, time, and
sampling interval. During compaction, the cell phone was attached

to the steady-state of the vibration wheel, and the NDPP software
then collected the compaction data with the input sampling interval
and display interval. The NDPP user interface is shown in Fig. 1.

The data were collected using the NDPP software on February
2, 2021, on the eastern and western bypass near Mardan, Pakistan.
The project was executed on a local road with a one-way direction,
and the width of the road was 6.3 m. The length of the section was
30 m, and the weight of the roller was 12,000 kg. The cross-
sectional of the road consisted of a 38 mm asphalt wearing course,
70 mm base course, and 70 mm subbase course. Dynapac roller
CC10 was used for asphalt mat compaction operation with an
operational speed of 3.6 km=h. The mobile phone was attached to
the roller drum vibration wheel to collect the vibration data with the
stable position of the vibration wheel, as shown in Fig. 2. The
cross-sectional profile of the road is shown in Fig. 3. It was divided
into three lanes, and each lane had five grids. The roller moved
forward and backward, so the pairwise forward and backward
passes were considered a single pass in which vibration was
performed. After the compaction operation, core samples were
collected to test the in-place density of the asphalt layers.

Fig. 1. NDPP mobile application interface.

Fig. 2. Mobile phone attached to the vibratory roller drum.
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This study used the Nyquist sampling theorem to determine the
sampling frequency. A signal can be reconstructed from its samples
if the waveform is sampled twice as fast as its highest frequency
component (Shannon 1949), such that

Fs > 2�fmax ð1Þ

where fmax = operational frequency of a roller; and Fs = sampling
frequency. The operational frequency of the compaction roller
in this study was 44 Hz, so the sampling frequency should be
higher than 88 Hz. In this study, the sampling frequency was 90 Hz.

Fast Fourier Transformation-Based Signal Processing

In this study, the collected vibration signals in the time domain
were converted to the ones in the frequency domain using the
FFT analysis, which output the fundamental operating frequency
and subharmonics at different frequencies. Fig. 4(a) shows an in-
stance of the original vibration signal in the time domain collected
from NDPP software. Fig. 4(b) shows the signal waveform after
the FFT analysis. The signal in Fig. 4(a) includes some complex
noise and interference, which should be removed for data analysis.
Figs. 4(c and d) show the time-domain signal filtered by the
finite impulse response algorithm and its FFT result. As shown

Fig. 3. Grid layout of the test section.

Fig. 4. Processing of vibration signal: (a) the original signal waveforms; (b) the original signals of frequency waveforms; (c) filtered signal
waveforms; and (d) filtered signal of a frequency waveform.
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in Fig. 4(d), the fundamental frequency (1 Ω) with the highest peak
is the operational frequency of the roller. Subharmonics at different
frequencies are the frequency caused by the inherently non-uniform
property of asphalt mixture, such as 0.5 Ω, 1.5 Ω, 2 Ω, 2.5 Ω,
and 3 Ω.

The filtered signal with different frequencies was used to com-
pute the CMV, a metric to characterize the compaction degree of
asphalt pavement. The CMV, first introduced by Geodynamik
(Forssblad 1980; Thurner 1980), is a function of drum weight
and diameter, roller frequency, speed, and roller amplitude, which
is resolved to analyze the response of the dynamic roller. The
vibratory roller’s drum periodically impacts the road surface during
construction. Some studies reported that the degree of compaction
had a significant relationship with the ratio of the amplitude of the
harmonic frequency to the one of the fundamental frequency
(Forssblad 1980; Sandström 1994). The CMV, as a dimensionless
compaction parameter value, is defined as

CMV ¼ C ×
A2 Ω

AΩ
ð2Þ

where C = constant used to fit the laboratory and field values
(C was 100 in this study); and AΩ and A2 Ω = acceleration ampli-
tude of the fundamental component and the first harmonic compo-
nent of the vibration, respectively. The value of A2 Ω=AΩ measures
the nonlinearity of a system. In a linear drum-asphalt concrete sys-
tem, a drum with 30 Hz produces a drum acceleration response of
30 Hz, where A2 Ω=AΩ is equal to 0. In practice, asphalt concrete is
a nonlinear material, and some contact loss occurs between asphalt
and drum. The contact surface changes nonlinearly during each
loading cycle, which leads the drum acceleration response to be
distorted rather than pure sinusoidal. Fourier analysis can be
adopted to reproduce distorted waveforms by summing multiples
of the excitation frequency. Therefore, the value of A2 Ω=AΩ can
evaluate the degree of distortion or nonlinearity.

The CCV is similar to CMV, except for the additional sub-
harmonic frequencies (the first subharmonic A0.5 Ω and higher-
order harmonics A1.5 Ω, A2 Ω, A2.5 Ω, and A3 Ω) to consider the
higher-order motions of a roller, such as chaotic and double jump
(Sandström 1994; Scherocman et al. 2007). CCV value is calcu-
lated as

CCV ¼ A0.5 Ω þ A1.5 Ω þ A2 Ω þ A2.5 Ω þ A3 Ω

A0.5 Ω þ AΩ
× 100 ð3Þ

where A0.5 Ω, A1.5 Ω, A2 Ω, A2.5 Ω, and A3 Ω = acceleration at the
different subharmonic frequencies, and AΩ denotes the acceleration
at the fundamental harmonic frequency.

Support Vector Regression

Machine learning, especially SVR, has been widely used in the
prediction and analysis of pavement structural conditions and
traffic information, such as resilient modulus (Maalouf et al.
2008), pavement roughness (Ziari et al. 2016), and pavement de-
formation (Cheng et al. 2019). SVR has achieved many successful

applications in recent years, including the correlation prediction be-
tween core density and IC parameters (Asif Imran et al. 2018;
Zhang et al. 2021b) and pavement response monitor (Seraj et al.
2015; Hadjidemetriou et al. 2018). Such achievements demonstrate
the accuracy and stability of SVR on pavement performance pre-
diction once given enough information on pavement conditions.
Therefore, this study designed three SVR models to predict the sur-
face temperatures, the amplitude of the used roller, and pavement
densities using the CMV results.

The SVR performance is affected by the kernel function, kernel
parameters, cost function k, and insensitive tube radius ∈. This
study used a radial basis function (RBF) as the kernel function
of each SVR model (Schölkopf et al. 2002). The cost function k
was used to control the function smoothness and flatness in each
SVR. A high value of C corresponds to an increased penalty of
errors. The insensitive tube radius ∈ was used to control the pre-
cision of the approximation method. The optimal parameters of
SVR models for predicting the surface temperatures, the amplitude
of the used roller, and pavement densities are summarized in
Table 1.

Result and Discussion

Effect of Passes on CMV and CCV

The entire test pavement section was divided into grids (6 m×
2.1 m), which is the same as the width of the Dynapac CC10 roller.
After collecting vibration data from the roller as described in the
above sections, the FFT analysis introduced in Section 2.3 was
performed to compute the ICMVs (CMVs and CCVs) for each
forward–backward pass by MATLAB software. Fig. 5 presents
the CMVs and CCVs results on different lines. Fig. 5(a) indicated
that CMVs in the lines varied from the forward pass to the back-
ward one. The CMV of each backward pass exceeded the corre-
sponding forward one for each line. The same behaviors of
average CCV were also found in Fig. 5(b). The reason was that the
pavement density increased, and the air void decreased after each
forward pass. Lane 2 generally achieved the highest CMV, while
Lane 3 had the lowest. In addition, the CCV and CMV results had
high standard deviations. This is because the first compaction step
used a breakdown roller to compact the loose material. Such roller
required variable force, which also provided variable reaction
force.

The asphalt pavement compaction is achieved by vibrating
crushing rollers, intermediate rollers, and pneumatic tire rollers
(PTRs) in sequence and compaction at elevated temperatures. A
pair of forwarding and backward passes is considered a single pass
in the compaction processes. After the compaction operation of
each pairwise pass, the in-place density of the asphalt layer
was tested by core sampling. Fig. 6 presents the core density
and temperature curves versus the number of passes. Density is
the ratio of mass to volume, while compaction is the process to
improve the density of an object. The core density was approxi-
mately proportional to the number of compaction passes at passes
1–6. This was because the asphalt concrete was loose in the early

Table 1. Metaparameters of the SVR models

Parameter Cost function k Epsilon ∈ Tolerance Kernel Gamma Preprocessing

Temperature 1 0.1 0.001 RBF kernel 0.5 Standardization
Amplitude 1 0.1 0.001 RBF kernel 0.5 Standardization
Core-density 1 0.1 0.001 RBF kernel 0.5 Standardization

© ASCE 04022386-4 J. Mater. Civ. Eng.
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compaction stage. With the increase in the number of passes, the
volume sum of pores in the inner structure of asphalt concrete
decreased, while no extra mass was introduced in the processes.
However, at passes 6 and 7, the density did not increase due to
no pores in the inner structure of asphalt concrete. In addition, dur-
ing the stage of the PTR compaction, the number of passes 6 and 7,
the core density decreased because of the decrease in the asphalt
temperature.

Fig. 6 indicated a high correlation of the pavement densities and
roller passes, as well as surface temperatures of asphalt pavement.
However, in practice, pavement densities were tested by core
sampling, which was destructive and led to negative effects on
pavement performance. Besides, surface temperatures of asphalt
pavement are not easy to be tested in time. Therefore, this study
tried to predict pavement densities and surface temperatures based
on the information from roller passes. A metric CMV was com-
puted using the vibration information of roller passes, as introduced
in Section 2.3. SVR-based models were then designed to predict
the pavement densities and surface temperatures using the CMV
results, as presented in Section 2.4.

Correlation between CMV and Temperature

To predict the temperature from the integrated roller values, an
SVR model was used, as introduced in Section 2.4. Fig. 7(a)
presents the test results of the model. Generally, the predicted tem-
peratures were close to the real ones. Therefore, the SVR model
could predict the temperatures of pavement layers. Fig. 7(b)
presents the correlation between CMV and temperature. The cor-
relation analysis indicated a mean square error (MSE) of 0.405 and
an R-squared value (R2) of 0.7473. This demonstrated that the
CMV had a high correlation with the surface temperature of the
asphalt mixture. Therefore, the surface temperature had a signifi-
cant effect on the compaction results.

Correlation between CMV and Amplitude

An SVR model was designed to predict the amplitude of IC rollers.
Fig. 8(a) presents the testing results of the SVR model. The pre-
dicted amplitudes were close to the real ones. Therefore, the
SVR model could predict the amplitude of IC rollers using ICMVs.

Fig. 5. Forward and backward pass comparison of different lanes: (a) CMV; and (b) CCV.

Fig. 6. Curves of density during the compaction: (a) compaction; and (b) temperature.

© ASCE 04022386-5 J. Mater. Civ. Eng.
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Fig. 8(b) displays the correlation between CMVand amplitude, in-
dicating a high R2. This demonstrated that the amplitude of IC roll-
ers had effects on the compaction results. This was because an
increased amplitude of the IC roller led to a high reaction force
between the roller and the ground, which improved the pavement
density and CMV.

Correlation between CMV and Core Density

As a destructive method, core sampling has been used to measure
pavement construction quality, such as density and compaction
degree. However, such an operation negatively affects pavement
performance, leading to pavement distress. In addition, the results
of core sampling were not representative and time-consuming.
Therefore, this study used an SVR model instead of destructive
measurements to predict the pavement after compaction. Fig. 9(a)
presents the testing results of the SVR model. There is a gap be-
tween the predicted and actual density, indicating that CMV cannot
be used to predict the density.

Cores were extracted at various locations of the pavement to
measure water content, density, and void ratio. Fig. 9(b) showed
the correlation between actual density values and CMV. The R2

of 0.04 indicated a slight correlation between CMV and core den-
sity. A possible reason for the weak correlation was that the factors
on in situ core density were complex, such as the size of the roller,
vibration amplitude and frequency, roller speed, asphalt type, and
the stratum under the compacted asphalt layer. These factors should
all be analyzed to correlate well between CMV and in situ core
density. Compared to the core density, the variability of the other
two parameters, temperature and amplitude, was small because
they were directly set or measured during compaction. Therefore,
the correlation between CMVand temperature, as well as roller am-
plitude, was better than the one between CMV and core density.

Conclusion

This paper presents an application of IC technology to monitor the
compaction processes of asphalt layers. The data were collected

Fig. 7. Experiment results of the correlation between CMV and temperature: (a) SVR model between CMV and temperature; and (b) correlation
between CMV and temperature.

Fig. 8. Experiment results of the correlation between CMVand amplitude: (a) SVR model between CMVand amplitude; and (b) correlation between
CMV and amplitude.

© ASCE 04022386-6 J. Mater. Civ. Eng.
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during the construction of a local road in Mardan, Pakistan, includ-
ing IC data, in-place density, and temperature at the surface of the
asphalt layer. The SVR analysis was conducted to predict the roller
amplitude and in-place density. The following conclusions are
summarized.
• The predicted surface temperatures and roller amplitudes

using the SVR models were close to the measured ones. It is
practical to obtain the surface temperatures and other related
parameters through CMVs. However, the core densities ob-
tained by the SVR model were significantly different from the
actual ones.

• Both roller amplitudes and temperatures at the surface of the
asphalt layer correlated well with CMVs. However, there was
a poor correlation between the in-place core density and the
CMV. The complex factors influenced the in-place core den-
sities, including roller size, roller speed, vibration amplitude,
vibration frequency, and asphalt type.

• In most cases, the ICMVof a backward pass is higher than the
one of the corresponding forward pass, considering both the low
and high amplitude values. Such difference was because the
pavement density increased and the volume of air voids de-
creased after the first forward pass.

Data Availability Statement
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Notation

The following symbols are used in this paper:
A0.5 Ω, A1 Ω, A1.5 Ω, A2 Ω, A2.5 Ω, and A3 Ω are the = amplitudes at

the different subharmonic frequencies;
AΩ = fundamental harmonic;
C = constant used to fit the laboratory and field values;
Fs = is sampling frequency;

fmax = is the operational frequency of the roller;
k = cost function; and
∈ = insensitive tube radius.
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