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This paper introduces a study of characterizing hydration and dry shrinkage behavior of cement emulsi-
fied asphalt composites (CEACs) through a deep-learning framework. The deep-learning framework con-
sisted of two parts: generative adversarial networks (GANs) and deep neural networks (DNNs). The GAN
part was first developed to map the design parameters of a CEAC to its X-ray powder diffraction (XRD)
spectrum and scanning electron microscope (SEM) images. The DNN part was then designed to predict
the dry shrinkage behavior of the CEAC based on its design parameters and the outputs of the GAN part.
Finally, the effectiveness of the deep-learning framework was tested by 36 groups of CEACs. The results
showed that the outputs of the GAN part, synthetic XRD spectrums and SEM images, were close to the
measured data. Thus, the synthetic data were capable of characterizing the hydration processes and
the microstructure of the CEACs. The DNN predicted the dry shrinkage ratios of the 36 groups with a
2.70% average error, demonstrating its high and stable precision. The feature vectors in the DNN provided
a new method to characterize the effects of the design parameters on the dry shrinkage ratios. From the
distribution of the feature vectors in a two-dimension space, we found that the curing time had the most
significant effects on the dry shrinkage ratios, followed by the aggregate grading and the contents of
cement and emulsified asphalt.
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1. Introduction

Since the discovery of cement emulsified asphalt composites
(CEACs), they have become an essential part of environment-
friendly and multi-functional pavement materials [1-3]. However,
the properties of CEACs are always uncertain due to their various
material contents, internal structures, curing conditions, and so
on. For example, a large number of experiment results indicated
that the properties of CEACs were influenced by the contents of
cement and emulsified asphalt [4,5], as well as solid volume
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fraction [6] and cement properties [7]. The deep understanding
of curing conditions also demonstrated the effects of curing age
and humidity on the properties of CEACs [8,9]. Condition variation
during service, such as temperatures [10,11], also showed the
effects on the properties of CEACs. Thus, novel approaches for the
characterization and prediction of CEAC properties are needed to
increase the rate at which new CEACs are designed and simultane-
ously decrease the associated cost of laboratory and field tests.
To date, there are many rule-based methods for the characteri-
zation and prediction of CEAC properties. For example, Fedrigo
et al. [12] developed empirical formulas for predicting the shrink-
age behaviors of cement-treated recycled pavement materials.
Behnam et al. [13] proposed a new formulation to predict the
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compressive strength of preformed-foam cellular concrete. Tian
et al. [14] built linear regression models between early-age
strength and performance of CEACs. In addition, Ouyang et al.
[15] measured the effects of wetting agent and superplasticizer
on the fresh properties of CEACs. Similar studies can also be found
in [16,17]. In general, the property prediction of CEACs using rule-
based methods is usually limited by a range of input conditions.
Thus, these predictions are generally extrapolative in practice.
Moreover, the determination of empirical constants is not easy to
obtain.

The past decades have seen success cases in the use of machine
learning (and especially neural network) to characterize and pre-
dict material properties. For example, Wang et al. [18] proposed
a neural network to predict the fatigue life of CEACs with accept-
able precision. Yang et al. [ 19] predicted the mechanical properties
of CEACs using neural networks and genetic algorithms. The
reported maximum errors of the predicted shear and tension stres-
ses were less than 6.28%. Zavrtanik et al. [20] used neural networks
for modeling air void contents in asphalt mixtures, in which a large
dataset with seven types of asphalt mixtures and ten design
parameters was used for training the neural networks to achieve
high-precise prediction. Moghaddam et al. [21] presented an appli-
cation of support vector machines for the characterization of fati-
gue life of polyethylene terephthalate modified asphalt mixtures.
Similar applications can also be found in some other studies [22-
24]. However, to date, most research applying machine learning
to the task is still infancy and has revolved around feature engi-
neering. It means that humans provide some naive features (e.g.,
material components and contents) for a machine learning algo-
rithm while it has been applied in a variety of situations. Thus,
unacceptable errors always exist in the machine learning-based
models since only a few of human-provided features are used for
the characterization and prediction of material properties. Two
reasons cause it. The first is that some features, which are not
easily observed and measured, are neglected but should be consid-
ered in practice, such as hydration and microstructure. The second
is that feature representation of CEACs depends on the subjective
understanding of humans owing to a shortage of theoretical evi-
dence, even though the mapping from these representations to
properties is conducted autonomously. Thus, machine learning-
based models have yet to become widely adopted.

This unsatisfactory situation of the use of machine learning for
the characterization and prediction of material properties is remi-
niscent of the state of image-processing models before the broad
adoption of deep learning. Deep learning, as a class of machine
learning, uses multiple layers to extract higher-level features from
the raw input progressively and maps these high-level features to
targets [25,26]. It has achieved astonishing success in processing
natural language [27], generating complex signals and images
[28,29], and even discovering new antibiotics [30,31]. Two recent
achievements make it possible that the success of deep learning
can be duplicated in the case of characterization and prediction
of material properties, especially CEAC properties:

o Historically, the large-scale studies about CEAC properties have
generated data at an unprecedented rate, such as [20,32-34].
With these unaware data as a database, the time is ripe for
applying more powerful and flexible machine learning models
to the case mentioned above, such as deep learning.

e Some successful applications of deep learning in the field of
material science demonstrate the feasibility of building a rela-
tionship between design parameters and material microstruc-
ture. For example, Liu et al. [35] proposed region-based deep
learning models to characterize the dispersion of carbon
bunches using scanning electron microscope (SEM) images.
Tong et al. [36,37] proposed deep convolutional neural net-
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works for evaluating carbon fiber morphology distribution and
the predicting the properties of carbon fiber reinforced
cement-based composites. Yuan et al. [38] predicted the electri-
cal conductivity of cement-based composites using deep learn-
ing models. Additionally, Tong et al. [39] proposed a deep
learning-based method to design fiber reinforced cement-
based composites.

Motivated by the two achievements, this work aims to charac-
terize hydration and dry shrinkage behavior of CEACs through a
deep-learning framework. To be precise, the proposed framework
is capable of mapping the design parameters of CEACs to their X-
ray powder diffraction (XRD) spectrums and SEM images. The syn-
thetic XRD spectrum and SEM images can characterize hydration
and microstructure of CEACs. The model can also predict the dry
shrinkage behavior of CEACs based on its learned features from
the synthetic data and other information of CEACs. The remaining
paper is organized as follows. Section 2 starts with the introduction
of the proposed framework for CEAC property characterization. The
experimental details of the use of the framework in the character-
ization of hydration and dry shrinkage behaviors of CEACs are pre-
sented in Section 3. In Section 4, we discuss the performance of the
proposed framework. The conclusions of this work are summarized
in Section 5.

2. Methodology

This chapter describes the proposed deep-learning framework
in details. In Section 2.1, an overview of the framework is pre-
sented. In Section 2.2, generative adversarial networks are
designed to characterize hydration and microstructure of CEACs.
In Section 2.3, deep neural networks are introduced to predict
the dry shrinkage behaviors of CEACs.

2.1. Overview

We developed a deep-learning framework to characterize the
hydration, the microstructure, and the dry shrinkage behaviors of
CEACs. Fig. 1 illustrates our model framework. The framework con-
sisted of two parts: generative adversarial networks (GANs) and
deep neural networks (DNNs).

For a CEAC with its design parameter set X, the GAN part can be
described as a function G(x;,z) —y, where x; is a subset of x,
including the design parameters related to the hydration and the
microstructure of the CEAC; z is random Gaussian noise. The target
y is the micro features of the CEAC. In this work, y is the synthetic
XRD spectrum and the synthetic SEM images. In other words, the
GAN part is designed to generate the XRD spectrum and the SEM
images of the CEAC without an X-ray diffractometer and SEM,
respectively.

The DNN part is considered as two functions D(y,x,) and A(f).
The first one is D(y,x,) — f, where x, is a subset of x, including
the design parameters of the CEAC related to its dry shrinkage
behavior; f is a feature vector. Thus, the first function is used to
extract the features related to the dry shrinkage behavior of the
CEAC. The second function is A(f) — d, where d is the dry shrinkage
behaviors. Therefore, the framework finally characterize and pre-
dict the dry shrinkage behavior of the CEAC only using its design
parameter set X.

2.2. Generative adversarial network

GAN, first proposed by Radford et al. [40], has been widely used
for automatic synthesis of realistic images from text [41,42]. In
general, a GAN consists of a generator G and a discriminator D that
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Fig. 1. Illustration of deep-learning framework.
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Fig. 2. Illustration of generative adversarial network.

play a minimax game, as shown in Fig. 2. The generator G tries to
generate synthetic data based on a text description x and a random
Gaussian noise z. The synthetic data are used to fool the discrimi-
nator D. The discriminator D is trained to distinguish the synthetic
data from the real ones. Therefore, the minimax game can be
described as

minmaxV (D, G) = Ey._p[10g D(y/)] + Exz)-prllog(1
- D(G(x,2)))) (1)

where yr is the real data with the labeled probability distribution
pt;x and z are a text description and a random Gaussian noise with
the probability distribution pf, respectively.

In our study, two GANs, GAN #1 and GAN #2, are designed to
generate XRD spectrums and SEM images based on the design

parameters of a CEAC, respectively. The design parameters of a
CEAC can be considered as a text description. The following nota-
tion is used in this study. A generator is denoted
G:RY xRY - RP and D : R? x R — #. Here, X; is the dimension
of the design parameter subset x; of a CEAC, which are related to
its hydration and microstructure; Z is the dimension of a random
Gaussian noise z; D is the dimension of the synthetic XRD spectrum
or images; % consists the losses of G and D.

In a generator G, random Gaussian noise z € R ~ .47(0,1) is
first generated and concatenated to x;. Then, the inference pro-
ceeds in the generator can be considered as a normal deconvolu-
tional network: the set (x1,z) is feeded through the layers in the
deconvolutional network and the synthetic data y (XRD spectrums
or SEM images) are generated via G(X;,z) — y. A normal deconvo-
lutional network consists of several deconolutional layers, a condi-
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tional random field, two support vector machines. For the com-
plete mathematical introduction of a normal deconvolutional net-
work, readers are invited to refer to our previous study [43].

In a discriminator D, three combination are first generated as
(%1,¥), (%1,y), and (wxq,y’), where y' is the real data (XRD spec-
trum or SEM image) from a CEAC whose partial design parameters
are x1; and wx, is wrong design parameters for the CEAC, which is
generated randomly. Following this, the three combinations pass
through several convolutional layers with stride-2 filters and spa-
tial batch normalization [44]. These convolutional layers are used
to reduce the dimension of the three combination. Then, the final
loss Z¢ and %) for x; is computed as

Lc(%1) = —log(D(x1,y)), (2)
and
Lp(%1) = —1og(D(x1,y1))

_ log(1 — D(x4,)) +log(1 —

2

With the final loss £ and .#p, the parameters in G and D can be
updated via minibatch stochastic gradient descent. The database
for training GAN #1 and #2 in this work are introduced in
Section 3.1.

D(levy/))' (3)

2.3. Deep neural network

DNN, as the most successful case of deep learning [45,46], is
mostly used to map complex data (e.g., images [47,48] and signals
[49,50]) to target values. As shown in Fig. 1, the DNN part in the
proposed framework is made up of three parts: three DNNs with
only convolutional and pooling layers, a feature concatenator,
and an artificial neural network (ANN). The proposed DNN part
can be summarized as three steps as follows. Step 1 The synthetic
XRD spectrum, the synthetic SEM images, and the design parame-
ters related to the dry shrinkage behaviors x, are imported into
DNN #1, DNN #2, and DNN #3, respectively. In each DNN, a convo-
lution layer is followed by a pooling layer. A pairwise combination
of a convolution layer and a pooling layer is a block. The convolu-
tion operation processes in a block I can be described as

Zifv = E 2 :XH~UJ+ZJ jl 4] +Blc (4a)
l*—x]*—ac
.. i,j < min(a, b)
y(i.) = 4b
1) ={ o o (4b)
Zlc Zl,c >0
0y = g gle = (40)
“ o0z <0,

and the pooling operation processes in the block [ is defined by the
following equations:

(i+1)r—13+1)r-1

V=30 3 A, + b (5a)

u=ir  v=jr

pi§ = Sigmoid(y}?). (5b)

In Eq. 4a, x-1. s the element of the input data X! in the

ituj+v
; k]'f is the weight of the convo-
lution kernel matrix K" with the size a x b in the j-th row and i-th
column, for ¢ = 1,...,C;C is the kernel number in the block I; B' is
the bias of the convolution kernel matrix K'*. In Eq. 5a, b' is the
bias in pooling layer; !¢, for two widely-used pooling is expressed
as.[Average pooling:] Phe, =L [Max pooling:]

(i+ u)-th row and (j + »)-th column;

Construction and Building Materials 274 (2021) 121898

0, others
three DNNs (fq,f,, and f3) are concatenated as a vector
fF =1{f1,f2.f3}. Step 3 The concatenated vector f is imported into
an ANN and mapped to the dry shrinkage behaviors as

Lc
phe, = {1 max{a,’,,- o lusrapirat Step 2 The outputs of the

€
NZ—fa"h< il~wii,,7+’<;3>, n=1,....H, (6)
k=1

where, Né is the output of the neuron # in the fully connected layer

6,6 =1,...,A;H is the neuron number in the layer; f,: !

-1

is the ele-

ment k in the input vector f° ' of the layer ; a),(‘” is the connect

weight between the neuron # in the layer 6 and the neuron 7 in
the layer 6 — 1; k) is the bias of the neuron #.
The final loss of the ANN %, for f is computed as

21l g

where N* is the output vector of the final layer in the ANN; d is the
real dry shrinkage behaviors. With the final loss .#,, the parameters
in the three DNNs and the ANN can be updated via minibatch
stochastic gradient descent. The database for training the DNN part
in this work are introduced in Section 3.1.

3. Experimental details

In this chapter, the information of training the deep-learning
framework is introduced in Section 3.1. The details about the test-
ing experiments for the well-trained framework are described in
Section 3.2.

3.1. Training information

In this study, 835 groups of CEACs were collected, a part of
which has been reported in the previous studies, such as [5,9,18].
With the randomly generated Gaussian noise z, the group number
was extended to 2505. During training, 25% of the 2505 groups
were selected as a validation set, which is used to verify whether
a GAN is well trained or not in Section 4.1. In the validation set,
the ratio of the three combination inputs ((x1,y),(x1,y7), and
(wxq,y7)) was about 1:1:1. The detailed information of GANS,
DNNs, an ANN used in the experiment are shown in Table 1-3.

As introduced in Section 2, the information of each CEAC was
assigned to x1,X,,y/, and d. Here, x; was a set of the design param-
eters of a CEAC, which influenced on its hydration and microstruc-
ture. The elements in x; represented the parameters in the
following order.

e Mix ratio: the mass fractions of cement, asphalt, water, and
aggregates;

e Chemical compositions of cement: the mass fractions of SiO,,
Cao, A1203, Fe,03, MgO, SOs3, NaZOeq, f-CaO, C3S, GS, G3A, and
C4AF;

o Properties of cement: fineness (residue on 80 um sieve) and set-
ting time;

e Properties of asphalt: residue masses by distillation and on 1.18
mm sieve;

e Properties of aggregates: the mass fractions of CaO and SiO,;

e Curing condition: only curing time is considered in this study
because these CEACs are always cured in a standard environ-
mental condition (20 & 2 °C and 90% relative humidity).

For x,, it included the design parameters related to the dry
shrinkage behavior of a CEAC as follow.
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Table 1
Detailed information of GAN #1.
Part Layer number Layer type Input Kernel Stride Padding Output
Generator #1 Input x of the size 1 x 1 x 23 with/withoutz - - - 1x1x23
#2 Deconvolution 1x1x23 1 x 5 x DeConv. 64 ReLU 1x3 3 1 x 10 x 64
#3 Deconvolution 1 x 10 x 64 1 x 5 x DeConv. 32 ReLU 1x3 3 1x37 x32
#4 Deconvolution 1 x 37 x 32 1 x 5 x DeConv. 16 ReLU 1x3 2 1x118 x 16
#5 Deconvolution 1x 118 x 16 1 x 3 x DeConv. 8 ReLU 1x2 1 1x 236 x8
#6 Deconvolution 1 x236 x8 1 x 3 x DeConv. 4 ReLU 1x2 1 1x472 x 4
#7 Deconvolution 1x472 x 4 1 x 3 x DeConv. 2 ReLU 1x1 1 1x473 x2
#8 Deconvolution 1x473 x 2 1 x 1 x DeConv. 1 ReLU 1x1 1 1x473 x 1
Discriminator ~ #9 Convolution 1x473 x 1 1 x 3 x Conv. Maxout 32 ReLU 1x2 1 1 x 237 x 32
#10 Pooling 1 x 237 x 32 1 x 2 mean pooling 1x2 1 1x 119 x 32
#11 Convolution 1 x 119 x 32 1 x 3 x Conv. Maxout 64 ReLU 1x2 1 1 x 59 x 64
#12 Pooling 1 x 59 x 64 1 x 2 mean pooling 1x2 1 1 x 30 x 64
#13 Convolution 1 x 30 x 64 1 x 3 x Conv. Maxout 128 RelU 1 x2 1 1 x 15 x 128
#14 Pooling 1 x 15 x 128 1 x 2 mean pooling 1x2 1 1x8x 128
#15 Convolution 1x8x 128 1 x 3 x Conv. Maxout 256 RelU 1 x2 1 1 x 3 x 256
#16 Convolution 1 x 3 x 256 1 x 3 x Conv. Maxout 256 RelU 1 x1 1 1x1x 256
#17 Convolution 1x1x 256 1 x 1 x Conv. Maxout 256 ReLlU 1 x1 1 1x1x 256
#18 Fully connection 1 x 1 x 256 256 x 1024Sigmod - - 1 x1x 1024
#19 Fully connection 1 x 1 x 1024 1024 x 2 Sigmod - - 1x1x2
#20 Softmax 1x1x2 - - - -
Table 2
Detailed information of GAN #2.
Part Layer number Layer type Input Kernel Stride Padding Output
Generator #1 Input x of the size 1 x 1 x 23 with/withoutz - - - 1x1x23
#2 Deconvolution 1x1x23 3 x 3 x DeConv. 64 ReLU 2x2 1 46 x 46 x 64
#3 Deconvolution 1x1x23 5 x 5 x DeConv. 64 ReLU 3x3 3 10 x 10 x 64
#4 Deconvolution 10 x 10 x 64 5 x 5 x DeConv. 32 ReLU 3x3 3 37 x 37 x 32
#5 Deconvolution 37 x 37 x 32 5 x 5 x DeConv. 16 ReLU 3x3 2 118 x 118 x 16
#6 Deconvolution 118 x 118 x 16 3 x 3 x DeConv. 8 ReLU 2x2 1 236 x 236 x 8
#7 Deconvolution 236 x 236 x 8 3 x 3 x DeConv. 4 ReLU 2x2 1 472 x 472 x 4
#8 Deconvolution 472 x 472 x 4 3 x 3 x DeConv. 2 ReLU 1x1 1 473 x 473 x 2
Discriminator ~ #9 Deconvolution 473 x 473 x 2 1 x 1 x DeConv. 1 ReLU 1x1 1 473 x 473 x 1
#10 Convolution 473 x 473 x 1 3 x 3 x Conv. Maxout 32 RelU 2 x2 1 237 x 237 x 32
#11 Pooling 237 x 237 x 32 2 x 2 max pooling 2x2 1 119 x 119 x 32
#12 Convolution 119 x 119 x 32 3 x 3 x Conv. Maxout 64 RelU 2 x2 1 59 x 59 x 64
#13 Pooling 59 x 59 x 64 2 x 2 max pooling 2x2 1 30 x 30 x 64
#14 Convolution 30 x 30 x 64 3 x 3 x Conv. Maxout 128 ReLlU 2 x2 1 15 x 15 x 128
#15 Pooling 15 x 15 x 128 2 x 2 max pooling 2x2 1 8 x 8 x 128
#16 Convolution 8 x 8 x 128 3 x 3 x Conv. Maxout 256 ReLlU 2 x 2 1 3 x 3 x 256
#17 Convolution 3 x 3 x 256 3 x 3 x Conv. Maxout 256 RelU 1 x1 1 1 x1x 256
#18 Convolution 1x1x 256 1 x 1 x Conv. Maxout 256 RelU 1 x1 1 1x1x 256
#19 Fully connection 1 x 1 x 256 256 x 1024Sigmod - - 1 x1x 1024
#20 Fully connection 1 x 1 x 1024 1024 x 2 Sigmod - - Tx1x2
#21 Softmax Tx1x2 - - - -

o Properties of cement: 3 and 28 day compression strength, mass
contents of SiO, and CaO, and setting time;

o Properties of asphalt: penetration degree (25 °C, 100 g, and 5 s),
softening point, and ductility (25 °C);

o Properties of aggregates: Aggregate grading, apparent specific
gravity, crushed value, weared value, and adhesion grade with
asphalt.

The set y7 consisted of two part: the real SEM images and the real
XRD spectrum of each CEAC. For d, it was the dry shrinkage rate of
the CEAC in the study. Both of yr and d were used to compare with
the synthetic data from the two GANs.

A random gradient descent algorithm with mini-batches of size
10 was performed on all of the architectures in Table 1-3 during
training. Logarithmically decreasing learning rates were adopted
with a base learning rate of 0.01. The momentum and weight decay
were 0.9 and 0.005, respectively. The proposed framework was
trained via TensorFlow. The above procedures were performed
on a computer that was equipped with an Intel (R) Core (TM) i7-

8750H CPU, 32.00 GB RAM, and an NVIDIA GeForce GTX 1080
8 GB GPU.

3.2. Testing experiments

In this work, 36 groups of CEACs were designed to test the effec-
tiveness of the well-trained deep-learning framework, as shown in
Table 4. Fig. 3 and Table 5-8 present the parameters of the 36
groups. The real XDR spectrums, SEM images, and dry shrinkage
rates of the 36 groups were measured to compare with the syn-
thetic data and the predicted dry shrinkage ratios.

In each group, twelve samples were replicated. The samples
were uniformly split into three sub-groups with different curing
days (3-day, 7-day, 14-day, and 28-day). One of the samples in a
sub-group was randomly selected to perform the XDR-spectrum
test and SEM observation. All three samples in a sub-group were
used to measure their dry shrinkage ratios after curing, and the
dry shrinkage ratio of the sub-group was the averaged one. The
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Table 3
Detailed information of DNNs and ANN.
Parts Layer DNN #1 DNN #2 DNN #3
number
DNNs #1 1 x 3 x Conv. Maxout 32 ReLU with 2 3 x 3 x Conv. Maxout 32 ReLU with 2 21 x 64 Fully connection
strides strides Sigmod
#2 1 x 2 mean pooling with 2 strides 2 x 2 max pooling with 2 strides 64 x 256 Fully connection
Sigmod
#3 1 x 3 x Conv. Maxout 64 ReLU with 2 3 x 3 x Conv. Maxout 64 ReLU with 2 256 x 1024 Fully connection
strides strides Sigmod
#4 1 x 2 mean pooling with 2 strides 2 x 2 max pooling with 2 strides 1024 x 256 Fully connection
Sigmod
#5 1 x 3 x Conv. Maxout 128 ReLU with 2 3 x 3 x Conv. Maxout 128 ReLU with 2~ 256 x 32 Fully connection
strides strides Sigmod
#6 1 x 2 mean pooling with 2 strides 2 x 2 max pooling with 2 strides -
#7 1 x 3 x Conv. Maxout 256 ReLU with 2 3 x 3 x Conv. Maxout 256 ReLU with 2 -
strides strides
#8 1 x 3 x Conv. Maxout 256 ReLU with 1 3 x 3 x Conv. Maxout 256 ReLU with 1 -
strides strides
#9 1 x 1 x Conv. Maxout 256 ReLU with1 1 x 1 x Conv. Maxout 256 ReLU with 1 -
strides strides
#10 256 x 1024Sigmod 256 x 1024Sigmod -
#11 1024 x 64Sigmod 1024 x 64Sigmod -
Feature #12 64 +64 + 32 =160
concatenator
ANN #13 160 x 256Sigmod
#14 256 x 512Sigmod
#15 512 x 32 Sigmo
#16 32 x 1 Regression
Table 4
Testing experiments.
No. Mix ratio Chemical compostions and properties Aggregate grading Curing time/day
of cement (Table 5 and Table 6) (Fig. 3 and Table 8)
Cement Asphalt Water
I 1 6 2 Cement 1 Grading 1 3
12 1 6 2 Cement 2 Grading 2 7
13 1 6 2 Cement 1 Grading 2 14
14 1 6 2 Cement 2 Grading 1 28
m 1 7 1 Cement 1 Grading 1 3
12 1 7 1 Cement 2 Grading 2 7
113 1 7 1 Cement 1 Grading 2 14
114 1 7 1 Cement 2 Grading 1 28
1 1 8 0 Cement 1 Grading 1 3
112 1 8 0 Cement 2 Grading 2 7
113 1 8 0 Cement 1 Grading 2 14
114 1 8 0 Cement 2 Grading 1 28
V1 2 6 3 Cement 1 Grading 1 3
V2 2 6 3 Cement 2 Grading 2 7
V3 2 6 3 Cement 1 Grading 2 14
V4 2 6 3 Cement 2 Grading 1 28
\'4! 2 7 1 Cement 1 Grading 1 3
V2 2 7 1 Cement 2 Grading 2 7
V3 2 7 1 Cement 1 Grading 2 14
V4 2 7 1 Cement 2 Grading 1 28
Vi1 2 8 0 Cement 1 Grading 1 3
VI2 2 8 0 Cement 2 Grading 2 7
VI3 2 8 0 Cement 1 Grading 2 14
Vi4 2 8 0 Cement 2 Grading 1 28
VI 3 6 4 Cement 1 Grading 1 3
VII2 3 6 4 Cement 2 Grading 2 7
VI3 3 6 4 Cement 1 Grading 2 14
VIi4 3 6 4 Cement 2 Grading 1 28
VIII 3 7 2 Cement 1 Grading 1 3
VIII2 3 7 2 Cement 2 Grading 2 7
VIII3 3 7 2 Cement 1 Grading 2 14
VIii4 3 7 2 Cement 2 Grading 1 28
IX1 3 8 2 Cement 1 Grading 1 3
X2 3 8 2 Cement 2 Grading 2 7
1X3 3 8 2 Cement 1 Grading 2 14
X4 3 8 2 Cement 2 Grading 1 28
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Fig. 3. Aggregate grading.
Table 5
Chemical composition of the cements/%.
Si0, Ca0 Al,0; Fe,0; MgO SO, NaOeq f-Ca0 CsS G,S CsA C.AF
Cement 1 21.88 65.89 4.61 2.52 1.76 1.77 0.59 0.98 60.22 17.33 7.63 8.52
Cement 2 25.21 70.62 1.24 0.72 1.15 0.1 0.18 0.78 62.32 16.24 6.82 7.3

dry shrinkage ratio of a sample was measured after curing with a
temperature of (20 &+ 2)°C and a humidity of (60 + 5)%.

4. Results and discussion
4.1. Characterization of hydration and microstructure

4.1.1. Performance of the XDR-spectrum and SEM-image synthesis
Before the use of the deep-learning framework, we first verified
the effectiveness of the XDR-spectrum and SEM-image synthesis.
Fig. 4 presents the losses of the validation data set during the
GAN training processes. The validation data set was randomly
selected from the training database introduced in Section 3.1,
whose size was 25% of the training database. At the beginning of
the training, #p was less than 0.001. It demonstrated that the
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three combination inputs ((x,¥), (%1,¥’), and (wx;,y’)) were not
able to fool the discriminator D. Thus, D easily distinguished the
synthetic SEM images and the synthetic XDR spectrums from the
real data. This was because a well-trained D was used to guarantee
the quality of the training [51], and the generated samples from G
at the start were extremely poor, and they were rejected by D with
high confidence. With the update of the parameters in G, %p
increased. It meant that the outputs of D (D(x;,y),D(x1,y’), and
D(wx,,y')) were close to (0, 1,0). It indicated that D had no confi-
dence to distinguish (wx;,y’) and (x;,y) from (x,,y’) after training.
In addition, the final loss of G based on Eq. 2 (% ~ 0) also demon-
strated this phenomenon.

The two losses, . and ., only reflected the successful fooling
of D via the generated data from G. We should further measure the
gap between y and ys. A small gap can guarantee that the synthetic

—Discriminator |

—Generator s

T

20000 25000 30000

Epoch

Fig. 4. Losses of the validation data set during the GAN training.
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data characterize the hydration and microstructure of a CEAC as
well as the real data from a X-ray diffractometer and a SEM. First,
the average Euclidean distance d(y,y’) between the synthetic and
real XDR spectrums of CEACs was measure as

n 55°
dy.y) = %ZJ% > wi(20) - (20, ®)

i=1 20=15°

where y'(20) and y(20) are the intensity values in the synthetic and
real XDR spectrums, respectively; 20 is the angle between incident
and diffracted X-rays; n is the sample number in the validation data
set; and m is the total number of sampling angles. The well-trained
GAN finally achieved an average Euclidean distance less than 0.001
when the intensity values in the spectrums were normalized by the
maximum one. It indicated that the synthetic and real XDR spec-
trums in the validation data set were highly close.

Fig. 5 presents the receiver operating characteristic curves
(ROCs) of the well-trained GAN for generating SEM images. A
ROC curve measures how much a model is capable of distinguish-
ing between classes by plotting the true positive rate (TPR) against
the false positive rate (FPR) at various threshold settings. In
machine learning, TPR, also known as recall, is the ratio of true pos-
itive over the sum of the true positive and the false negative. FPR is
also called probability of false alarm and is defined as the ratio of
false-positive over the sum of true negative and false positive.
The ROC curve is thus the recall as a function of fall-out. In
Fig. 5, the hydrates are considered as positives, while the rests of
the components are regarded as background, which were negatives
in the study. Thus, a ROC far from the text line in Fig. 5 indicated
the good performance of a GAN. More information about ROC anal-
ysis can be found in [52]. As expected, the ROCs of hydrates and
background were far from the text line. It demonstrated that the
GAN part had the capacity to generate SEM images, which could
characterize the hydration products and background in the
microstructure of CEACs. In addition, the capacity of generating
background was better than the capacity of generating hydration
products, demonstrating the generation of the background needed
less information from the design parameter set x; than the

Construction and Building Materials 274 (2021) 121898

generation of the hydrates. Thus, it is a potential way to include
more design parameters in x; to improve the characterization
capacity for hydrates in the synthetic SEM images.

In summary, the results mentioned above demonstrated that
the GAN part was capable of mapping the design parameters of a
CEAC to its XRD spectrum and SEM images. With the assistance
of the GAN part, it was possible to predict the hydration and
microstructure of a CEAC only using its design parameters.

4.1.2. Characterization of hydration and microstructure

Fig. 6 presents the synthetic XDR spectrums of the 36 testing
groups. These synthetic data could characterize the hydration pro-
cesses of CEACs. For example, the three main diffraction peaks at
about 18°,34°,47° were related to the diffraction of cement
hydration productions and calcium hydroxide (portlandite). High
diffraction peaks at the three angles indicated a good crystalliza-
tion of cement hydration productions and portlandite. The con-
tents of portlandite increased with the increase of the cement
content or the decrease of the asphalt content. The synthetic XDR
spectrums of the groups with the different types of cement had
some differences. For example, the synthetic XDR spectrums of
the CEACs with Cement 2 had the diffraction peaks at about 45 °
with smaller values of intensity than those of the CEACs with
Cement 1 had. It showed that the use of different types of cement
had the effects on the hydration processes and the hydrates
because of their different chemical compositions. Besides, there
were only inapparent changes of the diffraction peaks at about
32°. A peak at about 32 ° is related to the diffraction of CaCOs. It
indicated that the peaks were not caused by the hydration but
by the chemical compositions of the aggregates. In addition, the
effects of the ratio between cement and water could also be found
in these synthetic data. Hydration characterization could be con-
ducted with the synthetic XDR spectrums, which were close to
the real spectrums. This section just provides some examples of
the characterization.

Fig. 7 presents examples of synthetic SEM images. These images
are generated by the well-trained GAN part using the design
parameters of Group II1 and different random Gaussian noises. In
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Fig. 6. Synthetic XDR spectrums.

Fig. 7, cement hydrates, asphalt, pore, others can be distinguished
clearly. Thus, the synthetic images had the capacity of characteriz-
ing the microstructure of CEACs qualitatively. Considering that the
synthetic images are very close to the real SEM images, a
deep-learning method has the potential to characterize the
microstructure information of the CEACs. In the method, different
components in SEM images are first extracted by a fully convolutional
network. The extracted components are then used to characterize the

microstructure. For the complete information about the method,
readers are invited to read our previous studies [36,38].

4.2. Characterization of dry shrinkage behavior
Fig. 8 presents the predicted and measured dry shrinkage ratios

of the 36 groups. The average and maximum errors between the
predicted and measured results were 2.70% and 4.29%. It demon-
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(d)

Fig. 7. Synthetic SEM images.

strated the high and stable precision of the well-trained DNN part
for predicting the dry shrinkage ratios. Compared with the tradi-
tional studies using ANN, the proposed DNN part considered the
hydration and the microstructure of the CEACs via the synthetic
XRD spectrums and SEM images, which had the potential to
improve the accuracy. In addition, the DNN part thoroughly con-
sidered the influence of many other factors, such as aggregate
grading and curing condition.

A comparison study was also performed to demonstrate the
advantages of the proposed framework in the characterization of
dry shrinkage behavior. In the comparison study, we selected
two other methods to predicted the dry shrinkage ratios of the
36 groups. The first was a rule-based method [5,9,18], which used
some functions w.r.t the design parameters of CEACs to predict the
dry shrinkage ratios. Another was ANN-based methods, which was
also a data-driven method as the proposed framework but only
used an ANN to perform the characterization. The used ANN had
the same architecture as the one in the proposed framework, as
shown in Table 3. The used ANN was also trained by the training
set introduced in Section 3.1. The proposed framework achieved
the minimum errors in the 36 testing groups, followed by the

10

ANN-based and rule-based methods (Fig. 8). This demonstrated
the proposed framework was advantageous in the characterization
of dry shrinkage behavior of CEACs. Tables 6,7,8.

With the predicted dry shrinkage ratios, it could be found that
the dry shrinkage ratio decreased with the increase of the cement
and water contents. For example, the 7-day and 28-day dry shrink-
age ratios of these CEACs decreased when the cement content
increased from 1% to 3%. Besides, emulsified asphalt had negative
effects on the dry shrinkage behavior of the CEACs. For example,
the 7-day and 28-day dry shrinkage ratios increased when the
emulsified asphalt content increased from 6% to 7%. This was
because of the space-charge effects between cement and emulsi-
fied asphalt. To be precise, cement particles adsorbed the water
phase of the emulsified asphalt as the reaction water, which pro-
moted the cement hydration and accelerated the demulsification
of emulsified asphalt. The cement hydrates filled the gaps of the
CEACs to reduce the dry shrinkage. In addition, the effects of other
factors (e.g., aggregate grading and curing condition) were also
characterized by the predicted dry shrinkage ratios.

A t-distributed stochastic neighbor embedding (t-SNE) [53] was
used to characterize the dry shrinkage behavior of the CEACs. A
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Fig. 8. Prediction and measurement results of dry shrinkage ratios: (a) 6% emulsified asphalt content, (b) 7% emulsified asphalt content, and (c) 8% emulsified asphalt content.

Table 6

Properties of the ordinary Portland cements.

Fineness (residue on 80 um sieve)

Setting time/min

Compression strength/

MPa
Initial Final 3 day 28 day
Cement 1 2.781 149 221 28.7 49.5
Cement 2 2.977 132 214 314 54.9
Table 7

Test results of the emulsified asphalt.

Residue by distillation/%

1.18 mm sieve test/%

Penetration (25 °C, 100 g, and 5 s)/0.1 mm

Softening point/°C

Ductility (25 °C)/cm

62

0.03

84

46

45

11
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Table 8
Aggregate properties
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Apparent specific gravity/(g - cm~3) Crushed value/%

Weared value

% Adhesion grade with asphalt CaO content/% SiO, content/%
2.804 8 14.9 4 35.05 11.59
6 -
t-SNE algorithm models each high-dimensional representation of °o
. . . . . g o
objects by a two- or three-dimensional point in such a way that 4 o gy, S s
o

similar objects are modeled by nearby points and dissimilar
objects are modeled by distant points with high probability. First,
t-SNE constructs a probability distribution over pairs of high-
dimensional features of samples in such a way that similar objects
are assigned a higher probability while dissimilar points are
assigned a lower probability. Second, t-SNE defines a similar prob-
ability distribution over the points in the low-dimensional map,
and it minimizes the Kullback-Leibler divergence between the
two distributions with respect to the locations of the points in
the map. Thus, the similarity of two samples can be characterized
by their Euclidean distance in the t-SNE mapping. A feature vector
f introduced in Step 1 of Section 2.3 could be considered as the rep-
resentation of a CEAC related to its dry shrinkage behavior. How-
ever, the dimension of f is 512, which led it not visible. Thus, all
feature vectors of the training samples and the 36 testing groups
were mapped to a two-dimensional feature space via t-SNE. Each
point in Fig. 9 represents a feature vector corresponding to a CEAC.
Fig. 9a presents the distribution of the 2505 training samples in the
t-SNE two-dimensional feature space. The feature vectors spanned
the feature space and were evenly distributed in the space. It indi-
cated that the feature vectors could be used to differentiate CEACs
effectively. Feature vectors gathered round in the space if the cor-
responding dry shrinkage ratios were close. From the distribution
of the 36 testing feature vectors, as shown in Fig. 9b, we concluded
that the curing time had the most significant effects on the dry
shrinkage ratios, followed by the aggregate grading and the con-
tents of cement and emulsified asphalt. The curing time mainly
influenced the hydration processes, while the aggregate grading
directly influenced the porosity of the composites. The influence
of other factors was also reflected in Fig. 9b. For example, the
effects of aggregate grading were slightly higher than those of
the asphalt and cement contents since the groups with the same
grading were clustered more significantly that those with the same
contents of asphalt and cement. Thus, the feature vectors were
capable of characterizing the dry shrinkage behaviors of these
CEACs. In summary, the proposed deep-learning framework was
a potential method for the characterization of the dry shrinkage
behaviors of CEACs.

5. Conclusions

In this work, we characterize the hydration and the dry shrink-
age behavior of CEACs by a deep-learning framework. The follow-
ing conclusion can be drawn:

e The main contribution of this work was proposed a deep-
learning framework, which had the capacity of characterizing
the hydration and the dry shrinkage behavior of CEACs using
their design parameters. The framework consisted of GANs
and DNNs. The GAN part mapped the design parameters of a
CEAC to its XRD spectrum and SEM images, while the DNN part
predicted the dry shrinkage ratio of the CEAC based on its
design parameters and the outputs of the GAN part. In addition,
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Fig. 9. A t-distributed stochastic neighbor embedding analysis for characterization
of dry shrinkage behaviors: (a) training database and (b) testing experiments.

the feature vector f in the DNN provided a novel method to
characterize the effects of the design parameters on the dry
shrinkage ratio of the CEAC.

The GAN part achieved a 0.001 average Euclidean distance
between the synthetic and real XDR spectrums, indicating that
the two types of the spectrums were highly close. The synthetic
XDR spectrums of the testing groups measured the crystalliza-
tion produces of cement hydration production and calcium
hydroxide (portlandite). The synthetic SEM images had the
capacity of characterizing the microstructure of CEACs, such
as cement hydrates, asphalt, and pore. Therefore, the synthetic
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data had the potential of characterizing the hydration processes
and the microstructure of CEACs without X-ray diffractometers
and an SEMs.

The DNN part predicted the dry shrinkage ratios of the 36
groups with a 2.70% average error and a 4.29% maximum error.
It demonstrated the high and stable precision of the DNN part.
The use of the predicted dry ratios qualitatively measured the
effects of the design parameters on the dry shrinkage behaviors.
The dry shrinkage ratio decreased with the increase of the
cement and water contents. Besides, emulsified asphalt had
negative effects on the dry shrinkage behavior of the CEACs
because of the space-charge effects between cement and emul-
sified asphalt. In addition, the effects of other factors (e.g.,
aggregate grading and curing condition) were also character-
ized by the predicted dry shrinkage ratios.

The feature vector f in the DNN provided a novel method to
quantificationally characterize the effects of the design param-
eters on the dry shrinkage ratios. From the distribution of f in a
two-dimension space, we found that the curing time had the
most significant effects on the dry shrinkage ratios, followed
by the aggregate grading and the contents of cement and emul-
sified asphalt. The curing time mainly influenced the hydration
processes, while the aggregate grading directly influenced the
porosity of the composites. The influence of other factors was
also reflected using f in the t-SNE two-dimension space
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