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A B S T R A C T   

As the combinatorial space of a composite is virtually infinite and cannot be explored completely, a deep- 
learning method was proposed for high-throughput fiber-reinforced cement-based composites (FRC) design. 
First, a deep hierarchy network was developed to measure the relationship between the experimental variables 
and the FRC properties. A gradient-based high-throughput method based on the deep hierarchy network was 
then proposed to design FRCs, which were expected to have one or more certain properties. At last, a fine-tuning 
method was employed to guarantee its transferability for all types of FRCs. The results showed that the proposed 
method was able to design cement-fiber-water-curing-aging systems for carbon fiber reinforced cement-based 
composites (CFRCs). The fine-tuning method could transfer the CFRC model to design other FRCs. Thus, the 
proposed method showed promise for releasing the composite material property optimization from labor- 
consuming and low-efficiency laboratory tests.   

1. Introduction 

In the last two decades, when cement-based composite frameworks 
(CCFs) emerged as a versatile class of materials for a variety of appli
cations [1,2], the composition and application of CCFs have been the 
subject of a large body of research [3,4]. A CCF is described by the 
concept of mixing materials composed of various inorganic, metallic, 
or/and polymeric materials assembled on cement hydration products. 
The scientific excitement about CCFs originates in the fact that CCFs can 
be tuned for a given application by modifying the composed materials, 
such as material types and contents. Therefore, in principle, the number 
of possible CCFs is infinitely large; however, since combination and 
optimization of these materials are time-consuming and laborious [5,6], 
only a fraction of them have ever been mixed. 

Our understanding of CCFs has remained too limited to guide the 
assembly and combination of these materials. Even the known CCFs are 
typically not easy to design in practice since diverse and numerous 
combination methods have existed. This has prevented researchers from 
drawing a general route for these CCFs. For example, the combinations 
and design parameters for a CCF, such as fiber-reinforced cement-based 

composite (FRC), include fiber types and sizes, fiber distribution, 
interface interaction zones, temperatures and curing conditions, mixing 
methods, etc. Considering each parameter as a variable, one needs to 
probe the high-dimensional combination space constructed by these 
variables to find a set of the optimal mixture condition leading to the 
formation of the desirable CCF. Even with abundant prior knowledge, 
one has to envision a brute force approach, called the large grid search of 
the combination space (e.g. Refs. [7,8]). The cost of this approach in
creases exponentially with the number of variables, e.g., testing only 
three choices for a space of ten variables requires a million experiments. 
With such poor statistics, a problem arises, how to design a desirable 
CCF. Further, one may wonder how many CCFs could be composited. 

Interestingly, the fact that a large number of CCFs have been 
developed indicates that researchers can beat brute force statistics by 
orders of magnitude. More precisely, the researchers’ selection of 
experimental conditions must have been positively biased by their 
experimental intuition that CCFs have acquired. In this study, the 
experimental intuition is defined as the collection of unwritten guide
lines used to find the right conditions for CCFs or other composites. It 
can also be regarded as high-throughput experimentation, which allows 
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Fig. 1. Workflow of a deep hierarchy network.  

Z. Tong et al.                                                                                                                                                                                                                                    



Cement and Concrete Composites 113 (2020) 103716

3

the execution of large numbers of experiments to be conducted in par
allel while requiring less effort per experiment [9]. Thus, it is critical to 
capture the experimental intuition for the low-consuming and 
high-precision CCF design. 

There are two main directions for capturing the experimental intui
tion. One direction is empirical guidelines: empirical equations are 
developed to build the relationships between the design parameters and 
the CCFs’ properties (e.g. Ref. [10,11]). For example, Xu and Li [12] 
developed thermal energy storage CCF by incorporating paraffin/dia
tomite composite phase change material. The quantified relationships 
among paraffin/diatomite composite, drying shrinkage, and thermal 
conductivity were measured, which were an original experimental 
intuition. Zhu et al. [13] proposed the empirical guidelines for the 
mixing amounts of graphene oxide in the GO CCFs to improve the 
compressive strength and the flexural strength. Shih et al. [14] 
measured the effects of nanosilica on the properties of CCFs, and the 
results showed that a CCF with 0.60% of added nanosilica had an op
timum compressive strength. However, these predictions are generally 
extrapolative in practice [15]. Moreover, the determination of empirical 
constants is not easy to obtain [16]. Another direction is data-driven 
guidelines, which captures the experimental intuition from successful 
CCF experiments results. It is maybe the most promising one and the 
focus of this paper. Recently, machine learning, as a subset of 
data-driven methods, has achieved some successes. For example, Wang 
et al. [17] trained a neural network using an existing database to capture 
an experimental guideline for the cement mortar with thermo-sensitive 
poly N-isopropyl acrylamide gels. The experiment results indicated the 
network predicted the cracking resistance of the modified cement 
mortar without experiments. Tong et al. [18,19] proposed a 
deep-learning model to characterize the relationship between fiber 
distribution and CCFs’ properties. This was a data-driven guideline for 
improving the strength and conductivity of carbon fiber reinforced 
cement-based composites (CFRCs). Sakthivel et al. [20] used neural 
networks to capture the experimental intuition of CCFs, which consid
ered specimen sizes, cylinder compressive strength, steel mesh ultimate 
tensile strength, and mesh volume of reinforcement. Similar works can 
also be found in Refs. [21–23]. Although some successful cases have 
been reported in these publications, there are still three problems 
remaining. The first is that some design parameters of CCFs are not 
represented reasonably. For instance, the distribution of the mixing 
materials is a key experimental variable for any CCF. Almost studies use 
some indirect indexes to characterize the distribution (e.g., fiber mass 
[24,25], electrical resistance [26], microwave heating uniformity [27]). 
These indexes cannot characterize the real dispersion morphology of the 
mixing materials in CCFs, which leads the non-negligible errors in the 
prediction of CCFs’ properties [28]. In fact, Tong et al. [18,19] indicated 
that the CCFs with the same fiber mass content had different mechanical 
and electrical properties owing to their various microstructure. Another 
problem is that only successful CCF conditions have been reported in 
publications (e.g. Ref. [29,30]), while a substantial amount of time and 
effort is spent in failed conditions during any research. In practice, the 
experimental intuition is built from all experiments, such as some failed 
experiments. A database without failed conditions for machine learning 
to capture the experimental intuition can be considered as an unbalance 
learning set, which always leads the low precision [31,32], even makes 
some ridiculous results. The third is that the transferability and gener
alization of these data-driven guidelines are limited. It means a guide
line for CFRC [33,34] is not suitable for a new CCF [35–38], and 
accordingly, this has prevented researchers from drawing a general 
route for these CCFs. 

Motivated by these problems, in this work, a deep-learning method 
was proposed for the high-precision CCF design. We started with 
developing a deep hierarchy network to measure the relationship be
tween microstructure features and FRC properties, as well as capture the 
experimental intuition between the experimental variables and the CCF 
micro-properties. The deep hierarchy network was trained using all of 

the successful and failed experiments to capture the generalizable 
experimental intuition. By analyzing the generated parameters in the 
deep hierarchy network, a gradient-based high-throughput method was 
then proposed to design new FRCs, which were expected to have a or 
more certain properties. Later, a fine-tuning method was employed to 
guarantee its transferability for all types of FRCs. The contributions of 
this work, especially the quantified intuition in CCFs, are summarized as 
follows.  

(1) The quantified intuition provided a way to design expected CCFs, 
which released researchers from the time-consuming and labo
rious experiments.  

(2) The quantified intuition for a CCF was able to be transferred into 
other CCFs using a few existing successful and failed experiment 
conditions.  

(3) The proposed method had the capacity of designing a cement- 
fiber-water-preparing-curing-aging system for CCFs with one or 
more expected properties. The property errors between the pre
dicted and measured values were satisfactory because of the 
utilization of deep hierarchy networks for characterizing some 
real microstructure features of CCFs. 

The rest of this paper is organized as follows. The proposed meth
odology is first established in Section 2. The experimental details of this 
work are described in Section 3, and the results are presented and dis
cussed in Section 4. Finally, the conclusions are summarized in Section 5 
of the paper. 

2. Methodology 

The proposed gradient-based deep learning for capturing the 
experimental intuition consisted of three parts: a deep hierarchy 
network, a gradient-based computation, and a fine-tuning method. A 
deep hierarchy network is first introduced in Section 2.1 to measure the 
relationship between microstructure features and FRC properties, as 
well as capturing the experimental intuition between the experimental 
variables and the CCF macro-properties. The gradient-based method for 
the FRC design is then described in Section 2.2, followed by a fine-tuning 
method for guaranteeing the methodology generalization for all FRCs in 
Section 2.3. 

2.1. Deep hierarchy network 

Deep hierarchy networks in Ref. [18,19] used scanning electron 
microscope (SEM) images or other data to characterize the microstruc
ture of CCFs, such as fiber distribution. The networks were then also 
used to build the relationship among the microstructure features, the 
experimental variables, and the CCF macro-properties quantitatively. 
The main advantage of this model was that it represented the micro
structure features based on its real morphology rather than some indi
rect indexes. In this section, the deep hierarchy network is recalled. For a 
complete introduction, readers are invited to refer to Tong’s original 
work [18,19]. 

The workflow of a deep hierarchy network is shown in Fig. 1. The 
deep hierarchy network can be divided into three parts: a feature 
extractor and two relationship describers. A fully convolutional network 
(FCN) or its variants was adopted as a feature extractor to extract the 
microstructure features of CCFs from SEM images or other data. Neural 
networks or other supervised algorithms, whose input data were the 
extracted features from SEM images and other direct design variables of 
CCFs, were used as the relationship describers to build the relationship 
between the input data and macro-properties of CCFs. In the view of 
machine learning, the deep hierarchy network was regarded as a deep- 
learning algorithm as it extracted high-level features from the raw data 
by combining low-level features [39]. The works of a deep hierarchy 
network can be summarized in five steps as follows. 
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Fig. 2. Architecture of an FCN-GCRF.  
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Step 1Give a set of a sample s ¼ {s1, …,sn}, si 2 R3 as the data con
taining the microstructure feature information of a CCF. As some studies 
[40,41] indicated that SEM images characterized the CCF microstruc
ture precisely, they were used as the data for the microstructure repre
sentation, such as fiber distribution and interface interaction. In this 
study, a novel variant of FCNs was proposed to extract the features as 
Fig. 2, called the FCN integrated with a Gaussian-conditional random 
field (FCN-GCRF). Compared to an FCN, the FCN-GCRF provided more 
desirable results in object segmentation [42,43], which improved the 
effectiveness of the micro-structure and micro-property evaluation in 
Step 2. The three main structure layers in an FCN-GCRF can be sum
marized by the following equations, 

f 1
i;j;k ¼ReLU

�
w1

k;conv ⋅ ui;j þ b1
k;conv

�
⋅ ⋅ ⋅ k¼ 1;…; c (1a)  

f mi;j;k ¼ReLU
�

wm
k;conv ⋅ fm� 1

i;j þ b1
k;conv

�
⋅ ⋅ ⋅ k¼ 1;…; c (1b)  

D1
i;j;p¼ReLU

�
w1

p;Tconv ⋅ fmi;j þ b1
p;Tconv

�
⋅ ⋅ ⋅ p¼ 1;…; t (2a)  

Dl
i;j;p¼ReLU

�
wl

p;Tconv ⋅ Dl� 1
i;j þ b1

p;conv

�
⋅ ⋅ ⋅ p¼ 1;…; t (2b)  

E
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i;j

�
¼

1
2

�
Dl

i;j

�T
ðAþ λIÞDl

i;j � BDl
i;j (3a)  

8
<

:

wT
SVME

�
Dl

i;j

�
þ bSVM � 0; yi;j ¼ þ1

wT
SVME

�
Dl

i;j

�
þ bSVM � 0; yi;j ¼ � 1

(3b)  

where the procedures of a network-in-network (NIN) layer, dilated NIN 
layer, and recognition layer are described as Eq. (1), Eq. (2), and Eq. (3), 
respectively. First, as shown in Eq. (1), network-in-network (NIN) layers 
are used to approximate the representation of the latent concepts related 
to the microstructure by element-by-element multiplications, multiplied 
value addition, bias addition, and ReLU activation. The fundamental 
structure of a NIN layer can be found in the study of Lin et al. [44]. In Eq. 
(1), m is the sub-layer number in a NIN layer. Matrix ui,j, called receptive 

filed of size i � j � o, is a patch of a input data with the size of 
�

W� iþ2p
r þ

1
�

�

�
W� iþ2p

r þ 1
�

� o. Notably, o in the first NIN layer shown in Fig. 2 

is 3, the same as the channel of SEM images. A NIN layer with an r stride 
and a p padding can generate a W � H � c tensor, called feature maps. 
The size of a feature map is W � H � 1, while the channel number of the 
feature maps is c. The activated outputs in each sub-layer number of a 
NIN layer are fl

i,j¼(fli,j,1, …, fli,j,c), l ¼ 1, …,m. Second, as shown in Eq. 
(2), dilated network-in-network layers are used to upsample, in which 
the feature maps generated by the final NIN is dilated to the same size as 
the input SEM image, while the extracted microstructure features are 
remained. A dilated NIN layer, regarded as a variation of a NIN layer 
with dilated convolution operations [45], has the same work principle as 
a NIN layer. Finally, as shown in Eq. (3), the dilated feature maps are 
transferred by a Gaussian random field, and each pixel in the dense 
feature maps is classified into one of the components in a CCF by SVMs 
to conduct the pixel-level segmentation. In Eq. (3a), A and B are a 
symmetric N � N matrix of pairwise terms and an N � 1 vector of unary 

terms, respectively. N ¼
�

W� iþ2p
r þ 1

�

�

�
H� iþ2p

r þ 1
�

. Therefore, E(Dl
i, 

j) can be considered as the posterior log-likelihood of the inferred hy
pothesis Dl

i,j, which represents the relationships between pixels in the 
outputs. In Eq. (3b), wsvm and bsvm are weights and biases of a SVM; yi,j is 
the class that a pixel belongs to. An example of step 1 is shown in Fig. 2. 
Different components in a SEM image are segmented by the FCN-GCRF 
to represent the microstructure features of a CCF. 

Step 2: Compute the real microstructure indexes I1, …,Il using the 

segmentation results of the FCN-GCRF. For example, Tong’s original 
work [18] presented as a real fiber distribution index as 

DSEM ¼
ASinglefiber

ANofiber þ Afibercluster þ ASinglefiber
(4a)  

Dsample¼
1
n
Xn

i¼1
DSEM;i; (4b)  

where Dsample and DSEM were the fiber distribution in the CCF and the 
observation area of a SEM image, respectively. ANo fiber, ASingle fiber, and 
Afiber cluster were the areas of background, single fibers and fiber clusters, 
respectively. The pixel areas of single fibers and fiber clusters were the 
fiber and cluster areas in the observation area of a SEM image, while the 
rests in the SEM image were considered as the area of background. 
Similarly, other microstructure indexes were also proposed, such as real 
interface interaction areas IIA as 

IIA¼
1
n

Xn

i¼1

Ainteractionarea;i

Ainteractionarea;i þ Abackground;i
: (5) 

Step 3Build the relationship between the design variables for the CCF 
preparation d1, …,da and microstructure feature indexes I1, …,Il using 
an artificial neural network (ANN), as shown in the red box in Fig. 1. 
Step 3 is described as 

mic1
i1 ¼ tanh

 
Xa

j¼1
w1

i1 ;jdj þ b1
i1

!

⋅⋅⋅i1 ¼ 1;…; a1
pre (6a)  

mic2
i2 ¼ tanh

 
Xi1

j¼1
w2

i2 ;jmic
1
j þ b2

i2

!

⋅⋅⋅i2 ¼ 1;…; a2
pre (6b)  

micviv ¼ tanh

 
Xiv� 1

j¼1
wv

iv ;jmic
v� 1
j þ bviv

!

⋅⋅⋅iv ¼ 1;…; avpre (6c)  

where, v is the layer number in an ANN; ab
pre (b ¼ 1, …,v) is the neuron 

number in each layer, and wc
ic ;jand bc

ic (c ¼ 1, …,v) are weights and biases 
in the ANN, respectively. The final outputs are micv ¼ (micv

1, …micv
av

pre
)¼

(x1, …,xl), and av
pre ¼ l. 

Step 4Define a pattern x ¼ {x1, …,xl, …,xp} including the extracted 
features from SEM images and other direct experimental variables of 
CCFs as shown in the blue box in Fig. 1, and predict the macro-properties 
of a CCF with design parameters x as 

pro1
γ1
¼ tanh

 
Xp

j¼1
α1
γ1 ;j
xjþ β1

γ1

!

⋅⋅⋅γ1 ¼ 1;…; a1
pro (7a)  

pro2
γ2
¼ tanh

0

@
Xa

1
pro

j¼1
α2
γ2 ;j
pro1

j þ β2
γ2

1

A⋅⋅⋅γ2 ¼ 1;…; a2
pro (7b)  

proδγδ ¼ tanh

0

@
Xa
δ� 1
pro

j¼1
αδ
γδ ;j
proδ� 1

j þ βδγδ

1

A⋅⋅⋅γδ ¼ 1;…; aδpro (7c)  

where (p-l) is the number of other direct experimental variables of CCFs, 
δ is the layer number in the ANN, ad

pro (d ¼ 1, …,δ) is the neuron 
number in each layer, and αe

γe ;j
and βe

γe
(e ¼ 1, …,v) are weights and biases 

in the ANN. The final outputs are proδ ¼ (proδ1, …proδaδpro
), and its 

dimension is the expected property number of the CCF. 
Step 5The weights in the deep hierarchy network were used to 

analyze the relationship among the experimental variables, the micro
structure features, and the macro-properties of CCFs [19]. In this study, 
a gradient-based method was proposed not only to analyze the rela
tionship but also to conduct the high-precision CCF design, which will be 
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introduced in Section 2.2. 
In this study, we designed several FCN-GCRFs with different 

numbers of NIN and dilated NIN layers to find the optimal architecture. 
The FCN-GCRF with the minimum loss in the validation set was 
considered optimal. Users can also directly refer to the original works 
about FCN-GCRF [42,43] to design one if they just need a desirable one. 
The strategy to find the optimal ANNs in Step 3 and Step 4 is the same as 
those in FCN-GCRFs. 

2.2. Gradient-based computation 

Give an learning set χ ¼ {(x1,y1), …, (xn,yn)}, in which xi¼(xi
1, …,xi

l, 
…,xi

p), i ¼ 1, …,n, is a set of the experimental variables in CCFs, and yi¼

(y1
i , …yi

aδ
pro

) is the corresponding CCF properties measured by laboratory 

tests. Using χ, weights and bias in Eq. (1) ~ Eq. (7) are adjusted by a 
backpropagation algorithm [46]. In the backpropagation algorithm, the 
gradients of the weights and the bias are used for the adjustment to 
reduce the error between the predicted properties proδ(xi) ¼(proδ1ðxiÞ, 
…, proδaδpro

ðxiÞ) and the measured testing properties yi¼ (y1
i , …yi

aδpro
). In 

this study, a similar gradient-based method was proposed to adjust a set 
of experimental variables x ¼ {x1, …,xl, …,xp} for designing a CCF, 
which was expected to have certain properties proδ(x) (proδ1ðxÞ, 
…proδaδpro

ðxÞ). The method can be summarized as following: 

Step 1Select representative patterns p1, …,pε from the existing 
learning set χ. pi¼(xi

pi,rpi), i ¼ 1, …,ε. Then a loss between each 
representative pattern pi and proδ(x) is computed as 

Loss
�
pi; x

�
¼

�
�
�ypi � proδ� xi�

�
�
�

2

2
​ ; :i¼ 1; :::; ε: (8) 

Step 2The gradients w.r.t. x1, …,xl, …,xp in Eq. (8) are computed as 

∂Lossðpi; xÞ
∂proδγδ ðxÞ

¼ 2
�
proδγδ ðxÞ � rpiγδ

�
γδ ¼ 1;…; aδpro (9a)  

∂Lossðpi; xÞ
∂proδ� 1

γδ� 1
ðxÞ
¼
Xa
δ
pro

γδ¼1

∂Lossðpi; xÞ
∂proδγδ ðxÞ

⋅
�
1 � proδγδ ðxÞ

2�⋅αδ
γδ ;γδ� 1

⋅ ⋅ ⋅ γδ� 1¼ 1;…; aδ� 1
pro

(9b)  

∂Lossðpi; xÞ
∂pro1

γ1
ðxÞ
¼
Xa

2
pro

γ2¼1

∂Lossðpi; xÞ
∂pro2

γ2
ðxÞ

⋅
�

1 � pro2
γ2
ðxÞ2

�
⋅α2

γ2 ;γ1
⋅ ⋅ ⋅ γ1¼ 1;…; a1

pro

(9c)  

∂Lossðpi; xÞ
∂xj

¼
Xa

1
pro

γ1¼1

∂Lossðpi; xÞ
∂pro1

γ1
ðxÞ

⋅
�

1 � pro1
γ1
ðxÞ2

�
⋅αδ

γ1 ;j
⋅ ⋅ ⋅ j¼ 1;…; l; :::; p

(9d) 

As xlþ1, …,xp are the direct experimental variables of CCFs, their 
gradients can be directly used in the next step. However, x1, …, xl are the 
indirect experimental variables generated by the ANN for microstruc
ture feature indexes, as shown in Fig. 1. Thus, the gradients w.r.t. the 
experimental variables for the CCF preparation d1, …,da are computed 
as 

∂Lossðpi; xÞ
∂micv� 1

iv� 1
ðxÞ
¼
Xa

υ
pre

iv¼1

∂Lossðpi; xÞ
∂xj

⋅
�
1 � xj2

�
⋅wv

iv ;iv� 1
⋅ ⋅ ⋅ iv� 1¼ 1;…; av� 1

pre (10a)  

∂Lossðpi; xÞ
∂mic1

i1 ðxÞ
¼
Xa

1
pre

i1¼1

∂Lossðpi; xÞ
∂mic2

i2 ðxÞ
⋅
�

1 � mic2
i2 ðxÞ

2
�

⋅w2
i2 ;i1 ⋅ ⋅ ⋅ i1¼ 1;…; a1

pre

(10b)  

∂Lossðpi; xÞ
∂dj

¼
Xa

1
pre

i1¼1

∂Lossðpi; xÞ
∂mic1

i1 ðxÞ
⋅
�

1 � mic1
i1 ðxÞ

2
�

⋅w1
i1 ;j ⋅ ⋅ ⋅ j¼ 1;…; a (11c)  

where ∂Lossðpi; xÞ
.

∂micv
iv ðxÞ

¼ ∂Lossðpi; xÞ�∂xj
. 

Step 3The experimental variables dj(pi) and xj(pi) associated to pi is 
defined as following: 

dj
�
pi�¼ dipi;j �

∂Lossðpi; xÞ
∂dj

⋅ ⋅ ⋅ j¼ 1;…; a (12a)  

xj
�
pi�¼ xipi;j �

∂Lossðpi; xÞ
∂xj

⋅ ⋅ ⋅ j¼ lþ 1;…; p (12b)  

where di
pi;j ¼ ðdi

pi;1; …; di
pi;aÞand xi

pi;j ¼ ðxi
pi;lþ1; …; xi

pi;pÞare the experi
mental variables associated to pi. 

Step 4The final design parameters d1, …,da and xlþ1, …,xp can be 
computed based on each dj(pi) and xj(pi) as 

dj ¼
Xε

i¼1
ki⋅dj

�
pi�⋅⋅⋅j ¼ 1;…; a (13a)  

xj¼
Xε

i¼1
ki⋅xj

�
pi�⋅⋅⋅j ¼ lþ 1;…; p (13b)  

ki¼
1

Lossðpi; xÞ⋅
Pε

m¼1
Lossðpm; xÞ

; ⋅ ⋅ ⋅ i¼ 1; :::; ε (13c)  

2.3. Fine-tuning method 

By learning the existing experiments in a type of CCFs, researchers 
can capture the experimental intuition and transfer it to another CCFs. 
For example, one who can determine the experimental parameters of 
CFRCs also can learn how to design an SFRC. The gradient-based method 
in Section 2.2 provided a way to capture the experimental intuition of 
one type of CCFs. The transferability of the method was required to 
improve its generalization. A fine-tuning approach was proposed by 
referring to Ref. [47,48]. Generally, transferring learning can be divided 
into two directions: feature transferring and model transferring. In the 
proposed approach, the two directions are used as follows:  

(1) As the microstructure features of CFRCs and other CCFs are 
similar, the feature transferring was utilized to fine-tune the FCN- 
GCRF in a deep hierarchy network. Give a database of the SEM 
images of SFRCs s’ ¼ {s’1, …,s’m}, in which m is less than the 
number of the SEM images for CFRC. The weights in the NIN and 
dilated layers of the FCN-GCRF for CFRCs do not need to be 
updated by s’. We can directly use the NIN and dilated layers to 
extract the features from s’, in which the outputs are the dense 
feature maps, as shown in Fig. 2. Then, wsvm and bsvm in each 
SVM of the FCN-GCRF are fine-tuned based on the dense feature 
maps with a small learning rate. In this study, the learning rate 
was 1 � 10� 5. Finally, the FCN-GCRF for SFRC consists of the NIN 
layers, the dilated layers, and the updated SVMs.  

(2) The two ANNs in the deep hierarchy network are used to capture 
the experimental intuition based on the microstructure features 
and other experimental variables. Model transferring is used to 
fine-tune the two. Give a learning set χ’ ¼ {(x’1,y’1), …, (x’q, 
y’q)}, in which q is much less than the data number for CFRC. The 
weights and bias in the two ANNs are fine-tuned by χ0 with a 
backpropagation algorithm using a small learning rate [46]. In 
this study, the learning rate was 1 � 10� 5. 
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3. Experimental details 

3.1. Experiment database 

As introduced in Section 2, three databases are required to develop a 
deep hierarchy network and capture the experimental intuition to 
design CFRCs as follows.  

(1) The database for the microstructure features extraction. The 
database in our previous study was still used in this study, whose 
availability has been fully discussed in Ref. [18]. The database 
was made up of 7597 SEM images with three magnifications ( �
50, � 100, and � 200). There were 4557 training images, 1520 
validation images, and 1520 testing images. Some examples are 

shown in Fig. 3(a). These SEM images were used as the input data 
for the FCN-GCRF, whose outputs were the segmented compo
nents in these SEM images, as shown in Fig. 2.  

(2) The database to train and validate the ANN for microstructure 
feature indexes. In our previous works [18,19,28,49], only some 
of successful experiments was reported. In this study, the suc
cessful and failed experiment results were all used to capture the 
experimental intuition. Totally, 674 experiment results were 
collected, in which the ratio between the successful and failed 
experiment results were approximately 1:2.40. There were 406 
training samples, 134 validation samples, and 134 testing sam
ples. The ratios between the successful and failed samples in the 
training, validation, and testing samples were all about 1:2.40.  

(3) The database to train and validate the ANN for macro-properties 
design had the same size as the database to train and validate the 
ANN for microstructure feature indexes. 

Similarity, three databases were used to conduct the experimental 
intuition transfer as follows:  

(1) The database for the microstructure features extraction. The 
database was made up of 526 SEM images for SFRC with three 
magnifications ( � 50, � 100, and � 200). There were 316 
training images, 105 validation images, and 105 testing images. 
Some examples are shown in Fig. 3(b).  

(2) The database to train and validate the ANN for microstructure 
feature indexes. The database consisted of 62 training samples, 
20 validation samples, and 20 testing samples. The ratio between 
the successful and failed experiment results was approximately 
1:2.10.  

(3) The database to train and validate the ANN for macro-properties 
design had the same size as the database to train and validate the 
ANN for microstructure feature indexes. 

Fig. 3. SEM images of FRC.  

Table 1 
Testing experiments.  

No. CCF 
type 

Bending 
strength 
/MPa 

Electrical 
conductivity/(Ω⋅m) 

Thermal conductivity/ 
(W/(m⋅K)) 

Test 
1 

CFRC 12.0 50.0 – 

Test 
2 

CFRC 15.0 – – 

Test 
3 

CFRC 7.0 – 2.50 

Test 
4 

CFRC 8.5 100.0 2.00 

Test 
5 

SFRC 7.5 30.0 3.00 

Test 
6 

SFRC 7.0 100.0 – 

Test 
7 

SFRC 8.0 – – 

Test 
8 

SFRC 8.0 – 2.70  

Z. Tong et al.                                                                                                                                                                                                                                    



Cement and Concrete Composites 113 (2020) 103716

8

Fig. 4. Setups for macro-property measurement.  
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Fig. 5. Validation performance of deep hierarchy networks in the two training conditions.  
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In all the databases, there were six experimental variables for CCF 
preparation (fiber mass content, water-cement ratio, mixing method, 
stirring time, stirring speed, and dispersing agent), two real micro
structure indexes (fiber distribution and interface interaction areas), 
seven other direct CCF experimental variables (curing temperature and 
humidity, curing time, fiber strength, fiber electrical conductivity, fiber 
thermal conductivity, and cement strength), and three expected macro- 
properties (bending strength, electrical conductivity, thermal conduc
tivity). Notably, the mixing methods and types of dispersing agent were 
orthogonal coded [50], while other variables were normalized based on 
the maximum and minimum values in the databases. 

3.2. Testing experiment 

Eight testing groups were conducted to verify the effectiveness of the 
proposed method, as shown in Table 1. Table 1 does not present some 
values of electrical and thermal conductivities because some groups of 
CCFs are not required to have one or more certain properties. For 
example, only bending strength and electrical conductivity should be 
considered when we design a CFRC as a conductive cement composite, 
such as Test 1. 

The method introduced in Section 2 was first used to determine the 
experimental variables for the eight groups. Then, the CCF groups were 
prepared and cured, and their properties were measured. The bending 
strengths were measured using a material testing system, as shown in 
Fig. 4(a). The loading rate was controlled at 0.05 mm/s. The distance 
between the loading and each support was 50 mm. The distance between 
the support and the specimen top was 30 mm. The electrical conduc
tivities were measured by a self-developed setup, as shown in Fig. 4(b) 
[49]. The thermal conductivities were measured using an infrared 
camera, as shown in Fig. 4(c). The infrared images were collected after 
each 30s microwave heating, and the total time was 5 min. The thermal 
conductivities were calculated by taking the average of the temperature 

changes in each pixel. 

4. Results and discussion 

4.1. Capturing experimental intuition using deep learning 

One can safely state that the bodywork on CFRCs, even CCFs, in
volves thousands of experiments, of which only the successful conditions 
have been published. In this discussion, we started by providing the 
difference in capturing the experimental intuition between the only 
successful conditions and the successful-and-failed conditions. The 
validation performance of the deep hierarchy networks trained in the 
two conditions is shown in Fig. 5. The architectures of the FCN-GCRF 
and the two ANNs are shown in Table 2 and Table 3, which were 
determined by the validation loss after training, as mentioned in Section 
2.1. The final losses of the two models using Eq. (8) were 0.04 and 0.06, 
respectively. The losses demonstrated that the two deep hierarchy net
works predicted the CFRC macro-properties (bending strength, elec
trical conductivity, and thermal conductivity) with a 4% and 6% 
average error once given a set of the experimental parameters from the 
validation data set. As the validation data set introduced in Section 3.1 
included a large number of the combination and conditions for pre
paring CFRC, the generalization of the two networks were acceptable, 
but the one capturing experimental intuition from successful-and-failed 
conditions was better. McNemar’s test, as a statistical test for paired 
nominal data, was also conducted to compare the predictive accuracy of 
the two networks. In this work, p-value in the McNemar’s test was 
computed as 

p¼ 2
Xbþc

i¼b

�
n
i

�

:0:5ið1 � 0:5Þbþc� i (14)  

where b was the number of the training samples predicted correctly by 
the deep hierarchy network trained in the successful-and-failed condi
tions but predicted incorrectly by the deep hierarchy network trained in 
the only successful conditions; c was the number of the training samples 
predicted incorrectly by the deep hierarchy network trained in the 
successful-and-failed conditions but predicted correctly by the deep hi
erarchy network trained in the only successful conditions. For complete 
information about McNemar’s test, readers are invited to read the 
original work of McNemar [52]. In this work, a sample was considered 
to be predicted correctly when its average gap between the predicted 
and measured macro-properties was less than 5%. The p-value of the 
deep hierarchy networks was 0.013. Thus, the effect of the use of the 
failed conditions was statistical and significant (p-value<0.05). Thus, 
the structure of a deep hierarchy network had the capacity to capture the 
experimental intuition from both successful and failed experiments. 
Interestingly, the characteristic of the deep hierarchy network was close 
to those of researchers. The proposed method learned how to prepare a 
CFRC by a series of failed experiments, the same as a human did. 

Additionally, the final losses of the electrical conductivity were the 

Table 2 
FCN- GCRF architecture.  

Layer Input data Sub-layers Output data Stride 

Input 226 � 226 �
3 

– – – 

NIN 1 226 � 226 �
3 

9 � 3 � 1 224 � 224 �
96 

1 

NIN 2 224 � 224 �
96 

4 � 1 112 � 112 �
96 

1 

NIN 3 112 � 112 �
96 

25 � 18 � 6 �
1 

54 � 54 � 256 2 

NIN 4 54 � 54 �
256 

25 � 18 � 6 �
1 

25 � 25 � 384 2 

NIN 5 25 � 25 �
384 

25 � 18 � 6 �
1 

10 � 10 � 384 2 

NIN 6 10 � 10 �
384 

4 � 2 � 1 4 � 4 � 768 2 

NIN 7 4 � 4 � 768 4 � 2 � 1 2 � 2 � 4096 2 
NIN 8 2 � 2 � 4096 4 � 1 1 � 1 � 1000 1 
Dilated NIN 1 1 � 1 � 1000 1 � 4 2 � 2 � 4096 1 
Dilated NIN 2 2 � 2 � 4096 1 � 2 � 4 4 � 4 � 768 2 
Dilated NIN 3 4 � 4 � 768 1 � 2 � 4 10 � 10 � 384 2 
Dilated NIN 4 10 � 10 �

384 
1 � 6 � 18 �
25 

25 � 25 � 384 2 

Dilated NIN 5 25 � 25 �
384 

1 � 6 � 18 �
25 

54 � 54 � 256 2 

Dilated NIN 6 54 � 54 �
256 

1 � 6 � 18 �
25 

112 � 112 �
96 

2 

Dilated NIN 7 112 � 112 �
96 

1 � 4 224 � 224 �
96 

1 

Dilated NIN 8 224 � 224 �
96 

1 � 3 � 9 226 � 226 � 3 1 

Gaussian random 
field 

226 � 226 �
3 

– 226 � 226 � 3 – 

SVMs 226 � 226 �
3 

– 226 � 226 � 3 –  

Table 3 
Architectures of two ANNs.  

Layer ANN for microstructure feature 
indexes 

ANN for macro-properties 

Input fiber mass content, water-cement 
ratio, mixing method, stirring time, 
stirring speed, and dispersing agent 

fiber distribution, interface 
interaction areas, curing 
temperature, curing humidity, 
curing time, fiber strength, fiber 
electrical conductivity, fiber 
thermal conductivity, and cement 
strength 

Hidden 10 � 15 � 5 � 2 15 � 20 � 7 � 3 
Output fiber distribution and interface 

interaction areas 
bending strength, electrical 
conductivity, thermal 
conductivity  
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Fig. 6. Validation performance of the FCN-GCFRs in the two training conditions.  
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Fig. 7. Validation performance of the ANNs for microstructure feature indexes in the two training conditions.  
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Fig. 8. Validation performance of transferring networks in the two training conditions.  
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maximum in the three properties, as well as the loss fluctuations in 
Fig. 5. This was because the database uncertainty regarding the elec
trical conductivity was higher than those regarding the other two 
properties, which led the models to capture less useful features and 
experimental intuition regarding the electrical conductivity. In the view 
of CFRC property measurement, the database uncertainty might arise 
from two reasons: (1) the self-developed setup did not work as well as 
expected; (2) some experimental variables of CFRC were not considered 
in this model, but they had the effects on the electrical conductivity. One 
of the solutions for the database uncertainty was to collect more data. As 
there were hundreds of reported success CFRC cases in the world, the 
database uncertainty might be removed by learning the successful and 
failed results from other groups’ experiment results. A similar suggestion 
was also proposed by Moosavi et al. [51]. 

The losses of the FCN-GCFRs and ANNs in the two deep hierarchy 
networks trained in two conditions are shown in Fig. 6 and Fig. 7. The 
losses of the two FCN-GCFRs were close. The p-value of McNemar’s test 
for the segmentation errors in the two conditions was 0.0007. The same 
situation can also be found in the ANNs for microstructure feature in
dexes. This indicated that the failed experiment results were not able to 
improve the performance of the microstructure feature extraction. 
Therefore, only the processes for building the relationship between the 
experimental variables and the macro-properties needed the failed 
experiment results. 

Fig. 8 presents the validation performance of the two transfer net
works for SFCR. The final losses of the two transfer models were 0.031 
and 0.053, which was close to the losses of the two deep hierarchy 
networks for CFRC, even though the training samples in SFCR was not as 
abundant as those in CFRC. Additionally, the initial losses of the two 
transfer models were from 0.104 to 0.127, which were much less than 
those of the deep hierarchy networks for CFRC. This was because the 
experimental intuition captured from the CFRC database has the simi
larity as those for designing SFRC. Thus, only a fine-tuning method was 
required to transfer the CFRC experimental intuition to the SFRC 
experiment intuition using a small database. Similarly, a researcher can 
quickly learn how to design other CCFs after conducting a small number 
of experiments if he/she knows the method to design CFRCs. Thus, the 
procedures of transfer learning for capturing the experiment intuition 
had some similarity with those of a researcher transferring the knowl
edge to a similar objective. 

4.2. Performance of CCF design 

We now illustrate that the quantified experimental intuition has the 
capacity of designing the CCFs, which have the expected macro- 
properties. By using the well-trained models in Section 4.1 and the 
gradient-based computation in Section 2.2, we designed the CCFs with 

the properties shown in Table 1. 
Table 4 presents the design parameters for the testing experiments 

shown in Table 1. Fig. 9 shows the expected and real properties of the 
testing experiments. The errors between the expected and real proper
ties were less than 8.0%, which were close to the testing performance of 
the network trained in the successful-and-failed conditions. As expected, 
the proposed method considered the gradients as the quantified exper
imental intuition and utilized them to design the CCFs. In addition, 
Table 4 presents that the selection ranges of the raw materials, such as 
the electrical conductivity of the fiber properties, decreases with the 
increase in the numbers of the expected properties. This was because 
these experiment variables jointly affected the macro-properties of 
CCFs. Thus, it was not easy for a researcher to design a CCF with two or 
more satisfactory properties because their experimental intuition was 
qualitative. However, our proposed method captured and quantified the 
experimental intuition from the existing experiments, which overcame 
this problem. It also demonstrated that it was economical to allow the 
proposed method to consider the expected properties and ignore the 
other properties. With the decrease in the selected ranges, the prepa
ration of the raw materials became difficult, which led to a high cost in 
the CCF design. The eight groups without some certain properties in 
Table 1 demonstrated that the proposed method considered the ex
pected properties and ignored the others. 

Two other methods for designing CCFs were selected to compare 
with the proposed one. The first was also a neural network-based 
method but did not consider the microstructure indexes. In this 
method, an ANN was developed using the dataset in Section 3.1. The 
architecture of the ANN was the same as those of the ANN for macro- 
properties, as shown in Table 3. However, it did not consist of the 
microstructure-index inputs (fiber distribution and interface interaction 
areas). The second was a laboratory-based method, in which one tried to 
find the design parameters by conducting several experiments. As shown 
in Fig. 9, the proposed method outperformed the neural network-based 
method. This demonstrated that the use of the microstructure indexes in 
the gradient-based method improved the efficiency of the CCF design. 
The average computational costs of the proposed and neural network- 
based methods to design a testing group were about 65 ms and 60 ms, 
respectively. Thus, the proposed method introduced little delay during 
the testing. Additionally, the laboratory-based method could not pro
vide the parameters to design the CCFs whose two or more properties 
were expected. For example, the electrical and thermal conductivities in 
Test 1 were different from the expected ones, even though its bending 
strength was satisfactory. 

Fig. 10 presents the gradients of Test 4 w.r.t. representative patterns 
p1, …,pε from the existing learning set χ. In this study, ε was 10. The 
gradients of each experimental variable associated with each represen
tative pattern were various, which quantified the relative importance of 

Table 4 
Design parameters for the testing experiments.   

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 

Fiber mass content/% 0.841 1.232 0.327 0.567 0.547 0.214 0.914 1.342 
Water-cement ratio/% 0.32 0.35 0.33 0.34 0.36 0.32 0.35 0.35 
Mixing method After- 

mixing 
Before- 
mixing 

After- 
mixing 

After- 
mixing 

After-mixing After-mixing Before- 
mixing 

After- 
mixing 

Stirring time/s 161 192 114 142 138 92 172 207 
Stirring speed/(r/min) 60 60 60 60 60 60 60 60 
Curing temperature/�C 20 19 20 21 22 21 22 20 
Curing humidity/% 94 96 92 92 93 93 94 94 
Curing time/day 16 26 14 14 16 14 17 17 
Fiber strength/MPa 2000–2300 2000–2300 1800–2100 2000–2100 600–700 500–600 600–800 600–800 
Fiber electrical conductivity/ 

(10� 3Ω cm) 
0.5-0.7 – – 0.9-1.0 (1.45–1.65) �

10� 3 
(2.10–2.40) �
10� 3 

– – 

Fiber thermal conductivity/(W/ 
(m⋅K)) 

– – 60–80 40–50 45–50 – – 40–45 

Cement flexural strength (28 d)/ 
MPa 

7.5–8.2 7.8–8.3 7.2–8.0 7.3–7.6 7.3–7.5 7.3–7.7 7.3–8.2 7.3–7.9  
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Fig. 9. Expected and real properties of the testing experiments.  
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the design parameters on the CCFs. For example, the normalized gra
dients of the first and fourth design parameters (fiber content and stir
ring time) w.r.t. p1 were 0.0128 and 0.0036. The strength of the 
representative pattern p1 and Test 4 were 14.4 MPa and 8.5 MPa, 
respectively. The fiber content and stirring time of the representative 
pattern p1 were 0.800% and 160 s. The fiber content and stirring time of 
Test 4 were 0.567% and 142, as shown in Table 2. The fiber contents 
made more contributions than stirring time to the strength in the range 
of 8.5–13.4 MPa. Therefore, the normalized gradients of the experi
mental variables w.r.t the representative pattern provided a novel way 
to measure the contributions of different experimental variables to the 
macro-properties. In practice, a researcher, who have done the p1 

experiment, will typically capture the experimental intuition and prefer 
to adjust the fiber content rather than the stirring time to prepare a CFRC 
with an 8.5 MPa bending strength. The gradient-based method based on 
the recorded data allowed us to quantify this intuition and utilize it for 
subsequent experiments. 

Fig. 11 shows a visual explanation of the experimental intuition. In 
Fig. 11, the original point is the representative patterns p1, while the 
coordinate axes are the strength gradient values of the first three 
experimental variables (fiber contents, fiber types, mixing methods). 

The red dots are the validation data set for the ANN for macro-properties 
design in the deep hierarchy network under the successful-and-failed 
conditions. As the validation data set was generated before capturing 
the experimental intuition, it was regarded as the data without prior 
knowledge. Without prior knowledge, the red dots were uniformly 
distributed in the gradient space. This indicated that the researchers had 
no ideas to design a CCF. The blue dots are the data of the testing ex
periments introduced in Section 3.2. The distribution of the blue dots 
could be divided into two parts: (a) a space close to the representative 
patterns p1, in which the strength results of the testing experiments were 
close to the strength of p1; (b) a space far away from the representative 
patterns p1, in which the strength results of the testing experiments were 
different from the strength of p1. This demonstrated that the use of the 
gradient-based method as the prior knowledge made it easy to design a 
CCF with the expected properties, even for someone has little knowledge 
of CCFs. 

4.3. Potential for releasing property optimization from laboratory tests 

The main aim of this work is to develop a simple yet powerful 
methodology that allows one to use failed and successful experiments to 
improve CCF design strategies systematically. This methodology does 
not rely on a detailed understanding of how the different experimental 
variables impact the outcome. Instead, it heavily relies on the notion 
that, throughout many experiments, researchers develop an intuition on 
how to approach the problem of finding the optimal design strategies. 
Here, we have developed a simple way of capturing this experimental 
intuition using deep learning. 

Our case study of CFRC is intended as a proof of principle that we can 
capture and quantify experimental intuition and effectively use it to 
develop more CFRC design strategies, even transfer to the SFRC design 
strategies. Our case was also a proof that the proposed method has the 
potential for releasing CCF property optimization from time-consuming 
and laborious laboratory tests. Only a gradient computation and 
parameter adjustment are required to design a CCF with the expected 
properties once a researcher has a well-trained deep hierarchy network. 
Even one can develop their own model if an ideal database is available. 
Thus, if all groups that have worked on the CCFs would have published 
their successful experiments as well as failed cases, the data would be 
significantly less homogenous because of other influencing variables. 
The much larger data set would also make it easier for deep learning to 

Fig. 10. Gradients of the first testing experiments w.r.t. representa
tive patterns. 

Fig. 11. A visual explanation of the experimental intuition.  

Fig. 12. Schematics of the components of the methodology used for CCFs.  
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capture more intuition. 
Fig. 12 summarizes how we envision the three components of our 

methodology, CCF, experiment variables, and deep learning, to interact. 
For example, one can use the gradient-based method to optimize the 
experimental variables. At the same time, the deep hierarchy network 
learns the relative importance of the design parameters, leading to more 
rational experiments. This is the approach we have used for CCFs. 
Further, one can extend this approach to fiber-reinforced silicon-based 
composites. The importance of detailed design based on micro- 
mechanics and fracture-mechanics still cannot be underestimated to 
fully understand the mechanism behind the mechanical and electrical/ 
thermal properties that FRC demonstrates, even though this work pro
posed a novel method to design FRCs. 

5. Conclusions 

In this work, we proposed a gradient-based method for the high- 
throughput CCF design using deep learning. The following conclusion 
can be drawn:  

(1) The deep hierarchy networks captured the experimental intuition 
from the successful-and-failed experiments, and the gradients in 
the deep hierarchy networks were used to represent the experi
mental intuition. The deep hierarchy network trained by the 
successful-and-failed experiments predicted the CFRC macro- 
properties with a 4% average error once given a set of experi
mental parameters. Thus, a deep hierarchy network could cap
ture the experimental intuition from both successful and failed 
experiments. In addition, the quantified intuition for CFRC in a 
deep hierarchy network was able to be transferred into those for 
SFRC using a small number of the existing successful and failed 
experiment results.  

(2) The quantified intuition and gradient-based method provided a 
way to design a cement-fiber-water-preparing-curing-aging sys
tem for CCFs with one or more expected properties. In the testing 
experiments, the method was used to compute the design pa
rameters of CFRCs and SFRCs, which were expected to have one 
or more desirable macro-properties (e.g., bending strength, 
electrical conductivity, and thermal conductivity). The results 
showed that the errors between the expected and real properties 
of CFRCs and SFRCs were less than 8.0%. Thus, the gradient- 
based method had the potential for releasing the CCF property 
optimization from time-consuming and laborious laboratory 
tests.  

(3) In the testing experiments, the selection ranges of the fiber 
properties, such as electrical conductivity, decreases with the 
increase in the numbers of the expected properties. This was 
because these experiment variables affected the CCFs’ macro- 
properties jointly. Thus, it was not easy for a researcher to 
design a CCF with two or more satisfactory properties because 
their experimental intuition was qualitative. However, the pro
posed method captured and quantified the experimental intuition 
from the existing experiments. It overcame this problem. 

(4) The normalized gradients of each experimental variable associ
ated with p1, …,pε provided a statistical way to measure the 
contributions of an experimental variable to a CCF property. The 
gradient-based method based on the recorded data allowed us to 
quantify the experimental intuition and utilize it for the subse
quent experiments. 

(5) The visual explanation of the experimental intuition demon
strated that the utilization of the gradient-based method as the 
prior knowledge was easy for designing a CCF with the expected 
properties, even for someone who has little knowledge of CCFs. It 
had the potential to release property optimization from labora
tory tests. 
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