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� The project presents an application of
FCN in characterizing CF distribution
in CFRC.

� The FCN-based method computes the
CF distribution based on its real
distribution.
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distribution and CFCR properties is
analyzed.

� The continuous evaluation method is
reasonable for the CF distribution
evaluation.
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a b s t r a c t

Scanning electron microscope (SEM) is proven effective to analyze the morphology of carbon fibers (CFs)
presenting in CFRC. However, the qualitative observation has limited contribution to the improvement of
CF distribution as well as the properties of CFRC. In this work, a fully convolutional network (FCN) was
developed to segment CFs from SEM images for quantitative CF distribution characterization. Three pro-
cesses involved in the establishment of the FCN and its application for the CF distribution evaluation,
which were: (a) generating a database including 560 CFRC SEM images in different scales; (b) designing,
training, and testing an encoder-decoder network and other layers for the FCN; and (c) evaluating the CF
distribution and analyzing the relationship between the CF distribution and the CFRC properties using
segmentation results. The results showed that the FCN provided reasonable segmentation results for
CF clusters with the 0.94F-Measure, 0.92 recall, and 0.96 precision, respectively. The FCN had stable seg-
mentation results under different SEM magnifications. The FCN-based method was proven effective to
segment CF clusters in real time, which met the demand for continuous SEM observation. The continuous
observation results indicated that the mechanical and electric properties of CFRC were improved by the
improvement of the CF distribution.
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1. Introduction

Carbon fiber reinforced cement-based composite (CFRC) has
concentrated the intensive studies and been increasingly used as
an important engineering material for building and pavement
construction. Except for the excellent mechanical performance
[1,2], CFRC has many functional properties, including electric heat-
ing for pavement deicing [3], electromagnetic wave shielding for
buildings [4], and building health monitoring [5,6]. Previous stud-
ies have clearly indicated that a good distribution of carbon fibers
(CFs) in CFRC is fundamental for achieving functions of CFRC. Gen-
erally, three indexes are proven effective in the evaluation of CF
distribution morphologies in a CFRC, which are fiber-free area
[7], low/high fiber distribution density [8,9] and fiber clusters
[10]. Particularly, CF clusters are blamed for the significant deteri-
oration of CFRC in some critical properties, such as bending
strength and electrical conductivity. For example, Wang et al [8]
found the distribution of CF and the number of clusters influenced
the electrical property of the composites. The study of Gao et al.
[11] showed that CFRC had different physical and mechanical
properties using different mixing methods owing to the existing
of CF clusters. Lu et al. [12] used graphene oxide to modify the dis-
tribution and interfacial property of CF clusters to improve the
mechanical behavior of CFRC. In summary, the CF distribution in
CFRC is critical to properties of CFRC and a high-efficiency detec-
tion method for CF clusters and CF distribution can be helpful to
improve the CF distribution in CFRC.

A standard approach for fiber distribution evaluation has been
introduced in ASTM C1229-94 [13] and CECS38:2004 [14]. In the
standard approach, several specimens with equal mass were sepa-
rated from the fiber reinforce cement paste and then were washed
in a square hole sieve with a diameter of 75 mm. The fibers in spec-
imens were collected, dried, and weighted. The fiber distribution
was evaluated by the fiber masses. In addition, other theoretical
and analytical approaches, such as measurement of electrical resis-
tance [15], microwave heating uniformity [16] and fresh mixture
method [17], have been proposed to evaluate fiber distribution.
However, these approaches could only analyze CF distribution
indirectly but could not characterize the dispersion morphology
of CFs. Motivated by the drawback of these traditional approaches,
a scanning electron microscope (SEM) approach has been used for
the task. For example, Wang et al. [18] and Safiuddin et al. [19]
evaluated fracture surface and distribution of CFs in CFRC. How-
ever, the evaluation approach using SEM was qualitative and ancil-
lary. Jiang et al. [20] evaluated the thermal conductivity
enhancement of phase change materials with carbon fiber net-
work. The SEM images could not reveal the formation of carbon
fiber network in its entirety. Additionally, SEM images were uti-
lized to evaluate interfacial strength between CF and cement
[21,22], the direct compression strength of single carbon fiber
[23], and CF morphology [24,25]. However, the SEM images were
just ancillary in these studies. In summary, there were two prob-
lems remaining in CF distribution using SEM images: (1) a small
observation area in a single SEM image made it impossible to
reveal the CF distribution in CFRC in its entirety; (2) complex and
no-fixed-form background (objects except for fibers shown in
SEM images) and CFs made it difficult to extract CFs from SEM
images to evaluate CF distribution quantitatively.

To date, many efforts have devoted to the developments of CF
distribution evaluation using SEM images, such as K-value cluster-
ing [26], support vector machine [27], and artificial neural network
[28]. However, these methods have limitations in both accuracy
and efficiency though they are proven effective in some degree.
Compared with these conventional methods, convolutional neural
network (CNN) has earned tremendous success in pattern segmen-
tation [29] and various applications [30]. For example, Ming et al.
[31] presented an application of a symmetric CNN for mandible
segmentation in CT images. The results showed that the proposed
symmetric CNN was superior to several methods. Lim et al. [32]
utilized CNNs to segment foreground for multiscale feature encod-
ing. The results indicated the performance of the CNN model was
reasonable to extract cars, pedestrian, and others from images
and videos. Tong et al. [33,34] and Wang et al. [35] employed CNNs
to extract asphalt pavement and cement mortar cracks. Perfor-
mance of the CNNs showed that it had the capacity to handle com-
plex background in the real-world conditions. Liu et al. [36] located
carbon powder bundles for the distribution evaluation. The results
also indicated CNN models extracted certain objects well from var-
ious backgrounds. Therefore, it is possible to utilize CNN or its
modified models to extract CFs and CF clusters from SEM images.
Generally, CNN has two properties to accomplish the task men-
tioned above. The first one is automation, which means it is very
powerful in extracting low-, mid-, and high-level features from
images automatically. This property makes it possible to collect
CF cluster features completely without human assistance. The sec-
ond one is robustness, which means that it has good tolerance of
translation and distortion of objects. However, there are still two
problems should be solved in the processes to realize the task
using CNN: (1) the designed CNN should have the capacity of ana-
lyzing SEM images under different scales; (2) the CNN model
should segment CFs and CF clusters from SEM images rather than
just recognize and locate them in SEM images.

This study presents an application of a fully convolutional net-
work (FCN) to segment CFs from SEM images for the multi-scale
cluster detection in CFRC. Then the segmentation results were used
to calculate the CF distribution and build a bridge between the
microstructures and macro-properties of CFCR. The novelties of
this study can be drawn as below:

� The proposed method provides a way to analyze the relation-
ship between the CF distribution and macro-properties of CFCR
quantitatively, such as resistivity and bending strength;

� The FCN-based method can be used to compute the CF distribu-
tion based on its real distribution in the CFRC rather than the
mass of CFs in a specimen;

� The SEM segmentation results can be used for an auxiliary
observation in CFRC.

The skeleton of this work is summarized as follows. The
research procedures are presented in Section 2, including the pro-
cesses of collecting SEM images of CFRC, the description of the FCN,
and implementation details. The performance of the FCN and its
application for the CF distribution evaluation are discussed in Sec-
tion 3, mainly including the testing performances of the FCN, the
continuous segmentation in real time for the CF distribution eval-
uation, and the relationship analysis between properties of CFRC
and the CF distribution. The conclusions of this study are summa-
rized in Section 4.
2. Research procedures

2.1. Sample preparation and tests

2.1.1. Raw materials
The CFRC composite was fabricated with the Chinese 32.5R

Portland cement and PAN-based CF whose density was 1.741 g/
cm3, length 3–5 mm, carbon content 94.2%, and diameter 7 lm.



(a) Observed samples (The areas in the red boxes are the observed areas) 

(b) Example of SEM images 

Fig. 2. Observation areas and examples of SEM images.
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2.1.2. Specimen preparation
To create the difference of the fiber distribution in specimens,

three fiber contents (0.1%, 0.3% and 0.5% of the cement mass) were
designed to manufacturing the CFRC specimens. The content of
mixing water, sodium carboxymethyl cellulose, and tributyl phos-
phate were 40%, 0.08%, and 0.016% of cement mass, respectively,
and remained the same in all specimens. The mixing processes of
the composites, referring to Ref. [37], are shown in Fig. 1. Firstly,
the sodium carboxymethyl cellulose was dissolved in the heated
mixing water (70 �C) and stirred for 60 s to create the Mixture 1.
Then carbon fibers were mixed with Mixture 1 by a magnetic stir-
rer. The mixing duration was 120 s, 180 s, or 240 s while the stir-
ring speed was 360 r/m to generate specimens with the same CF
mass but different CF distribution. The defoamer was added into
Mixture 2 together with the carbon fiber. Afterward, the cement
was mixed with Mixture 2 by a cement mortar mixer with 180 s
mixing duration. At last, the mixture was poured into a
40 mm � 40 mm � 160 mm steel model and vibrated 30 s on a
vibration platform. The specimens were placed in a curing room
under the temperature 20 ± 1 �C and relative humidity 95%. The
specimens are observed by SEM after curing 28 days. In a total of
9 specimens were fabricated (three specimens for each fiber
content).
2.1.3. SEM image acquisition
Pu et al. [38] found that the quality of imported images influ-

ences the precision of CNN models. In addition, some studies of
Ponikiewski et al. [39,40] showed that the high-quality images of
CFRC could reflect its distribution precisely. Thus, high-quality
SEM images with different scales were collected by a scanning
electron microscope in this study to guarantee the integrality of
the database. The used technical parameters are 3.5 nm resolutions
under high vacuum mode and 2 lA maximum beam. For high-
quality SEM images, the samples were coated with gold in a sput-
ter coater.

The dimensions of a full-size CFRC specimen were too large to
meet the basic requirement of SEM. Therefore, the observation
objects with smaller dimensions, which were suitable for the
SEM observation, were selected from the crushed full-size CFRC
specimens. Each full-size specimen was crushed by a hand ham-
mer into at least 80 – 100 smaller samples, as such more than
720 samples were obtained from 9 full-size specimens. Fig. 2(a)
illustrates examples for selecting observation samples.

During the SEM observation, more than one image was allowed
to be captured from the same small-size sample only if images did
not overlap in the observation field. To save time, dozens of sam-
ples were placed in the sample chamber of the microscope at
one time for observation. The SEM observation yield in a total of
560 SEM images, in which there were 240, 200 and 120 SEM
images are obtained in 50, 100 and 200 magnifications, respec-
tively. The image size was 1280 pixels � 1024 pixels. Fig. 2(b)
shows some typical SEM images.
Fig. 1. The processes o
2.1.4. CFRC property tests
To analyze the relationship between the CF distribution and the

properties of CFRC, resistivity and bending strength tests were
conducted.

A self-designed equipment was used to measure the resistivity
of specimens. Two copper sheets with 38 mm � 38 mm � 0.5 mm
size were used as electrodes. To guarantee the precision of the
resistivity measurement, the two sheets were bonded to two sides
of a specimen graphite-based epoxy conductive adhesive. One ends
of two wires were bonded to the specimen, while other ends were
connected with a regulated power supply to conduct conductivity
tests. The supply power was 30 V during the measurement. The
current values were recorded and used to compute the resistance
by Equation (1).

q ¼ Rs
L

ð1Þ

where q is the resistivity; R is the resistance of the specimen; s is
the size of two copper sheets; L is the length of the specimen.

Bending strength tests were conducted using a material testing
system. The distance between anvil tips was 10 cm and the loading
rate was 0.05 mm/s. The bending strengths were computed and
recorded based on the obtained force–displacement curves.

2.2. Fully convolutional networks

2.2.1. Fundament works of CNN
Some studies [41,42] showed that image processing for

acquired images was also important to analyze the CFRC distribu-
tion. In this section, related works of CNN including convolutional
layer and pooling layer are introduced briefly. Detailed information
of these structural layers has been shown in the Refs. [43,44].
f preparing CFRC.
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Convolutional layer, as the key layer of CNN, is used to extract
features by convolution operation using shared-weights kernels.
A kernel can be considered as a type of filter, which is a small set
of connection weights in neural networks. Generally, a CNN model
consists of several convolutional layers with numbers of kernels for
extracting different features, such as shapes and grayscales. The
operation of convolutional layer can be summed as Eq. (2),

zll;m ¼
Xþ1

i¼�1

Xþ1

j¼�1
xl�1
l;m � klroti;j � v i; jð Þ þ bl ð2aÞ

v i; jð Þ ¼ 1;0 6 i; j 6 n

0; other

�
ð2bÞ

xll;m ¼
1

1 þ ez
l�1
l;m

ð2cÞ

where, xll,m and � l�1
l,m are the output and input of the element in

the lth row and mth column in the lth convolutional layer by the con-
volution operation of a kernel kli,j; klroti,j is the transposed matrix of a
kernel kli,j; and bl is the bias in the lth convolutional layer.

Pooling layer is utilized to decrease the spatial size of its input
to reduce the computational costs and the possibility of the over-
fitting. There are two typical pooling operations, named max pool-
ing and mean pooling. The max pooling as Eq. (3) was adopted in
this research.

zlþ1
l;m ¼ max xll;m

� �
þ blþ1 ð3aÞ

xlþ1
l;m ¼ 1

1 þ ez
lþ1
l;m

ð3bÞ
2.2.2. Encoder-decoder network
A conventional CNN model, whose structure is shown in Fig. 3,

can only recognize CFs and CF clusters in the SEM, but cannot
define their outer contours. This is because the output of a fully
connected layer is the probability of the two objects in the image.
For example, the probability of CF is the highest in the probability
distribution in Fig. 3. It has clear plausibility that the image in Fig. 3
includes at least a CF. However, the aim of the detection and seg-
mentation of CFs and CF clusters is to acquire the areas of the
two objects in SEM images to analyze the CF distribution. There-
fore, an encoder-decoder network was developed to modify the
traditional CNN in this work.

In the modified CNN with an encoder-decoder network, fully
connected layers were replaced by deconvolutional layers. The
modified CNN was named fully convolutional network (FCN). The
structure and parameters of the FCN are shown in Fig. 4. The FCN
could be divided into two parts. The first part was the same as a
conventional CNN including convolutional layers and pooling lay-
Fig. 3. Structure of a traditional c
ers. The function of this part was to extract features of CFs and
clusters from SEM images. In other words, it was an operation
for encoding SEM images. Thus, this part was named ‘‘encoder”.
The output of the encoder was a dense probability mask with large
depth. The depth of dense probability mask in our research was
4096. A dense probability mask was also regarded as extracted fea-
tures. As shown in Fig. 4, the output of the encoder was fed to the
second part. The extracted features were used for upsampling
operation in the second part. The function of the second part was
to perform the deconvolution to produce segmentation results. In
other words, it was an operation for decoding extracted features
to acquire segmentation results. Thus, this part was named ‘‘de-
coder”. To improve computational efficiency and non-linearity of
the segmentation function, upsampling was used in each layer of
the decoder. Therefore, the function layers for ‘‘encoder” and ‘‘de-
coder” were summed as an encoder-decoder network.

In contrast to traditional CNN, the upsampling operation was
used to product segmentation results in the FCN. Processes of
upsampling were also called deconvolution or transposed convolu-
tion. It could be summarized as Eq. (4),

yiuþ1 ¼
XK
k¼1

ziu;k � f uk;c ð4Þ

where, yiu+1 and ziu were the output and input of uth upsampling
layer, respectively. K and c were the numbers of kernels and feature
maps in the uth upsampling layer. f stood as a weight matrix of ker-
nels in the uth upsampling layer. � stands as a deconvolutional
operation. An example of a transposed convolution is shown in
Fig. 5. The input size of the example matrix is 2 � 2. The size of
the transposed convolution kernel is 3 � 3. The transposed convolu-
tion kernel slides the input matrix from the left-upper corner to the
lower-right corner to make dot products. A 4 � 4 matrix is acquired
after the operation. Assuming the input depth of the example
matrix is 4096, the output depth of the example matrix turns to
2048 after a transposed convolution. Similarly, the 3 � 3, 5 � 5,
7 � 7, 9 � 9, and 11 � 11 transposed convolution kernels were also
utilized in the decoder in Fig. 4 to turn extract features of CFs and
clusters to a segmentation result. Thus, a segmentation result had
the same size as the input image but only areas of CFs and CF clus-
ters are reserved in the segmentation image.

2.3. Implementation details and database

The FCN was used to segment areas of CFs and CF clusters from
SEM images. The function mentioned above was realized by train-
ing the FCN. During the training, the labels of SEM images were the
ground-truth areas of CFs and CF clusters in SEM images. The aim
of the training was to minimize the errors between the output
areas of CFs and CF clusters and the ground-truth areas. The errors
were computed using an average binary cross entropy loss for each
onvolutional neural network.



Fig. 4. Structure of fully convolutional network.

Fig. 5. Example of upsampling.
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pixel in an image by Eq. (5). Thus, the gradients of the error were
computed by Eq. (6).

error ¼ �
Xn

i¼1

y0ilogf ðziÞ ð5aÞ

f ðzkÞ ¼ ezk�mPn
i¼1ezi�m

ð5bÞ

@error
@zi

¼ f zið Þ � 1 i ¼ k

f zið Þ i–k

�
ð6Þ

where, y0i was the ground truth of an image; k was the number of
the labeled neural units; n stood the total element number of the
outputs;m was the maximum element of the output. The batch size
for training the FCN was 1.
The learning rate was 1e-4 in our research to guarantee that the
weights of convolution and deconvolution kernels were not
adjusted sharply. The max 50 epochs for 200 training samples
was set to prevent overfitting. During the training, a model check-
point was utilized to save the best model when validation loss
decreased.

The database for training, validation, and testing was another
key to accomplish the segmentation. Totally, 560 SEM images with
1280 pixels � 1024 pixels were generated. These images were
cropped into small images with 256 pixels � 256 pixels to respond
to the size of the input layer. A part of cropped images with no CFs
and clusters were deleted, and 8356 cropped images were acquired
and used to generate a database. The 4557 and 1520 cropped
images were selected randomly as the training set and validation
set. The rest cropped images were used as the testing set. All the
training, validation, and testing sets included images in three con-
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ditions: (1) there was no CF and cluster; (2) there were CFs but no
cluster; (3) there was one cluster or more.
3. Results and discussion

3.1. Testing performance

Four indexes were used to evaluate the overall performance of
the trained FCN, including recall, precision, percentage of wrong
classifications (PWC), and F-Measure. In the task of CF and cluster
segmentation, the true positive (TP) was the true number of CFs
and clusters, while the true negative (TN) was the true number
of backgrounds. Additionally, the false positive (FP) was the wrong
number of CFs and cluster, while the false negative (FN) was the
wrong number of backgrounds. Thus, recall, precision, PWC, and
F-Measure were computed by Eqs. (7)–(10), respectively.

Recall ¼ TP
TP þ FN

ð7Þ

Precision ¼ TP
TP þ FP

ð8Þ

PWC ¼ FN þ FP
TN þ TP þ FN þ FP

ð9Þ

F - Measure ¼ 2� Precision� Recall
Precisionþ Recall

ð10Þ

The overall performance of the testing is shown in Table 1. Each
row shows the average results of each category. The last row shows
the average results across 2 categories. Only the testing data set
was utilized in the reported performance. The FCN generated an
overall F-Measure of 0.9403 in the testing. It indicated the trained
FCN had a high accuracy in the segmentation task. The FCN had a
higher average F-Measure in the CF segmentation than in the clus-
ter segmentation. Thus, the FCN had better performance in seg-
menting dispersive CFs, though the average F-Measure of cluster
segmentation was also acceptable. The average precisions of CF
and cluster segmentation were 0.9672 and 0.9597, which were
similar. However, the recall of clusters was lower than the recall
of CF. Therefore, a further evaluation with a new index was con-
ducted for to verify whether the FP of the FCN in the cluster seg-
mentation was acceptable or not.

Dice similarity coefficient (DSC) was used to further evaluate
the CF segmentation performance of the FCN. As the most popular
evaluation criterion [45], DSC was defined in Eq. (11). In the fol-
lowing equation, Yi is the output of FCN in the ith pixel, while Ti
is the ground truth in the ith pixel.

DSC ¼ 1
n

Xn
i¼1

2 Yi \ Tij jð Þ
Yij j þ Tij j ð11Þ

Fig. 6 presents the DSC evaluation on the FCN using 15 testing
samples with CF clusters. The DSC curves of the 15 testing samples
were stable when the recall was in the range of 0.1–0.9. It indicated
that the FCN had the robust performance in the testing samples
even the recall in Table 2 was not perfect. The 15 testing samples
and their segmentation result are shown in Fig. 7. It showed that
Table 1
Testing results.

Category Recall Precision PWC F-Measure

CF 0.9486 0.9672 0.1180 0.9578
CF cluster 0.8817 0.9597 0.2694 0.9190
Overall 0.9281 0.9645 0.1069 0.9403
the FCN distinguished the CF cluster with the background, such
as hydration products and voids, though a small number of CFs
in the CF cluster were lost. The loss of the small number of CFs
in the CF clusters led the low recall. However, it did not influence
the overall segmentation of the CF clusters because the profile of a
CF cluster in segmentation result was obviously different from the
profile of a single CF. Additionally, as shown in the right parts of
Fig. 7 (No. 1), the trained FCN distinguished CFs from grooves,
which were led by the dissociation of CFs during the observation.
The grayscales and shapes of grooves are close to the CFs. This dis-
tinguishing capacity showed that the trained FCN could even clas-
sify objects, whose features could not be defined easily.

The overall performance cannot reflect the segmentation capac-
ity of the FCN on different scales. Considering the aim of the FCN
was multi-scale cluster detection, a stability study of the segmen-
tation performance on different magnifications was conducted. The
database included three magnifications, �50, �100, �200. The
testing set was divided based under the magnifications. The overall
performance of testing under different magnifications is shown in
Table 2.

The FCN generated average F-Measures of 0.9498, 0.9434, and
0.9291 under �50, �100, and �200 magnifications, respectively.
It indicated that the performances of the FCN under different mag-
nifications were similar, though the performances of the FCN under
�50 and �100 to segment CFs is slightly better than the perfor-
mance of the FCN under �200. The reason why the FCN could seg-
ment CFs and CF clusters from complex background under
different magnifications was mainly that the shapes of CFs under
different magnifications were similar in the SEM images. For exam-
ple, two testing samples, shown in Fig. 8(a) and Fig. 8(b), were
under �50 and �200 magnifications, respectively. The segmenta-
tion results are shown in Fig. 8(c) and Fig. 8(d). The segmentation
results of the two samples were both acceptable. The visualizations
of the feature maps are shown in Fig. 8(e)–(j). Fig. 8(e)–(g) are the
visualizations of the feature maps of the testing samples under
�50 magnifications, while Fig. 8(h)–(j) are the visualization of
the feature maps of the testing samples under �200 magnifica-
tions. All feature maps in Fig. 8 were randomly chosen from each
layer of the FCN and scaled to the same size. Fig. 8(e)–(j) illustrated
that the FCN had the capacity for extracting features of SEM
images, such as outlines and changes of grayscales, regardless of
magnifications. The reasons why the FCN could extract features
with different types was that the kernels in different convolution
layers could extract different features though SEM images under
different magnifications showed different features of CFs, clusters,
and voids. For example, a part of the kernel visualizations in the
first convolution layer shown in Fig. 9. The kernels shown in
Fig. 9 I1–II8 can extract different shapes. The kernels shown in
Fig. 9 III1–III8 can extract different grayscale changes, while the
kernels shown in Fig. 9 IV1–IV8 can extract different grayscales.
Additionally, it also because the pooling operation in encoder
increased FCN’s tolerance of distortion and scaling.

3.2. Continuous segmentation in real time for CF distribution
evaluation

The study of Chung et al. [46] proved that the use of SEM to
assess material characteristics is ineffective because of the small
observation area in a SEM image for the whole sample. Therefore,
a continuous segmentation and observation in real time were nec-
essary to add observation areas to realize the CF distribution eval-
uation using SEM. For example, the observation area of a SEM
image under �50 magnification was 0.5 mm � 0.5 mm. A
25 mm � 25 mm area could be observed and its CF distribution
could be analyzed once 50 continuous SEM images without overlap
were segmented in real time by the FCN, which was enough for the



Fig. 6. Results of FCN on 15 testing samples.

Table 2
Testing results under different magnifications.

Category �50 �100 �200

R P PWC F-M R P PWC F-M R P PWC F-M

CF 0.9468 0.9805 0.1392 0.9634 0.9350 0.9779 0.0523 0.9560 0.9670 0.9501 0.1475 0.9585
CF clusters 0.9038 0.9710 0.0736 0.9362 0.8936 0.9714 0.0759 0.9309 0.8374 0.9718 0.0732 0.8996
Overall 0.9253 0.9758 0.1064 0.9498 0.9143 0.9747 0.0641 0.9434 0.9022 0.9610 0.1103 0.9291

Note: R, P, and FM donate Recall, Precision, and F-Measure.
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CF distribution evaluation for the whole sample. In this study,
Equation (12) and Equation (13) were used to calculate the CF dis-
tribution in a SEM image and an observation area, respectively.

DSEM ¼ ANo CF þ ASingle CF

ANo CF þ ACFCF clusters þ ASingle CF
ð12Þ

DSample ¼ 1
n

Xn
i¼1

DSEM;i ð13Þ

where DSEM and DSample are CF distribution in a SEM image and a
sample, respectively. ACF clusters, ANo CF, and ASingle CF are the areas
of CF clusters, background, and single CFs in a SEM image.

The testing results showed that the average runtime of the FCN
in GPU mode to process one SEM image with 1280 pixels � 1024
pixels was 0.17 s/image. It illustrated that five SEM images could
be segmented by the FCN in a second approximately. The segmen-
tation speed met the demand for SEM observation in real time in
theory. Figs. 10 and 11 presents observation areas in 3 s and their
segmentation results by the FCN, respectively. The processes were
accomplished in real time, which indicated the real-time segmen-
tation as an auxiliary observation in the SEM was feasible.

Fig. 12 present the continuous evaluation results of the CF dis-
tribution in the specimens with three fiber contents (0.1%, 0.3% and
0.5% of the cement mass) and 180 s mixing time under �50 mag-
nification. The results of DSEM in each specimen varied from one
to another. It indicated that the DSEM was not effective to evaluate
the CF distribution. The results of Dsample became stable with the
increase of the observation areas. For example, the Dsample in the
0.3% fiber contents specimen for the first 40 and the 50 SEM images
were 89.38% and 89.36%. Additionally, the results of the Dsample

using 50 SEM in the three specimens were 92.29%, 89.36%, and
85.62%, respectively. The results were close to the real results. It
indicated that the continuous evaluation method based on Dsample

was reasonable for the CF distribution evaluation in the CFRC spec-
imen, which overcame the disadvantage of the small observation
areas in a SEM image.

In summary, the processes for the proposed approach in this
study for CF distribution could be drawn as below:

(1) Several specimens were separated from the CFRC;
(2) Continuous observation and collection of SEM images from

these specimens were conducted. In general, 50 images
without overlapping should be collected from the CFRC;

(3) Continuous segmentation results were generated using the
FCN and used to calculated Dsample as the CF distribution.

3.3. Relationship between properties of CFRC and the CF distribution

The previous studies showed that the CF distribution had a
striking effect on the properties of the CFRC specimens,



Fig. 7. Testing samples and segmentation results.
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e.g. mechanical property [2] and electric heating property [3].
However, these studies only used the mass fraction of CFs to char-
acterize the CF distribution due to the limitation of the observation
areas of the SEM. It was feasible to analyze the relationship
between the properties of CFRC and the CF distribution once the
CF distribution was calculated based on the microscopic structure
of CFRC.

3.3.1. Resistivity
The resistivity is an indispensable property of CFRC, which is

related to its electric heating rate and microwave absorption. How-
ever, the CFRCs with the same CF mass might have different CF dis-
tribution, which led to different resistivities. Thus, it was necessary
to investigate the relationship between the CF distribution and
resistivity of the CFRC. Thus, the resistivity tests were conducted
to explain the relationship between the CF distribution and the
resistivity of CFRCs.
Fig. 13 presents the resistivity results of specimens with differ-
ent carbon fiber distribution (three fiber contents and three mixing
times). A sharp decline of the resistivity is shown in Fig. 13 with
the increase of the CF distribution. It indicated that the good CF dis-
tribution had a positive effect on the improvement of the conduc-
tivity of CFRC, though its effect was less than the effect of the CF
masses. Therefore, the electric properties of the CFRC could be
modified by the reasonable mixing methods. Additionally, as
shown in Fig. 13, it was important to guarantee Dsample larger than
85% to ensure the conductivity of the CFRC when the range of the
CF mass was in 0.1–0.5%.

3.3.2. Mechanical property
The mechanical properties of CFRC have been intensively inves-

tigated in previous studies [47,48]. However, these studies only
presented correlations between the CF masses and mechanical
properties because they could not utilize the SEM images to



Fig. 8. Two testing samples, their segmentation results of the FCN, and visualiza-
tion on the feature map of the FCN.
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calculate the CF distribution quantificationally. However, the
CFRCs with the same CF mass might have different CF distribution,
which led to different mechanical properties. Thus, it was neces-
sary to investigate the relationship between the CF distribution
and mechanical properties of the CFRC.

Fig. 14 presents the bending strength results of specimens with
different carbon fiber distribution (three fiber contents and three
mixing times). The bending strength increased with the improve-
ment of the CF distribution. It indicated that the incorporation of
Fig. 9. Visualization
CFs with reasonable mixing methods could significantly improve
the bending strength of the hardened cement paste. Thus, it was
essential to focus not only on the mass but also the distribution
of CFs to improve the mechanical properties of CFRC. Additionally,
as shown in Fig. 14, it was important to guarantee Dsample larger
than 87% to ensure the bending strength of the CFRC when the
range of the CF mass was in 0.1–0.5%.

The results present in Figs. 13 and 14 proved that the FCN-based
method for the CF distribution evaluation provided a way to build a
bridge between the microstructures and macro-properties of CFCR,
not only limited to the resistivity and bending strength. Thus, this
work proved a desirable preliminary study of building the relation-
ship between the CF distribution and the properties of CFRC. In the
further study, more specimens with different CF distribution
should be observed by the SEM andmeasured by different property
tests to build a correction between the microstructures and macro-
properties of CFCR.

4. Conclusions

An application of the CF segmentation and distribution evalua-
tion using FCN and SEM images was presented in this work and the
following conclusions can be drawn:

(1) The FCN-based method provided a way to build a bridge
between the CF distribution and macro-properties of CFCR.
The CF distribution was computed using continuous seg-
mentation results of SEM images. It could reflect the real
CF distribution in the CFRC rather than the mass of CFs in
a specimen.

(2) The FCN was used for CF cluster segmentation, achieving an
average F-Measure of 0.9403, recall of 0.9281, and precision
of 0.9645. The DSC curves of the FCN were stable. The aver-
age F-Measures was 0.9498, 0.9434, and 0.9291 under �50,
�100, and �200 magnifications, respectively. These indi-
cated that the FCN could be considered as the reasonable
model with acceptable stability in this work.

(3) The results of DSEM varied from one to another. It indicated
that the DSEM was not effective to evaluate the CF distribu-
tion. With the increase of the observation areas, the results
of Dsample became stable and close to the real results. It
indicated that the continuous evaluation method based on
Dsample was reasonable for the CF distribution evaluation
in the CFRC specimen, which overcome the disadvantage of
the small observation areas in a SEM image.
on the kernels.



Fig. 10. The first real-time observation areas and segmentation results (�50).

Fig. 11. The second real-time observation areas and segmentation results (�100).
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Fig. 12. Continuous evaluation results of the CF under �50 magnification.

Fig. 13. Resistivity of specimens with different carbon fiber distribution.

Fig. 14. Bending strength of specimens with different carbon fiber distribution.
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(4) The resistivity of CFRC deceased sharply with the increase of
the CF distribution. It indicated that the good CF distribution
had a positive effect on the improvement of the conductivity
CFRC. It was important to guarantee Dsample larger than 85%
to ensure the conductivity of the CFRC when the range of the
CF mass was in 0.1–0.5%.
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(5) The bending strength increased with the improvement of
the CF distribution. It indicated that the incorporation of
CFs with reasonable mixing methods could significantly
improve the bending strength of the hardened cement paste.
It was important to guarantee Dsample larger than 87% to
ensure the bending strength of the CFRC when the range of
the CF mass was in 0.1–0.5%.

Declaration of Competing Interest

None.

Acknowledgements

The authors gratefully acknowledge the financial support pro-
vided by Opening Foundation of Research and Development Center
of Transport Industry of Technologies, Materials and Equipments of
Highway Construction and Maintenance. (Gansu Road & Bridge
Construction Group) (No. GLKF201811). This work was also sup-
ported by the China-UK Research and Innovation Partnership Fund
(Newton Fund) jointly funded by the China Scholarship Council
and British Council; the State Key Laboratory of High Performance
Civil Engineering Materials (No. 2018CEM010); the Fundamental
Research Funds for the Central Universities of China (Nos.
300102318402, 300102219509 and 300102319501) and Co-
operation Program with the UTs and INSAs (France) funded by
the China Scholarship Council (No. CSC201801810108).

References

[1] Wenjie Wang, Nawawi Chouw, Flexural behaviour of FFRP wrapped CFRC
beams under static and impact loadings, Int. J. Impact Eng. 111 (2018) 46–54.

[2] Khiem Quang Tran, Tomoaki Satomi, Hiroshi Takahashi, Improvement of
mechanical behavior of cemented soil reinforced with waste cornsilk fibers,
Constr. Build. Mater. 178 (2018) 204–210.

[3] Ziyi Wang, Zhi Wang, Mei Ning, Shengxuan Tang, Yunfei He, Electro-thermal
properties and Seebeck effect of conductive mortar and its use in self-heating
and self-sensing system, Ceram. Int. 43 (12) (2017) 8685–8693.

[4] Chuang Wang, Kezhi Li, Hejun Li, Lingjun Guo, Gengsheng Jiao, Influence of CVI
treatment of carbon fibers on the electromagnetic interference of CFRC
composites, Cem. Concr. Compos. 30 (6) (2008) 478–485.

[5] Manuela Chiarello, Raffaele Zinno, Electrical conductivity of self-monitoring
CFRC, Cem. Concr. Compos. 27 (4) (2005) 463–469.

[6] Faezeh Azhari, Nemkumar Banthia, Cement-based sensors with carbon fibers
and carbon nanotubes for piezoresistive sensing, Cem. Concr. Compos. 34 (7)
(2012) 866–873.

[7] Guofeng Qin, Jingxin Na, Mu. Wenlong, Wei Tan, Jiazhou Yang, Junming Ren,
Effect of continuous high temperature exposure on the adhesive strength of
epoxy adhesive, CFRP and adhesively bonded CFRP-aluminum alloy joints,
Compos. B Eng. 154 (2018) 43–55.

[8] Wang Chuang, Jiao Geng-sheng, Li Bing-liang, Peng Lei, Feng Ying, Gao Ni, Li
Ke-zhi, Distribution of carbon fibers and conductivity of carbon fiber-
reinforced cement-based composites, Ceram. Int. 43 (17) (2017) 15122–15132.

[9] Young-Jae Lee, Hyeok-Jong Joo, Ljubisa R. Radovic, Preferential distribution and
oxidation inhibiting/catalytic effects of boron in carbon fiber reinforced carbon
(CFRC) composites, Carbon 41 (13) (2003) 2591–2600.

[10] Wang Chuang, Peng Lei, Li Bing-liang, Gao Ni, Zhao Li-ping, Li Ke-zhi,
Influences of molding processes and different dispersants on the distribution
of chopped carbon fibers in cement matrix, Heliyon 4 (10) (2018) e00868.

[11] Jie Gao, Zhenjun Wang, Ting Zhang, Liang Zhou, Distribution of carbon fibers in
cement-based composites with different mixing methods, Constr. Build.
Mater. 134 (2017) 220–227.

[12] Zeyu Lu, Asad Hanif, Guoxing Sun, Rui Liang, Pavithra Parthasarathy, Zongjin
Li, Highly dispersed graphene oxide electrodeposited carbon fiber reinforced
cement-based materials with enhanced mechanical properties, Cem. Concr.
Compos. 87 (2018) 220–228.

[13] CECS38:2004Technical Specification for Fiber Reinforced Concrete Structures,
General Administration of Quality Supervision, Inspection and Quarantine of
the People’s Republic of China, Beijing, 2004.

[14] ASTM C1229-94Standard Test Method for Determination of Glass Fiber
Content in Glass Fiber Reinforced Concrete (GFRC) (Wash-Out Test), ASTM
International, West Conshohocken, PA, 2015.

[15] Carlos G. Berrocal, Karla Hornbostel, Mette R. Geiker, Ingemar Löfgren, Karin
Lundgren, Dimitrios G. Bekas, Electrical resistivity measurements in steel fibre
reinforced cementitious materials, Cem. Concr. Compos. 89 (2018) 216–229.
[16] Jie Gao, Haoyan Guo, Xiaofeng Wang, Pei Wang, Yongfeng Wei, Zhenjun Wang,
Yue Huang, Bo Yang, Microwave deicing for asphalt mixture containing steel
wool fibers, J. Cleaner Prod. 206 (2019) 1110–1122.

[17] Yuanxia Yang, Methods study on dispersion of fibers in CFRC, Cem. Concr. Res.
32 (5) (2002) 747–750.

[18] Wang Chuang, Jiao Geng-sheng, Li Bing-liang, Peng Lei, Feng Ying, Gao Ni, Li
Ke-zhi, Dispersion of carbon fibers and conductivity of carbon fiber-reinforced
cement-based composites, Ceram. Int. 43 (17) (2017) 15122–15132.

[19] Md. Safiuddin, M. Yakhlaf, K.A. Soudki, Key mechanical properties and
microstructure of carbon fibre reinforced self-consolidating concrete, Constr.
Build. Mater. 164 (2018) 477–488.

[20] Zhao Jiang, Ting Ouyang, Yang Yang, Lei Chen, Xiaohua Fan, Yunbo Chen,
Weiwei Li, Youqing Fei, Thermal conductivity enhancement of phase change
materials with form-stable carbon bonded carbon fiber network, Mater. Des.
143 (2018) 177–184.

[21] Yu. Liu, Delong He, Ann-Lenaig Hamon, Benhui Fan, Paul Haghi-Ashtiani,
Thomas Reiss, Jinbo Bai, Comparison of different surface treatments of carbon
fibers used as reinforcements in epoxy composites: Interfacial strength
measurements by in-situ scanning electron microscope tensile tests,
Compos. Sci. Technol. 167 (2018) 331–338.

[22] A.A. Stepashkin, D.I. Chukov, M.V. Gorshenkov, V.V. Tcherdyntsev, S.D.
Kaloshkin, Electron microscopy investigation of interface between carbon
fiber and ultra high molecular weight polyethylene, J. Alloy. Compd. 586
(2014) S168–S172.

[23] Masahito Ueda, Wataru Saito, Ryuma Imahori, Daichi Kanazawa, Tae-Kun
Jeong, Longitudinal direct compression test of a single carbon fiber in a
scanning electron microscope, Compos. A Appl. Sci. Manuf. 67 (2014) 96–101.

[24] Bradley A. Newcomb, Processing, structure, and properties of carbon fibers,
Compos. A Appl. Sci. Manuf. 91 (2016) 262–282.

[25] Bradley A. Newcomb, Lucille A. Giannuzzi, Kevin M. Lyons, Prabhakar V.
Gulgunje, Kishor Gupta, Yaodong Liu, Manjeshwar Kamath, et al., High
resolution transmission electron microscopy study on
polyacrylonitrile/carbon nanotube based carbon fibers and the effect of
structure development on the thermal and electrical conductivities, Carbon
93 (2015) 502–514.

[26] Zhenjun Wang, Jie Gao, Tao Ai, Wei Jiang, Peng Zhao, Quantitative evaluation
of carbon fiber distribution in cement based composites, Constr. Build. Mater.
68 (2014) 26–30.

[27] Farzad Naseri, Faezeh Jafari, Ehsan Mohseni, Waiching Tang, Abdosattar
Feizbakhsh, Mohsen Khatibinia, Experimental observations and SVM-based
prediction of properties of polypropylene fibres reinforced self-compacting
composites incorporating nano-CuO, Constr. Build. Mater. 143 (2017) 589–
598.

[28] L. Shi, S.T.K. Lin, Y. Lu, L. Ye, Y.X. Zhang, Artificial neural network based
mechanical and electrical property prediction of engineered cementitious
composites, Constr. Build. Mater. 174 (2018) 667–674.

[29] Ke Zhang, Miao Sun, Tony X. Han, Xingfang Yuan, Liru Guo, Tao Liu, Residual
networks of residual networks: Multilevel residual networks, IEEE Trans.
Circuits Syst. Video Technol. 28 (6) (2018) 1303–1314.

[30] Xi Peng, Lu. Canyi, Zhang Yi, Huajin Tang, Connections between nuclear-norm
and frobenius-norm-based representations, IEEE Trans. Neural Networks
Learn. Syst. 29 (1) (2018) 218–224.

[31] Ming Yan, Jixiang Guo, Weidong Tian, Zhang Yi, Symmetric convolutional
neural network for mandible segmentation, Knowl.-Based Syst. 159 (2018)
63–71.

[32] Long Ang Lim, Hacer Yalim Keles, Foreground segmentation using
convolutional neural networks for multiscale feature encoding, Pattern
Recogn. Lett. 112 (2018) 256–262.

[33] Zheng Tong, Jie Gao, Haitao Zhang, Recognition, location, measurement, and
3D reconstruction of concealed cracks using convolutional neural networks,
Constr. Build. Mater. 146 (2017) 775–787.

[34] Zheng Tong, Jie Gao, Zhenqiang Han, Zhenjun Wang, Recognition of asphalt
pavement crack length using deep convolutional neural networks, Road Mater.
Pavement Des. 19 (6) (2018) 1334–1349.

[35] Zhenjun Wang, Wu. Jiayu, Peng Zhao, Nan Dai, Zhiwei Zhai, Tao Ai, Improving
cracking resistance of cement mortar by thermo-sensitive poly N-isopropyl
acrylamide (PNIPAM) gels, J. Cleaner Prod. 176 (2018) 1292–1303.

[36] Hai Liu, Aimin Sha, Zheng Tong, Jie Gao, Autonomous microscopic bunch
inspection using region-based deep learning for evaluating graphite powder
distribution, Constr. Build. Mater. 173 (2018) 525–539.

[37] Jie Gao, Aimin Sha, Zhenjun Wang, Hu. Liqun, Di Yun, Zhuangzhuang Liu, Yue
Huang, Characterization of carbon fiber distribution in cement-based
composites by Computed Tomography, Constr. Build. Mater. 177 (2018)
134–147.

[38] Shiliang Pu, Tao Song, Yuan Zhang, Di Xie, Estimation of crowd density in
surveillance scenes based on deep convolutional neural network, Procedia
Comput. Sci. 111 (2017) 154–159.

[39] T. Ponikiewski, J. Katzer, M. Bugdol, M. Rudzki, Determination of 3D porosity in
steel fibre reinforced SCC beams using X-ray computed tomography, Constr.
Build. Mater. 68 (2014) 333–340.

[40] T. Ponikiewski, J. Katzer, M. Bugdol, M. Rudzki, Steel fibre spacing in self-
compacting concrete precast walls by X-ray computed tomography, Mater.
Struct. (2015), https://doi.org/10.1617/s11527-014-0444-y.

[41] T. Ponikiewski, J. Katzer, M. Bugdol, M. Rudzki, X-ray computed tomography
harnessed to determine 3D spacing of steel fibres in self compacting concrete
(SCC) slabs, Constr. Build. Mater. 74 (2015) 102–108.

http://refhub.elsevier.com/S0950-0618(19)31284-X/h0005
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0005
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0010
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0010
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0010
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0015
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0015
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0015
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0020
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0020
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0020
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0025
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0025
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0030
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0030
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0030
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0035
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0035
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0035
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0035
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0040
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0040
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0040
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0045
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0045
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0045
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0050
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0050
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0050
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0055
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0055
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0055
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0060
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0060
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0060
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0060
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0065
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0065
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0065
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0065
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0070
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0070
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0070
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0070
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0075
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0075
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0075
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0080
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0080
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0080
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0085
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0085
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0090
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0090
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0090
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0095
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0095
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0095
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0100
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0100
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0100
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0100
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0105
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0105
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0105
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0105
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0105
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0110
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0110
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0110
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0110
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0115
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0115
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0115
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0120
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0120
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0125
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0125
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0125
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0125
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0125
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0125
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0130
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0130
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0130
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0135
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0135
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0135
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0135
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0135
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0140
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0140
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0140
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0145
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0145
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0145
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0150
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0150
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0150
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0155
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0155
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0155
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0160
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0160
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0160
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0165
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0165
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0165
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0170
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0170
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0170
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0175
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0175
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0175
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0180
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0180
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0180
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0185
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0185
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0185
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0185
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0190
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0190
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0190
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0195
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0195
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0195
https://doi.org/10.1617/s11527-014-0444-y
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0205
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0205
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0205


52 Z. Tong et al. / Construction and Building Materials 218 (2019) 40–52
[42] T. Ponikiewski, J. Katzer, X-ray computed tomography of fibre reinforced self-
compacting concrete as a tool of assessing its flexural behaviour, Mater. Struct.
49 (6) (2016) 2131–2140, https://doi.org/10.1617/s11527-015- 0638-y.

[43] Zheng Tong, Jie Gao, Aimin Sha, Hu. Liqun, Shuai Li, Convolutional neural
network for asphalt pavement surface texture analysis, Comput.-Aided Civ.
Infrastruct. Eng. 33 (12) (2018) 1056–1072.

[44] Zheng Tong, Jie Gao, Haitao Zhang, Innovation for evaluating aggregate
angularity based upon 3D convolutional neural network, Constr. Build. Mater.
155 (2017) 919–929.

[45] Holger R. Roth, Lu Le, Amal Farag, Hoo-Chang Shin, Jiamin Liu, Evrim B.
Turkbey, Ronald M. Summers, Deeporgan: multi-level deep convolutional
networks for automated pancreas segmentation, in: International Conference
on Medical Image Computing and Computer-assisted Intervention, Springer,
Cham, 2015, pp. 556–564.

[46] D.D. Chung, Distribution of short fibers in cement, J. Mater. Civ. Eng. 17 (4)
(2005) 379–383.

[47] ChuangWang, Ke-Zhi Li, He-Jun Li, Geng-Sheng Jiao, Lu. Jinhua, Dang-She Hou,
Effect of carbon fiber distribution on the mechanical properties of carbon
fiber-reinforced cement-based composites, Mater. Sci. Eng., A 487 (1–2) (2008)
52–57.

[48] C.A. Juarez, G. Fajardo, S. Monroy, A. Duran-Herrera, P. Valdez, Camille
Magniont, Comparative study between natural and PVA fibers to reduce
plastic shrinkage cracking in cement-based composite, Constr. Build. Mater. 91
(2015) 164–170.

https://doi.org/10.1617/s11527-015-0638-y
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0215
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0215
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0215
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0220
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0220
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0220
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0225
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0225
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0225
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0225
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0225
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0225
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0230
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0230
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0235
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0235
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0235
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0235
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0240
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0240
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0240
http://refhub.elsevier.com/S0950-0618(19)31284-X/h0240

	A novel method for multi-scale carbon fiber distribution characterization in cement-based composites
	1 Introduction
	2 Research procedures
	2.1 Sample preparation and tests
	2.1.1 Raw materials
	2.1.2 Specimen preparation
	2.1.3 SEM image acquisition
	2.1.4 CFRC property tests

	2.2 Fully convolutional networks
	2.2.1 Fundament works of CNN
	2.2.2 Encoder-decoder network

	2.3 Implementation details and database

	3 Results and discussion
	3.1 Testing performance
	3.2 Continuous segmentation in real time for CF distribution evaluation
	3.3 Relationship between properties of CFRC and the CF distribution
	3.3.1 Resistivity
	3.3.2 Mechanical property


	4 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References


