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� A deep-learning method was
proposed to characterize CF
distribution and predict CFRC
properties.

� High-precision 3D reconstruction
using CT images and FCNs was
conducted.

� The cascade deep learning predicted
the CFRC properties using X-ray
scanning images.

� The method measured the
contributions of different CF
distribution to CFRC properties.
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This work presents a deep-learning method to characterize the carbon fiber (CF) morphology distribution
in carbon fiber reinforced cement-based composites (CFRC), predict the CFRC properties, and measure the
contributions of different CF morphology distribution directly using X-ray images. Firstly, the compo-
nents of CFRC in slices of X-ray images were segmented and identified using a fully convolutional net-
work (FCN). Then the CF morphology distribution evaluation were conducted based on the results of
the FCN. At last, the prediction of CFRC properties was realized using a cascade deep learning algorithm
and CF morphology distribution results. The results showed that the FCN provided more reasonable seg-
mentation results for each component in CFRC than traditional methods. CF clustered areas and CF bun-
dles increased sharply with the increase of CF content, while uniformly dispersed CF areas showed the
opposite trend. The cascade deep learning provided a method to predict the CFRC properties (e.g. resis-
tivity and bending strength) using X-ray scanning images, which could also quantificationally measure
the contributions of different CF morphology distribution to properties of the CFRC. Therefore, the pro-
posed method could be regarded as a nondestructive and effective test for CFRC property evaluation.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Carbon fiber reinforced cement-based composites (CFRC) hold
prospect for future civil engineering because of their excellent
mechanical [1], electrical [2], and thermal properties [3]. They have
been proven that the effectiveness of the CFRC properties depends
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on the carbon fiber (CF) morphology distribution [4]. Conse-
quently, a method for evaluating CF distribution quantitatively is
essential to guarantee the excellent properties of CFRC.

A widely-used method for fiber distribution evaluation has
been introduced in ASTM C1229-94 [5]. However, the traditional
method only analyzes the fiber distribution indirectly and provides
little information about the distribution morphology and volumes
of different components [6]. Motivated by the disadvantages of the
issue, many studies contributed to characterizing the CF distribu-
tion in the recent decades, such as scanning electron microscope
(SEM), empirical equations, and X-ray computed tomography
(CT). The SEM method is always used as an auxiliary evolution
method because of its insensitive capacity to small differences in
the degree of object characteristics evaluation due to the limited
observation areas [7]. It is also unacceptable to evaluate the CF
morphology distribution using empirical equations based on phys-
ical or mechanical properties [8] because a range of applicable con-
ditions usually limit these empirical equations. Additionally, the
determination of empirical constants is not easy to obtain and vary
from one condition to another. Compared with these methods, the
X-ray CT technique has the advantage to present the CF morphol-
ogy distribution. With the development of industrial CT machines,
it is no longer challenging to obtain sectional X-ray images [9].
However, there is still two problem limiting the utilization of
X-ray images to evaluate the CF morphology distribution: (a)
How to segment different components accurately (e.g. CF bundles,
CF clustered areas, and uniformly dispersed CF areas) in the X-ray
images; (b) However to build a relationship between the CF
morphology distribution and CFRC properties.

Many methodologies were used to segment different compo-
nents of CFRC in X-ray images. A widely-used method for the task
is K-mean clustering. Comparing with the previous studies using
this method [9,10], it could be found that the gray thresholds in
the X-ray images varied not only from one specimen to another
but also from one slide to another. It was owing to different densi-
ties and mass ratios of components in different specimens [11].
Additionally, many other techniques, such as density-gradients
clustering [12], belief function fusion [13], random forest classifier
[14], were used to complete the task but the results were also not
reasonable. In one word, the features of different components in
CFRC were not easily summarized accurately by a few indexes or
equations, such as gray thresholds. Therefore, these traditional
methodologies, which relied on humans to provide features of dif-
ferent components, were not suitable to segment X-ray images and
evaluate the CF morphology distribution.

In recent years, the development of deep learning offers us a
feasible option to realize the task. After the remarkable perfor-
mance of the LeNet-5 [15,16], deep learning has been widely used
in object classification [17,18], location [19,20], and segmentation
[21,22]. Notably, a modified convolutional neural network (Con-
vNet), named fully convolutional network (FCN), shows excellent
performance in object segmentation using X-ray images. For exam-
ple, Xu et al. [23] segmented lung parenchyma in X-ray images
successfully using an FCN. Zhang et al. [24] proposed an FCN to
detect lesion using X-ray and magnetic resonance images. Tumor
co-segmentation in PET/CT was realized using FCNs [25]. There-
fore, it is possible to employee an FCN to segment different compo-
nents in CFRC X-ray images. Additionally, deep-learning methods
have been used to evaluate and predict material properties. For
example, Liu et al. [26] proposed a region deep-learning method
to locate carbon powder bunches and compute the carbon powder
distribution of the modified asphalt using microscope images. Cang
et al. [27] predicted physical properties of heterogeneous materials
from imaging data via ConvNet. Jiang et al. [28] segmented differ-
ent components in asphalt mixtures based on ConvNet using X-ray
images but the proposed method was still influenced by the
selection of gray thresholds. The previous studies indicated that
deep learning methods might have the capacity to build a relation-
ship between the CF morphology distribution and CFRC properties.
Thus, it is a preferable choice to utilize FCN to segment different
components of CFRC in X-ray images and use the results to charac-
terize the CF morphology distribution.

In this study, motivated by the drawback of the CF distribution
evolution methods in the previous study [8,9], we proposed a cas-
cade deep learning method to characterize the CF morphology dis-
tribution and CFRC properties using X-ray images. The advantages
of this study are summarized below:

(1) The proposed method provided stable and precisive seg-
mentation results of X-ray images, which could be used to
characterize the CF distribution accurately, such as distribu-
tion morphology and volumes of different components.

(2) The proposed method provided a way to build a relationship
between the CF distribution and CFRC properties. The CF dis-
tribution was its real morphology distribution in the CFRC
rather than the mass of CFs in a specimen. It provided a
bridge between the CF morphology distribution and the
property prediction in a nondestructive and effective mode.

(3) The proposed method could quantificationally evaluate the
contributions of the different CF morphology distribution
to the CFRC properties.

The rest of this paper is organized as follows. In Section 2, we
present the method to prepare the CFRP specimens, acquire
X-ray scanning images, and measure the resistivity and bending
strength of each specimen. In Section 3, we descript the structure
of the cascade deep learning, which combine an FCN and a radial
basis function (RBF) network. In Section 4, we discuss the results
of X-ray image segmentation, carbon fiber distribution evaluation,
and a way to predict CFRC properties and evaluate the contribu-
tions of the different CF morphology distribution to the CFRC prop-
erties quantificationally. Our conclusions are summarized in
Section 5.
2. Laboratory experiments

2.1. Raw materials

There were three kinds of raw materials involved in a CFRC
specimen, ordinary Portland cement, short-cut CFs, and mixing
water. Tables 1 and 2 present the properties of cement and CFs
used in this study. The properties of the cement met the demands
of GB 175-2007 [29].
2.2. Preparation of CFRC specimens

To acquire X-ray images with different CF morphology distribu-
tion, CFRC specimens were designed with three carbon fiber con-
tents: 0.4%, 0.8%, and 1.2% of cement mass, respectively. These
specimens were labeled as CF4, CF8, and CF12, respectively. The
mass ratio of water in all CFRC specimens was 0.33. The after-
mixing method was used to prepare all the specimens, which mean
that the CFs were added into the mixture after preparing cement
mortar. Detailed procedures have been presented in the study of
Yang [30]. Firstly, the ordinary Portland cement and the mixing
water were stirred by a cement mortar mixer in 60 round/min.
The stirring time was 30 s. Secondly, CFs were added into the
cement mortar. The stirring time was 120 s. Lastly, the cement
mortar with CFs was infused into 40 mm � 40 mm � 160 mm
models and cured in a condition where the temperature and rela-
tive humidity were controlled in 20 ± 2 �C and 93%, respectively.



Table 1
Cement properties.

Fineness (m2/kg) Density (g/cm3) Initial/finial setting time (h) Flexural/compressive strength (MPa)

3 d 28 d

320 3.108 3.0/4.8 5.8/20.5 7.4/54.3

Table 2
Carbon fiber properties.

Radius (lm) Lengths (mm) Carbon content (%) Elasticity modulus (GPa) Ultimate Tensile strength (MPa) Resistivity (10�3 X�cm)

4.0 2–5 95.6 235 3900 0.783
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After 28 days, the specimens were used to acquire X-ray images by
an industrial CT machine, measure mechanical and electrical prop-
erties, and observe the microscopic distribution of CFs by scanning
electron microscope (SEM). Three specimens were prepared for
each carbon fiber content.
2.3. X-ray scanning

The specimens were dried 6 h before the X-ray scanning to
acquire high-quality images. The procedures of X-ray scanning
and the detailed information of the X-ray CT equipment are pre-
sented in Fig. 1. The resolution of the CFRC images depended on
two indexes: spatial resolution and contrast resolution. The small-
est size shown in an X-ray image is determined by the spatial res-
olution, while the capacity for distinguishing the smallest density
between different components in the specimens was determined
by the contrast resolution. In this study, the spatial and contrast
resolution was 23 lp/mm and 0.2% to meet the demand of observ-
ing CF bundles, CF clustered areas, and uniformly dispersed CF
areas. The scanning interval was 0.01 mm. Thus, 16,000 X-ray
images were acquired by scanning a specimen with a 160 mm
height. The massive X-ray images were used to generate a database
for the cascade deep learning.
2.4. Measurement for CFRC properties

(1) Resistivity. A piece of self-made equipment was used to
measure the resistivity of each specimen. Two copper sheets with
Fig. 1. X-ray scanni
38 mm � 38 mm � 0.5 mm size were used as electrodes. To guar-
antee the precision of the resistivity measurement, the two sheets
were bonded to two sides of a specimen using graphite-based
epoxy conductive adhesive. One end of a wire was linked with
the specimen, while another end was connected with a regulated
power supply. The voltage was 30 V during the measurement.
The current values were recorded and used to compute the resis-
tance by Eq. (1).

q ¼ Rs
L

ð1Þ

where q and R are the resistivity and resistance, respectively; s is
the areas of two copper sheets; L is the specimen length.

(2) Bending strength. The bending strengths were measured
using a material testing system. The loading rate was controlled
in 0.05 mm/s. The distance between the loading and each support
was 50 mm, while the distance between a support and a specimen
top was 30 mm.
2.5. Microscopic observation

A microscopic observation using a Hitachi S-4800 SEM was
adopted to analyze fracture surface characteristics in CFRC speci-
mens after the X-ray scanning and the property measurement.
The observation results were assisted to determine the CF bundles,
CF clustered areas, and uniformly dispersed CF areas in different
X-ray images precisely, which improved the precision of the labels
in the FCN database.
ng procedures.
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3. Cascade deep learning

In this section, we first recall the fundamental theories of Con-
vNet in Section 3.1. We then provide descriptions of the FCN for
segmenting different components in X-ray images in Section 3.2.
At last, a cascade connection using an RBF network is proposed
to predict the properties of CFRC in Section 3.3.

3.1. Fundamental theories of convolution neural network

Prior to the development of the FCN and its cascade connection
using an RBF network, the fundamental theories with respect to
ConvNet are recalled in this section briefly. Detailed information
of these structural layers has been shown in the Refs. [16,31].
The structure layers from a traditional ConvNet used to build an
FCN including convolutional layers and pooling layers.

Convolutional layer, as the key layer of a ConvNet, consists of
many kernels to extract features related to the aim, such as seg-
menting objects in X-ray images. A kernel can be regarded as a fea-
ture extractor with learned connection weights to extract a certain
feature from the input data. The processes of the feature extraction
in a kernel can be summarized as Eq. (2). In general, a convolution
layer with numbers of kernels extracts low-, medium-, or high-
features from the input data. The extracted features are used to
classify and segment objects.

zll;m ¼
Xþ1

i¼�1

Xþ1

j¼�1
xl�1
l;m � klroti;j � v i; jð Þ þ bl ð2aÞ

v i; jð Þ ¼ 1;0 6 i; j 6 n

0; other

�
ð2bÞ

xll;m ¼
1

1 þ ez
l�1
l;m

ð2cÞ

where, xll,m and � l � 1
l ,m are the output and input of the element in

the lth row and mth column in the lth convolutional layer by the con-
volution operation of a kernel kli,j. klroti,j is the transposed matrix of a
kernel kli,j. bl is the bias in the lth convolutional layer.

Pooling layer is utilized to decrease the spatial size of its input
to reduce the computational costs and the possibility of the over-
fitting. Compared with traditional humble pooling operations, such
as max-pooling and mean-pooling, which are blamed for the neg-
ative influence on object classification and segmentation [32], a
stochastic pooling is adopted in this study [33]. A stochastic pool-
ing is summarized as Eq. (3).

pi ¼
sll;m;iP
sll;m

ð3aÞ

xl þ 1
l;m;i ¼ sll;m;l where l � P p1; . . . ; pl; . . .pSð Þ ð3bÞ

where sll;m is a subarray of the input array of the (l + 1)th convolu-

tional layer; sll;m is the ith element of the subarray; slþ1
l;m ,i is the out-

put results of the subarray.

3.2. Fully convolution network

A traditional ConvNet can only recognize different objects in an
image but cannot define object areas owing to fully connected lay-
ers following the last convolutional or pooling layer. A fully con-
nected layer is used to extend feature maps generated by the last
convolutional or pooling layers to a vector and map it to a given
space. The mapped vector is the probability scores of different
objects. After the extension, the spatial features in feature maps
are lost and the vector cannot be used to segment different objects.
Therefore, we replace the fully connected layers with deconvolu-
tional layers to realize the segmentation task. The modified Con-
vNet is called FCN as shown in Fig. 2.

The deconvolution can be regarded as a backwards strided con-
volution. The processes of deconvolution are summarized as Eq.
(4),

yiuþ1 ¼
XK
k¼1

ziu;k � f uk;c ð4Þ

where, yiu+1 and ziu were the output and input of the uth deconvolu-
tional layer, respectively. K and c were the numbers of kernels and
feature maps in the uth deconvolutional layer. f stood as a weight
matrix of kernels in the uth deconvolutional layer. � stands as a
deconvolutional operation. Detailed information of the deconvolu-
tion operation can be found in the study of Long et al [34]. Decon-
volution operation in a d � d � K deconvolution kernel with a
fractional input stride of 1/d in height and width and 1/K in depth.
As d and K are a positive integer, a natural way to deconvolution is
backwards convolution with an output stride of d and K.

The FCN used to segment CF bundles, CF clustered areas, and
uniformly dispersed CF areas from X-ray images was realized by
training using a stochastic gradient descent algorithm [35]. The
aim of the training was to minimize the errors between the output
segmentation results and ground truths. The errors were computed
using an average binary cross entropy loss of each pixel in an
image by Eq. (5). To minimize the errors, a database was generated
including 11,200 high-quality X-ray images from 9 specimens with
three carbon fiber contents: 0.4%, 0.8%, and 1.2%, respectively. We
selected 6,720 and 2,240 X-ray images as the training set and val-
idation set. The rest images were used as the testing set. Consider-
ing that the precision of labels in the database influenced the error
minimizing, X-ray images were labeled with the assistance of SEM
images as shown in Fig. 3.

Error ¼ �
Xn
i¼1

y0i log f ðziÞ ð5aÞ
f ðzkÞ ¼ ezk�mPn
i¼1ezi�m

ð5bÞ

The learning rate was 1e-4 in the study to guarantee that the
weights of convolution and deconvolution kernels were not
adjusted sharply. We set max 40 epochs for 100 training samples
to prevent overfitting. The above procedure was performed in a
Python environment on a computer equipped with an Intel(R) Core
(TM) i7-8750H CPU, 32.00 GB RAM, and an NVIDIA GeForce GTX
1080 8 GB GPU.
3.3. Cascade connection using RBF network

The previous studies [9,10] showed that the CF distribution
could be defined based on the segmentation results of all X-ray
images from one specimen using different equations directly.
However, it was difficult to predict CFRC properties (e.g. resistivity
and bending strength) just using empirical equations based on the
CF morphology distribution because different CF distribution in
different slides of specimens made a different contribution to the
CFRC properties, which was difficult to be defined by humans.
Thus, we proposed a radial basis function (RBF) network to predict
CFRC properties based on the outputs of the FCN. The proposed
method for predicting CFRC properties by combining the FCN and
the RBF network could be regarded as a cascade deep learning.



Fig. 2. Structure of fully convolutional network.

Fig. 3. Assistance processes for labelling using SEM images.
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The schematic of the RBF network with (n + 3) inputs and a sca-
lar output is depicted in Fig. 4. The network implemented a map-
ping fr: Rn+3 ? R according to

f r xð Þ ¼ k0 þ
Xnþ3

i¼1

ki/ k x� ci kð Þ ð6aÞ

/ mð Þ ¼ exp � m2

b2

� �
ð6bÞ

where x 2 Rn+3 was the input vector; the first three elements in the
input vector were the mass fraction and the resistivity of CFs, and
the resistivity of the cement in the resistivity prediction, while
the first three elements in the input vector were the mass fraction
and the tensile strength of CFs, and the flexural/compressive
strength of the cement in the prediction for the mechanical prop-
erty; the rest elements were the segmentation results
from the FCN; k � k denotes the Euclidean norm; k0, ki, ci, and bi
(i = 1,. . .,n + 3) were parameters in the RBF network, which were
adjusted by a forward feedback algorithm. These parameters could
be regarded as different contribution of different CF morphology
distribution to the resistivity of CFRC. In the forward feedback algo-
rithm, the targets were the resistivity of the 9 specimens. The aim of
the training using the forward feedback algorithm was to reduce the
gap between the targets and outputs of the RBF network. Detailed
information of the forward feedback algorithm for the RBF network
has been introduced in the study of Sridhar and Khalil [35].
4. Result and discussion

4.1. Identification of X-ray CT images

4.1.1. Overall performance of the FCN
The FCN was trained as introduced in Section 3.2. Fig. 5 presents

the average binary cross entropy loss of the training and validation



Fig. 4. Schematic of the RBF network.
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of the FCN during the training. In Fig. 5, the change tendencies of
the losses in the training and validation showed that the FCN
was in the convergence to a low-loss state. The final losses of the
training and validation were 0.4107 and 0.4314, respectively. It
indicated that the FCN could segment CF bundles, CF clustered
areas, and uniformly dispersed CF areas in the training and valida-
tion data sets precisely. Additionally, the similar final losses in the
training and validation preliminarily stated that the out-of-sample
accuracy and generalization ability of the trained FCN were
reasonable.

To further evaluate the performance of the FCN for segmenting
X-ray images, the trained model was tested by the testing data set.
Table 3 present the precisions, recalls, and intersection over unions
(IoUs) of the FCN in the validation and testing. Precisions, recalls,
and IoUs were calculated by Eqs. (7) to (9).

ð7Þ

ð8Þ
Fig. 5. Average binary cross entropy lo
ð9Þ

where, GT, PR, and IS were ground truth areas, prediction areas, and
intersection areas of a component in an X-ray images. The data in
Table 3 were averaged across all components.

In Table 3, the testing performance of the FCN was closed to the
validation performance. It indicated that the FCN had a great gen-
eralization and out-of-sample ability. We could also find that the
testing performance in different components was similar. It indi-
cated that the FCN could detect CF bundles, CF clustered areas,
and uniformly dispersed CF areas well. Thus, we concluded that
the FCN was well-trained.

4.1.2. A comparison study
The performance of the FCN was compared with another

widely-used method [9] for the X-ray image segmentation. In the
study of Gao et al. [9], an X-ray image was first optimized by noise
filtering, edge sharpening, and contrast adjustment, then seg-
mented by certain grayscale thresholds of different components.
We named it as a grayscale-based method. X-ray images from
specimens with different CF masses (0.4%, 0.8% and 1.2% of cement
contents) were selected to conduct the comparison study.

Fig. 6 presents the results of the comparison study. We found
that the results of the two methods in the specimens with 0.4%
CF contents were similar and closed to the ground truth. However,
compared with the results of the FCN, the result of the grayscale-
based method in the specimens with 0.8% and 1.2% CF content
was not reasonable, such as the areas in the black circle in Fig. 6.
There were two reasons why the FCN had a more stable perfor-
mance than the method of Gao et al: (a) In the FCN, the X-ray
images were optimized by kernels with different weights, which
were learned based on the ground truths. In the grayscale-based
method, they were optimized by filters, whose parameters were
defined by the experience of the operator; (b) In the FCN, the seg-
mentation criterions were many feature extractors, whose param-
eters were given by learning the ground truths. In the grayscale-
based method, the segmentation criterion was just grayscale
thresholds of different components. However, the grayscale
thresholds varied from one specimen to another because the
density ratios of different components were various, especially
ss of the training and validation.



Table 3
Precisions, recalls, and IoUs of FCN in the training and testing (Unit: %).

Object Precision Recall IoU

Validation Testing Validation Testing Validation Testing

CF bundles 88.29 88.21 88.94 89.02 78.06 78.07
CF clustered areas 90.46 90.53 89.61 89.61 79.01 79.03
Dispersed CF areas 88.47 88.51 91.03 90.94 77.70 77.66
Average results 89.07 89.09 89.83 89.91 78.24 78.24

Fig. 6. Results of a comparison study. CF bundles, CF clustered areas, and uniformly
dispersed CF areas were labeled as red, yellow, and green respectively.

Fig. 7. Segmentation results by the FCN. CF bundles, CF clustered areas, and
uniformly dispersed CF areas were labeled as red, yellow, and green respectively.
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the dispersed CF areas in the specimens with different CF contents.
In summary, the FCN-based method provided stable and accurate
segmentation results.
4.2. Carbon fiber morphology distribution evaluation

To analyze the effect of the CF morphology distribution, differ-
ent components in the X-ray images were segmented and labeled
by the well-trained FCN as shown in Figs. 6 and 7. It can be found
that numbers of CF bundles, which were highly CF clustered areas,
increased with the increase of the CF content. The CF clustered
areas turned into continuous distribution from island-like distribu-
tions with the increase of the CF content. However, the CF dis-
persed areas decreased with the increase of the CF content. It
indicated that more string times were necessary to make CFRC
with good CF morphology distribution once the CF content was
higher than 0.8%. We also found that the CF clustered areas dis-
tributed around the CF bundles. It was because that larger CF bun-
dles cannot be dispersed into small pieces after incorporating CFs
into the cement owing to the hydrophobicity of CF. Thus, CF bun-
dles should be smashed before the incorporation to generate CFRC
with good CF morphology distribution.

The CF morphology distribution changed dramatically with the
increment of the CF contents. Thus, the volumes of CF bundles, CF
clustered areas, and uniformly dispersed CF areas changed with
various CF contents correspondingly. It was deemed as a challeng-
ing task to calculate the volumes of different components accu-
rately owing to the drawbacks of the segmentation results in
previous studies [8,9]. To solve the issue better, the segmentation
results provided by the FCN were utilized for the
three-dimensional (3D) reconstruction and volume calculation.
The accuracies of 3D reconstruction and volume calculation
depended on the identification of each component in the X-ray
images [36], which was discussed sufficiently in Section 3.1.

Fig. 8 presents a part of the 3D reconstruction results of speci-
mens with different CF contents based on the segmentation results
of the FCN. The 3D reconstruction results provided visual and ana-
lyzable models where the volumes and changes of each component
were clearly presented.

Table 4 presents the volume fractions of different components
based on the 3D reconstruction results, which was realized by a
self-developed code in the Python environment. In Table 4, we
found that the CF clustered areas appeared once the CF content
exceeded 0.4%. The average volume fraction of CF clustered areas
in the CF12 specimens was 5.70 times higher than that in the
CF4 specimens. It indicated that it was infeasible to improve the
properties of CFRC simply by adding more CFs because more CF
clustered areas were generated with the increase of the CF content,
which had negative effects on the CFRC properties, such as stress
concentration. It was important to adopt reasonable mixing meth-
ods to make sure a good CF morphology distribution in CFRC. Nota-
bly, the sum volumes of the CF bundles in CF12 were 3.712 cm3,
4.019 cm3, 4.147 cm3, respectively, which were 133.19%, 144.99%,
149.60% volumes of the added CFs, respectively. The reason was
that the CF bundles in CF12 had looser internal structures than



0.4% CF content 0.8% CF content 1.2% CF content 

Fig. 8. The 3D reconstruction results for specimens based on the segmentation
results of the FCN.
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the added CF bundles. The looser internal structures in the CF bun-
dles were filled with clustered CFs and air. Thus, the densities of
the CF bundles in the specimens were various. It led the gray
thresholds of different components in X-ray images from the
CF12 specimens were different, which was a reason why the previ-
ous studies [8,9] could not provide accurate segmentation results
just based on gray thresholds. Similar phenomenon could be also
found in the CF clustered areas and dispersed areas.
Table 4
Volume fractions of different components (Unit: %).

Objects CF4 CF8

1# 2# 3# Avg. 1# 2#

CFB 0.11 0.09 0.08 0.09 0.73 0.70
CFCA 8.82 9.14 9.23 9.06 25.16 27.1
UDCFA 91.07 90.77 90.69 90.84 74.11 72.1

Note: CFB, CFCA, and UDCFA denotes CF bundles, CF clustered areas, and uniformly disp

Fig. 9. Predicted and measured properties o
4.3. Prediction for CFRC properties

It has been proven that the different CF morphology distribu-
tion in different slides of specimens had various contributions to
the CFRC properties, e.g. resistivity and mechanical property. How-
ever, the various contributions were not easy to be formulized. To
provide a nondestructive and effective method to predict the CFRC
properties based on the X-ray images, we proposed a cascade deep
learning by combining the FCN and the RBF network. In the predic-
tion, the 1# and 2# specimens with different CF contents were
used to train the cascade deep learning, while the 3# specimens
were utilized to test it. The properties of different raw materials
and segmentation results were imported into the cascade deep
learning as introduced in Section 3.3.

Fig. 9 presents the predicted and measured properties of the
specimens with different CF contents. The average error between
the predicted and measured properties of the specimens was
6.73%. It indicated that the cascade deep learning could predict
the CFRC properties precisely. In Fig. 9, the specimens with the
same CF contents but different morphology distribution had differ-
ent resistivities and bending strengths. It indicated that the CFmor-
phology distribution had an obvious effect on the CFRC properties,
and it was not reasonable to only focus on the CF contents for the
resistivity and mechanical property evaluation. The CF morphology
distribution was an important factor in the performance of CFRC.
For example, Fig. 10 presents ki (i = 4, 5,. . .,n + 3) in the cascade deep
learning for the prediction of the resistivity and bending strength of
2# CFRC specimen with 0.4% CF content. In an RNF, ki (i = 4, 5,. . .,
n + 3) can be used to measure the contribution of each input for
the outputs [37]. In this study, ki (i = 4, 5,. . .,n + 3) measured the
contribution of different CF morphology distribution to a CFRC
CF12

3# Avg. 1# 2# 3# Avg.

0.61 0.68 1.45 1.57 1.62 1.55
8 20.34 24.23 48.71 51.90 54.32 51.64
2 79.05 75.0 49.84 46.53 44.06 46.81

ersed CF areas, respectively.

f specimens with different CF contents.



Fig. 10. ki for the prediction of the resistivity and bending strength.
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property. In Fig. 10, ki (i = 4, 5,. . ., n + 3) varied from one to another,
which indicated the CF morphology distribution in different slides
had different contributions to the properties of CFRCs and ki
(i = 4, 5,. . .,n + 3) could be used to compute the contributions of
the different CF morphology distribution quantificationally.

Based on the application results of the cascade deep learning,
we could conclude that the proposed method could be used to pre-
dict the CFRC properties directly using X-ray scanning images.
Additionally, the method could measure the different contribu-
tions of the CF morphology distribution to the CFRC properties
quantificationally. Notably, the method could be extended to pre-
dict other properties of CFRC (e.g. electrical and thermal proper-
ties) based on X-ray scanning images if these properties were
related to the CF morphology distribution. It provided a bridge
between the CF morphology distribution and the property predic-
tion in a nondestructive and effective mode.

5. Conclusions

In this work, a method using cascade deep learning and X-ray
scanning was proposed to characterize the CF morphology distri-
bution and predict CFRC properties; and the following conclusions
can be drawn:

(1) The proposedmethod provided a stable and precisive charac-
terization of the CF morphology distribution and prediction
of CFRC properties using X-ray scanning images. The FCN-
basedmethod segmented different components in CFRCwith
an 89.09% average precision. The CF morphology distribution
evaluation results based on the segmentation results pro-
vided visual and accurate models to calculate the volumes
and changes of each component. The RBF-based method pre-
dicted the CFRC properties with a 93.27% average precision
and computed the contributions of the different CF morphol-
ogy distribution to CFRC properties quantificationally.

(2) The trained FCN achieved an average precision, recall, and
IoU of 89.09%, 89.91%, and 78.24%, respectively, which were
close to the validation results. It indicated that the FCN could
segment CF bundles, CF clustered areas, and uniformly dis-
persed CF areas well. Additionally, the FCN had a more stable
performance for the segmentation task than the traditional
method.

(3) The CF morphology distribution evaluation was successfully
realized using the FCN segmentation results. The 3D recon-
struction results provided visual and analyzable models
where the volumes and changes of each component were
clearly presented. The volume calculation results show that
CF clustered areas and CF bundles increased sharply with the
increase of CF content, while uniformly dispersed CF areas
show the opposite trend. Additionally, the CF volumes in
the specimens were larger than the volumes of the added
CFs owing to the looser internal structures of CF bundles,
which were filled with clustered CFs and air. It led the gray
thresholds of different components in X-ray images were
various, which was a reason why the previous studies could
not provide precise component segmentation and CF mor-
phology distribution evaluation results.

(4) The RBF-based method provided a way to build a relation-
ship between the CF distribution and CFRC properties and
predicted the CFRC properties directly using X-ray images.
The CF distribution was its real morphology distribution in
the CFRC rather than the mass of CFs in a specimen. The
method could also evaluate the contributions of the different
CF distribution to the CFRC properties quantificationally.
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