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The performance of asphalt pavement is significantly influenced by the morphological characteristics of
its aggregates, especially on its angularity. Evaluation of aggregate angularity is considered to be chal-
lenging because aggregates often have various shapes. Therefore, utilization of digital images in the eval-
uation of angularity has gained significant research interest in recent years. However, conventional
manually processed images for evaluating the angularity of aggregates have the disadvantages of low
efficiency and insufficient accuracy. This paper presents a novel application of convolutional neural net-
works (CNN) using digital images for evaluating aggregate angularity automatically. The research proce-
dure is as follows: (a) develop a self-developed device for the acquisition of aggregate images; (b)
establish an evaluation criterion for the angularity index (AI); (c) design a localization CNN and five AI
CNNs; and (d) conduct a sensitivity analysis of the CNNs. First, a self-developed device is established
based on the view-based approach to extract the 3D information of aggregates. Then, an evaluation cri-
terion that is suitable for 3D images from aggregates is presented. Based on the 3D images and evaluation
criterion, one localization CNN and five AI CNNs are jointly used to evaluate the AI of each aggregate.
Finally, statistical analysis is performed to seek the optimal parameters for AI CNN, especially the kernel
size, and to verify the sensitivity of AI CNN. The analysis includes the sensitivity to kernels size, image
resolution, light, texture and aggregate size. The results indicate that the localization CNN is able to locate
and abstract each aggregate from the images. The best size of the kernels is 6 � 6, and an AI CNN with a
kernel size of 6 � 6 has a 0.0938 relative error for evaluating the AI using 300 PPI images. Moreover, AI
CNN with a kernel size of 6 � 6 shows remarkable robustness under different light conditions, sizes
and textures of aggregates.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The performances of asphalt pavements largely depend on the
morphology of coarse aggregates which mainly include its angular-
ity, texture and shape [1,2]. Aggregate angularity, which reflects
the convexity degrees of aggregate, is responsible for providing
superior rutting resistance in asphalt pavements to improve the
shear strength properties of hot-mix asphalt and unbound aggre-
gate base layers [3,4]. Since the aggregate angularity directly
affects the performance of pavement, such as the dosage of binder,
dynamic modulus, and high temperature stability [5–7], it is mean-
ingful to develop a reliable and precise method to evaluate and
control aggregate angularity timely. However, the standards used
to evaluate aggregate angularity mainly rely on human operation
and their experiences, which have disadvantages of hysteretic
and subjective natures [8–10].
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In recent years, several innovative technologies have been used
to evaluate aggregate angularity, such as laser technique, X-ray and
digital imaging technique (DIT). Comparatively, DIT has the advan-
tage of low cost with high efficiency. Therefore, DIT has been
widely used to evaluate aggregate angularity, such as the Aggre-
gate Image System (AIMS) [11] and the University of Illinois Aggre-
gate Image Analyzer (UIAIA) [12]. In addition, some modified
algorithms have been introduced to DIT to improve its accuracy.
For example, Chen et al. [13] used the Sobel operation to evaluate
aggregate angularity. Meanwhile, comparing the results of 1-pixel
and 2-pixel, a modified Sobel operation was put forward to
improve the robustness of this algorithm. Bian et al. [14] evaluated
the aggregate morphology via a three-dimensional modeling sys-
tem quantitatively. It turned out that this image-based modeling
technique, which used two planar mirrors, was an effective way
to evaluate the morphological properties of coarse aggregates,
and this method could quantitatively analyze some essential
parameters of aggregates such as F&E ratio angularity index.

Although the methods above could evaluate aggregate angular-
ity using digital images, some problems remain: (1) the two-
dimensional images and formulas could not completely reflect
the aggregate angularity; (2) the algorithm robustness can be
affected by the poor light conditions; (3) some human assistance
is required to locate the aggregates in digital images. Therefore,
it is a key research issue to develop three-dimensional images
based the aggregate angularity evaluation system, which possess
enough robustness towards different light conditions, sizes and
textures of aggregates.

With the development of computational ability, graphics
devices and mobile-networks, convolutional neural network
(CNN) has the capability of handling 3D images effectively. For
example, Leng et al. [15] utilized deep hierarchy architecture to
recognize 3D subjects, and Ji et al. [16] developed a novel 3D
CNN model for action recognition. This model extracted features
from both the spatial and temporal dimensions by performing 3D
convolutions, thereby capturing the motion information encoded
in multiple adjacent frames. In addition, CNN has also been used
in the fields of audio classification [17], image restoration [18],
denoising [19], and segmentation tasks [20], in which all yielded
competitive performance. From the above-mentioned references,
CNN was invoked as a class of machines that could learn a hierar-
chy of features by building high-level features from low-level ones.
With the Euclidean Loss Layer for CNN advancing in Caffe, the
regression calculation was realized so that subjects’ features could
be quantified. In addition, CNN showed strong performance in its
filtering capacity to background noise, which could be applied to
eliminate the influence of shadows. However, there has been little
research performed on aggregate angularity.

Therefore, attempts are made to employ the 3D-CNNmethod to
provide an appropriate model for evaluating aggregate angularity
automatically with time based on digital images. First, a self-
developed device for acquiring aggregate images is developed
based on the view-based approach. Then, an evaluation criterion
of AI characterization is put forward considering the 3D features
of aggregates. Based on the evaluation criterion, one localization
CNN and five AI CNNs are realized. Finally, sensitivity analysis is
performed to confirm the best parameters of AI CNNs.
2. Research approaches

Fig. 1 shows the main research procedure in this paper. To pre-
pare the training and testing samples, a self-developed device was
developed based on the view-based approach. Meanwhile, an eval-
uation criterion of AI characterization was put forward to obtain
the target samples. One localization CNN and five AI CNNs with
different sized kernels, i.e., 2 � 2, 4 � 4, 6 � 6, 8 � 8, 10 � 10, were
realized based on these samples. Due to the numerous factors
influencing the results of AI CNNs, a statistical analysis was pre-
sented for seeking the optimal AI CNN parameters and verifying
the sensitivity of AI CNN. The analysis included sensitivity to sizes
of kernels, image resolution, light, texture and size of aggregates.
At last, the best parameters and robustness of AI CNNs were
discussed based the results of the statistical analysis.

2.1. 3D feature detection for aggregate

The first step of developing a 3D aggregate angularity evolution
model was to extract information to reflect the angularity features
in specific methods. Generally speaking, methods for 3D object fea-
ture extraction are divided into model-based and view-based
approaches. Model-based methods detect the features directly
from the original 3D object with the topological and geometric
information [21,22]. View-based methods [23,24] first capture
some 2D views from the original object with some fixed view-
points and then consider these view images as the information of
the object. As shown by references [25–27], some mature methods
could be utilized in image processing to process these view images
and extract discriminative characteristics from them in view-based
methods. For instance, in reference [25], the global shape similarity
between two 3D models was achieved by applying a novel match-
ing scheme, which effectively combined the information extracted
from the multi-view representation. Moreover, Gao [26] con-
structed multiple hypergraphs for a set of 3D objects based on their
2D views. In addition, Leng et al. [27] used view-based methods to
recognize 3D subjects by 3D CNN. Analogously, to utilize CNN to
evaluate AI, the view-based method was employed in this research
due to their flexibility and good performance.

Based on the view-based approach, a self-developed device for
acquiring aggregate images was developed. The device mainly
included three digital image cameras with fixed viewpoints and
two light-emitting diodes (LED). The details of the device are
shown in Fig. 2. As shown in Fig. 2, aggregates were put in the
plane, which had two LEDs on its two sides. LEDs were adopted
to simulate the actual working conditions with different light
intensities based on illumination, whose range was 0.1–1000 lx.
Remarkably, the range of 0.1–1000 lx was divided into ranges of
400–1000 lx, 100–400 lx and 0.1–100 lx and named as bright, med-
ium and dark conditions, respectively. The three different lighting
conditions were used in the sensitivity analysis to light in the
follow-up work. Three digital image cameras were installed on
the plane. The three digital image cameras were in fixed view-
points to guarantee that the images acquired had the same viewing
angle. As shown in Fig. 2, the lens of the digital image camera in the
middle was kept perpendicular to the plane, while the lenses of the
digital image cameras on the two sides were kept at a fixed angle
(30�) with the viewing angle of the digital image camera in the
middle. These three cameras were connected with a computer,
which controlled the parameters of the cameras, such as image res-
olution. Images with different viewpoints were acquired using the
device and were used as the training and testing samples for CNNs.
The image acquisition process was as follows.

Step1: put 20 aggregates in the plane of the self-developed
device;
Step2: select the light intensity to be in the range of 0.1–100 lx
by changing the light of two LEDs and select a resolution of 300
pixels per inch (PPI) by setting the parameters of the computer;
Step3: acquire aggregate images with different viewpoints
using three digital image cameras;
Step4: select the resolutions of 180 PPI, 72 PPI, 54 PPI, and
36 PPI and repeat Step 3.



Fig. 1. Flow chart of CNN system.

Fig. 2. Device for image capturing.
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Step5: select the light intensity to be in the ranges of 100–400 lx
and 400–1000 lx and repeat Step 3 and Step4;
Step6: put another 20 aggregates in the plane of the self-
developed device and repeat Steps 1–5.

One group of images includes three different viewpoints, as
shown in Fig. 2. Obviously, the aggregate angularities on different
sides were reflected clearly.

2.2. AI characterization

To utilize 3D images to define or quantify the aggregate angu-
larity, an evaluation criterion of 3D angularity index (AI) character-
ization was put forward based on the research of Rao et al. [28]. In
the research of Rao et al., the angularity was evaluated in three
directions (top, side and front view) based on the images. Then,
the AI was calculated by averaging the results of all three views.
However, the aggregates were kept out of each other in the side
viewpoints. Thus, the self-developed device was more reasonable
for detecting several aggregates at the same time. The results of
AI calculated by our evaluation criterion were used as the target
samples in the training and truth data to validate and test our
developed CNNs in the test. The steps to calculate the AI value of
an aggregate were as follows.

Step 1: Draw an n-sided polygon (Fig. 3a) as the particle outline
in a viewpoint; this was done by dividing the perimeter of the
particle into n equal segments;
Step 2: Compute the angle at each vertex of the polygon. These
angles were identified as, a1, a2, a3,. . ., an at vertices 1, 2, 3,. . .,
n, respectively (Fig. 3a);
Step 3: Estimated the relative change in the slope of the n sides
of the polygon by computing the change in angle at each vertex
with respect to the angle in the preceding vertex. The changes
in angles b1, b2,. . ., bn are computed, where b1 = (a1�a2), b2 =
(a2 �a3),. . ., bn = (an �a1);
Step 4: Establish the frequency distribution of the changes in
the vertex angles, b1, b2,. . ., bn, which was d in 10� class intervals



Fig. 3. Angularity determination for a two-dimensional aggregate image.
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as shown in Fig. 3b. The distribution of the b values, i.e., the
number of occurrences in a certain interval and the magnitude,
was now related to the angularity of the particle profile.
Step 5: Calculate the angularity by formula (1).
Step 6: Calculate the angularities in the other two viewpoints
by formula (1) by repeating Steps 1–5.
Step 7: Calculate the AI by our modified means for three view-
points via formula (2). Notably, the AI was distorted in the
images of two side viewpoints. To overcome these distortions,
a correction factor 1.05 was proposed to perfect Rao’s formula
based on the value of h.

From the procedure described above, with the increment of AI,
the aggregate had a large angularity. The unit of AI is �.

Then, a correlation between images and formulas should be put
forward to evaluate the AI by the images directly. From the
research of Rao et al. [28], the algorithms took a long time to eval-
uate the AI in actual working conditions for approximating the par-
ticle outline by an n-sided polygon by hand. In addition, in
references [13,14], AI was computed by their algorithms directly.
Thus, the results of AI were influenced by the shade of aggregates
in different light conditions and the size and texture of aggregates.
Clearly, it is too difficult to consider all factors to remove the neg-
ative influence of light, sizes and textures by unsupervised algo-
rithms. Thus, as a supervised algorithm, deep learning, to be
more precise, CNN, was adopted to overcome the problems men-
tioned above.

AngularityðiÞ ¼
X170
e¼0

e� PðeÞ ð1Þ

AI¼AngularityðtopÞ

þ1:05�½Angularityðside1Þ�Areaðside1ÞþAngularityðside2Þ�Areaðside2Þ�
Areaðside1ÞþAreaðside2Þ

ð2Þ
Fig. 4. Flow chart o
where
e — the starting angle for each 10-degree class interval,
PðeÞ— the frequency of change in angle which has a value in the
range of e to (e+10),
AngularityðiÞ � AngularityðtopÞ;Angularityðside1Þ;
Angularityðside2Þ obtained from three digital image cameras.

2.3. Convolutional neural network

To date, deep learning has attracted great attention and has
been widely used in many fields with excellent performance in
representing 3D object information [15,16]. Deep learning is
designed to simulate the human neural nervous system, which
has been considered as a promising model to extract and represent
the 3D features of objects.

Convolutional neural networks (CNN) as a widely used deep
learning has two special connections: convolution and pooling.
For convolution, it needs to slide a sub-window called convolution
kernel in a 2D image from the left-upper corner to the right-down
corner to conduct the image convolution. As a result, the image can
be divided into a number of overlapping sub-windows for extract-
ing features from images. A CNN has several kernels, which can
extract different features from images. The parameters are shared
by the sub-windows in each kernel, but are different internally.
The activating function of convolution used in this paper is shown
in formulas (3) and (4). For pooling, there are usually two types of
operations: max pooling and averaging pooling. For images, if the
maximal value is obtained as the result, it is max pooling, and if
the block is averaged, it is averaging pooling. In this research,
max pooling was used in each CNN.

Ikij ¼ f
XN
r;c¼0

Ik�1
ij Wk

r;c þ bk

 !
ð3Þ

f ðxÞ ¼ maxð0; xÞ ð4Þ

where

Wk
r;c — the weight parameters between two convolution layers,

Nw — size of kernels,
b — the offset bias.

Due to the progressiveness of convolution and pooling, CNN has
high robustness to overcome the objects’ transformation of trans-
lation, tilting and displacement [15,16], which was perfectly suit-
able to solve the problem of change in the aggregates’ shapes. To
handle complex shapes and sizes in images, one localization CNN
and five AI CNNs with different sized kernels were designed to
complete the processes of evaluating the aggregates’ AI in batches
using images. First, a localization CNN was realized to locate and
abstract each aggregate from images. Then, the image of each sin-
gle aggregate was imported to five AI CNNs with different sized
f CNN system.
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kernels to evaluate the aggregates’ AI. The processes are shown in
Fig. 4. Meanwhile, the main processes of developing a CNN are sim-
ilar to that shown in Fig. 5.

2.3.1. Localization convolutional neural network
In the past decade, CNN has been widely used in the field of

localization object, such as traffic sign, human face and pedestrian
[29–31]. Remarkably, CNN utilized in the field of localization is a
mature method. Thus, it is a judicious plan to utilize CNN to locate
and abstract each aggregate from the images of all viewpoints.

(a) The structure of CNN. One localization CNN was designed to
realize this aim. The structural details of the localization
CNN are shown in Fig. 6.

(b) The training of CNN. The training sample included 1500
images (500 images for the top side, 500 images for the left
side, 500 images for the right side) and each image included
20 aggregates. Meanwhile, the target sample was the central
coordinates of the bounding boxes, which are represented
by the red boxes shown in Fig. 6. Notably, the size of the
bounding boxes was 128 � 128 pixels. Stochastic gradient
descent using 100 images in iteration was utilized in the
training. To evaluate the results of training, the error of the
central coordinates was calculated by formula (5).
Fig. 6. Structure of lo

Fig. 7. Structure

Fig. 5. Process of developing a CNN.
(c) The testing of CNN. 100 images for each direction (the top,
left and right sides of aggregates) were included in a testing
sample. Meanwhile, the target sample was the central coor-
dinates of the bounding boxes, which were the same as
those of the training sample. To evaluate the results of the
testing, the error of the central coordinates was calculated
by formula (5).

The processes mentioned above were realized based on Caffe
using Intel(R) Core(TM) i7-6700 CPU, 8.00 GB Random Access
Memory (RAM) and NVIDA GeForce GTX 1060 6 GB GPU. After
training and testing for the localization CNN, all 1500 images were
imported to the well-trained CNN to extract single aggregate
images, and the images were used as the training and testing sam-
ples of AI CNNs.

error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q
64

ð5Þ
2.3.2. AI convolutional neural network
CNN was also used to evaluate the AI from the images of all

viewpoints. The steps were as follows:

(a) The structure of CNN. The aim of AI CNN is to build a rela-
tionship between single aggregate images and AI. However,
CNN is used as classifiers without the regression function
generally. To build the relationship, the traditional structure
of CNN was changed by replacing the softmax layer with
EuclideanLoss layer, which was used to calculate the error
as shown in formula (6). Based on the EuclideanLoss layer,
the structural details of AI CNNs are shown in Fig. 7. Five dif-
ferent sizes of kernels, i.e., 2 � 2, 4 � 4, 6 � 6, 8 � 8 and
10 � 10, were selected to design the AI CNNs because the
size of the kernels influences the accuracy of the results.

(b) The training of CNN. 24000 single aggregate images for each
direction (the top, left and right sides of aggregates) were
included in the training sample. To ensure the robustness
of AI CNNs, the aggregate images for the training sample
included different sizes and textures of aggregates in differ-
ent light conditions. The target sample was the AI computed
by formulas (1) and (2), and stochastic gradient descent
using 1200 images in iteration was utilized in the training.
calization CNN.

of AI CNN.
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(c) The testing of CNN. 900 images for 100 single aggregates
were established as the testing sample. The image for single
aggregate was taken by the three viewpoints under three
light conditions (dark, medium and bright).

The processes above were realized based on Caffe with Inter(R)
Core(TM) i7-6700 CPU, 8.00 GB Random Access Memory (RAM)
and NVIDA GeForce GTX 1060 6 GB GPU.

error ¼ 1
2N

XN
n¼1

ky0n � ynk22 ð6Þ
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Fig. 8. Training results of AI CNN.
2.4. Sensitivity analysis

Due to the effect of kernel sizes, image resolution, light condi-
tion and aggregate size and texture on the results of AI CNN, a sta-
tistical analysis for seeking the optimal AI CNN parameters,
especially the sizes of kernel, and verifying the sensitivity of AI
CNN was conducted. The analysis included sensitivity to sizes of
kernels, image resolution, light, texture and size of aggregates. In
all of the sensitivity analyses, two indexes, i.e., the shapes of box
plots and relative errors, were utilized to analyze the sensitivity.
The box plot is a great method to describe differences between dif-
ferent groups of data by comparing the shapes of box plots [13,32].
In this study, the shapes of box plots were adopted to analyze the
global stability of AI values with one parameter changing. In addi-
tion, relative errors were adopted to evaluate the deviations
between the real values of AI and the results given by AI CNNs.

(a) Sensitivity to sizes of kernels

One factor that needed to be considered after designing the gen-
eral structure was the size of kernels. In this study, five different
sizes of kernels, i.e., 2 � 2, 4 � 4, 6 � 6, 8 � 8 and 10 � 10, were
used to determine the sensitivity to the sizes of kernels. A reason-
able size of kernels was determined by analysis. Then, the reason-
able size of kernels was selected for the rest of the sensitivity
analysis.

(b) Sensitivity to image resolution

After selecting the kernel size, the image resolution should be
determined. Five different PPIs (36 PPI, 54 PPI, 72 PPI, 180 PPI,
300 PPI) were used to evaluate the sensitivity to image resolution.
To obtain these five PPIs, the parameters of the self-developed
device were changed to acquire 36 PPI, 54 PPI, 72 PPI, 180 PPI
and 300 PPI, respectively, to realize the aim of sensitivity analysis
towards image resolution and to ensure the rationality of compar-
ison among the five datasets.

(c) Sensitivity to light

To verify the robustness of AI CNN to different light conditions,
two LEDs were adopted to simulate the light conditions of dark
(0.1–100 lx), medium (100–400 lx) and bright (400–1000 lx) to
capture the aggregate images for the training sample and the test-
ing sample. In the sensitivity analysis to light, the testing sample
was divided by the light conditions. The AI results of the same sin-
gle aggregate in three different conditions were discussed to verify
the robustness of AI CNN towards light.

(d) Sensitivity to size and texture of aggregate

The aggregate types of granite, basalt, marble and limestone
with sizes of 3–5 mm, 5–10 mm and 10–15 mm were selected to
study the robustness of the AI CNN to different sizes and texture
of aggregates. Notably, the number of each type of aggregate was
25 in the testing sample, and the numbers of the sizes of 3–
5 mm, 5–10 mm and 10–15 mm were 40, 30 and 30 separately.
3. Results and discussion

3.1. Performance of localization convolutional neural network

The localization CNN is responsible for aggregate location and
abstraction of aggregate from images. Two indexes were used to
estimate the performance of the localization CNN after each itera-
tion. The first one is the central coordinates errors of bounding
boxes described in 2.3.1, which were utilized to ensure that each
aggregate was encircled by 128 � 128 pixel boxes. Then, the
128 � 128 pixel images were used as the training and testing sam-
ples of AI CNN. However, the numbers of aggregates detected were
not estimated by the central coordinate errors. Thus, a second
index called ‘recall’ was used to offset the disadvantage of the cen-
tral coordinate errors. The definition of recall in the localization
was the ratio between the number of aggregates given by the local-
ization CNN and the real number of aggregates in the image, which
was 20 in this study.

The result of training is shown in Fig. 8. Notably, the outputs
were stable after 300 times of iteration, which indicated that the
CNN located aggregates correctly with 0.99905 pixel of the central
coordinates errors and 100% recall. After training, the testing sam-
ple was imported to the well-trained CNN to further verify the
accuracy. The testing results showed that the location was correct
with only 1.041 pixel of the central coordinates errors and 100%
recall. Therefore, the training and testing CNN are desirable for
the follow-up study. A procedural image from the testing as an out-
put result of the second convolutional layer is shown in Fig. 9.
Obviously, the consequences of convolutional layers were useful
to locate the aggregate and even to evaluate the AI, due to the
information of outlines remaining compared with the original
image.

3.2. Performance of AI convolutional neural network

3.2.1. AI estimation with different sizes of kernels
As mentioned before, the results of AI given by the AI CNNs

were mainly influenced by the sizes of kernels. Therefore, the
results given by CNNs with kernel sizes of 2 � 2, 4 � 4, 6 � 6,
8 � 8 and 10 � 10 separately were discussed to determine the opti-
mal size of kernels. Notably, two convolutional layers in one CNN



Fig. 9. Partial results of a process image.
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had the same sized kernels. In this study, box plots were adopted
to analyze the AI values. The AI results of 100 aggregates with dif-
ferent sized kernels are shown in Fig. 10. As shown in Fig. 10, the
results of 6 � 6, 8 � 8 and 10 � 10 were close to each other in
terms of the shapes of box plots, and the results were obviously
different among 2 � 2, 4 � 4 and others. More accurately, the AI
value ranges within the interquartile ranges (the 1st quartile sub-
tracted from the 3rd quartile, also named as the lengths of boxes in
the box plot) were 391–548, 398–537, 407–520, 438–543 and
435–520 for 2 � 2, 4 � 4, 6 � 6, 8 � 8 and 10 � 10 sized kernels,
respectively. The changes of interquartile ranges exhibited lower
values when the sizes of kernels became larger. Therefore, with
the increment of the sizes of kernels, the outputs of AI CNNs
became more stable (from 2 � 2 sized kernels, to 6 � 6 sized ker-
nels, and up to 10 � 10). Relative error was used to evaluate the
accuracy of different CNNs. The relative errors among 2 � 2,
2*2 4*4
200

300

400

500

600

700

800

480.39

Ker

A
I

486.26

Fig. 10. Box plot for AI CNN
4 � 4, 6 � 6, 8 � 8 and 10 � 10 sized kernels were 0.1477, 0.1228,
0.0938, 0.0874 and 0.0802. The AI values became close to the target
sample as the kernel size became larger. Therefore, with the incre-
ment of the sizes of kernels, the outputs of AI CNNs became more
accurate. The accuracies of 6 � 6, 8 � 8 and 10 � 10 sized kernels
were all acceptable.

The main reason for this was that with the increasing size of
kernels, the values of two neighboring pixels would be closer,
decreasing the error in the pooling operation. In addition, this
could be the reason that a smaller sized kernel would be more sen-
sitive to the surroundings. Additionally, it should be noticed that a
larger sized kernel led to the increment of parameters, which easily
caused overfitting in some values. Thus, the sizes of kernel should
be controlled in a reasonable range.

Meanwhile, the calculation efficiency was also considered,
where the accuracies of 6 � 6, 8 � 8 and 10 � 10 sized kernels were
6*6 8*8 10*10

483.55

nel size

498.36 489.42

with five kernel sizes.
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all acceptable. The computational times for 6 � 6, 8 � 8 and
10 � 10 sized kernels in computing the AI values of the testing
sample were 825 ms, 1343 ms and 1792 ms, respectively, which
means that a larger sized kernel would increase the computation
load dramatically.

Therefore, the AI CNN with 6 � 6 sized kernels was utilized for
the rest of the sensitivity analysis because it exhibited optimal
accuracy and efficiency for evaluating the AI. However, only the
condition of two convolutional layers having the same sized ker-
nels was considered in this study. The condition of kernels that
have different sizes in two convolutional layers should be deter-
mined to further improve the accuracy and efficiency of CNN in a
future work.
3.2.2. AI estimation with different resolutions
After determining the size of kernels, sensitivity analysis of the

image resolution was performed by using the AI CNN with 6 � 6
sized kernels. The AI results of 100 aggregates with different image
solutions of 36 PPI, 54 PPI, 72 PPI, 180 PPI and 300 PPI are shown in
Fig. 11. To obtain the other four PPIs, the parameters of the self-
developed device were changed to acquire 36 PPI, 54 PPI, 72 PPI,
180 PPI and 300 PPI, respectively, to realize the aim of sensitivity
analysis towards image resolution and ensure the rationality of
the comparison among the five datasets.

As shown in Fig. 11, the results of 72 PPI, 180 PPI and 300 PPI
were close from the shapes of box plots, and the results were obvi-
ously different among 36 PPI, 54 PPI and others. More accurately,
the AI value ranges within the interquartile ranges were 392–
552, 402–545, 413–541, 418–539 and 405–515 for 36 PPI, 54 PPI,
72 PPI, 180 PPI and 300 PPI, respectively. The changes of interquar-
tile ranges were lower as well when the image resolution became
larger. Therefore, with the increment of image resolution, the out-
puts of AI CNNs became more stable (from 36 PPI, to 72 PPI, and up
to 300 PPI). Thus, in the range of 72–300 PPI, the AI CNN with 6 � 6
sized kernels had great robustness to image resolution. Relative
error was used to evaluate the accuracy of different resolutions.
The relative errors among images resolutions of 36 PPI, 54 PPI,
72 PPI, 180 PPI and 300 PPI were 0.1570, 0.1248, 0.1006, 0.0945
and 0.0938. Therefore, with the increment of image resolution,
the outputs of AI CNNs became more accurate. Thus, we could con-
clude that there was no significant influence of images resolution
in the range of 72–300 PPI. However, low resolution images in
the range of 36–72 PPI showed bad performance in the evaluation
of AI.

The reason why low resolution images had a negative influence
on the work of AI CNN is that with the decrease of pixel dots in one
inch, less details on angularity remained after the convolutional
36 PPI 54 PPI 7
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Fig. 11. Box plot for AI CNN
operation and even some negative changes happened in the field
of the aggregates’ edges. With the loss of some important feature
information, the regression results in fully connected layers and
EuclideanLoss layer easily deviated from the actual results.

3.2.3. AI estimation with different light conditions
After determining the size of kernels, sensitivity analysis to dif-

ferent light conditions was conducted by using the AI CNN with
6 � 6 sized kernels and 300 PPI image resolution.

The AI results of 100 aggregates with different light conditions,
i.e., bright, medium and dark, are shown in Fig. 12. As shown in
Fig. 12, the results of three different conditions were close from
the shapes of box plots. More accurately, the AI value ranges within
the interquartile ranges were 407–520, 403–530 and 410–535 for
bright, medium and dark conditions, respectively. The changes of
interquartile ranges were lower in the three different conditions.
Therefore, the outputs of AI CNNs were stable under the different
light conditions. One aggregate image in these three conditions
after the convolution operation is shown in Fig. 12. The informa-
tion of particle outlines mainly remained, which was the necessary
detail for fully connection layers to realize the regression calcula-
tion. Other unnecessary information such as textures and shadow
was removed perhaps. Consequently, 6 � 6 sized kernels, whose
parameters were shared by sub-windows in each kernel and were
different with each other internally, showed the capacity to
address different light conditions. In addition, relative error was
also used to evaluate the accuracy of different light conditions.
The relative errors among bright, medium and dark conditions
were 0.0938, 0.0976 and 0.0996, which were also close to each.
Based on Fig. 12 and the relative errors, we could conclude that
there was no significant influence of light in the range of 0.1–
1000 lx on the outputs of AI CNN with 6 � 6 sized kernels. More-
over, the range of 0.1–1000 lx covered the lightest conditions in
the working conditions. However, light was necessary for digital
cameras to image.

3.2.4. AI estimation with different aggregate shapes and textures
As mentioned before, to verify the robustness of AI CNN to dif-

ferent sizes and textures of aggregates, granite, basalt, marble and
limestone were included in the testing sample of aggregate images.
The different types of aggregates had different textures. In addi-
tion, three sizes, i.e., 3–5 mm, 5–10 mm and 10–15 mm, were
included in the testing sample of aggregate images. In the sensitiv-
ity analysis towards sizes and textures, the testing sample was
divided by the type and sizes of aggregates. The AI results of the
same single aggregate in type and sizes were discussed to verify
the robustness of AI CNN. Notably, the number of each type of
2 PPI 180 PPI 300PPI

479.63480.31480.46

with five different PPIs.
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Fig. 12. Box plot for AI CNN with different light conditions.
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aggregate was 25 in the testing sample, and the numbers of sizes of
3–5 mm, 5–10 mm and 10–15 mm were 40, 30 and 30.

The AI results of 100 aggregates with different textures are
shown in Fig. 13. As shown in Fig. 13, the results of different tex-
tures were close from the shapes of box plots. More accurately,
the AI value ranges within the interquartile ranges were 468–
591, 403–510, 401–509 and 360–469 for granite, basalt, marble
and limestone, respectively. The changes of interquartile ranges
were low values. Therefore, the outputs of AI CNNs were stable
for calculating AI values for different textures (granite, basalt, mar-
ble and limestone). Relative error was used to evaluate the accu-
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Fig. 13. Box plot for AI CNN
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Fig. 14. Box plot for AI CN
racy of different textures. The relative errors among granite,
basalt, marble and limestone were 0.0821, 0.1085, 0.0872 and
0.0971. Therefore, the outputs of AI CNNs were accurate for differ-
ent textures (granite, basalt, marble and limestone). Obviously, we
could conclude that there was no significant influence of different
textures. However, compared with the other three types of aggre-
gates, the relative errors of basalt were larger, even though these
relative errors were acceptable. The reason why basalt had a neg-
ative influence on the work of AI CNN was that the colors of basalt
included in the testing samples were partially black, causing some
details to be unrecognized. With the loss of details, fewer details on
Marble Limestone

425.04
458.81

with different textures.

10mm 10-15mm

435.17
468.23

N with different sizes.
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angularity remained after the convolutional operation and even
some negative changes happened in the field of the aggregates’
edges. With the loss of some important feature information, the
regression results in fully connected layers and EuclideanLoss layer
easily deviated from the actual results.

The AI results of 100 aggregates with different sizes are shown
in Fig. 14. As shown in Fig. 14, the results of different sizes were
close from the shapes of box plots. More accurately, the AI value
ranges within the interquartile ranges were 449–554, 405–527
and 360–493 for 3–5 mm, 5–10 mm and 10–15 mm, respectively.
The changes of interquartile ranges were lower values. Therefore,
the outputs of AI CNNs were stable for calculating AI values for dif-
ferent sizes (3–5 mm, 5–10 mm, 10–15 mm). The relative errors
among sizes of 3–5 mm, 5–10 mm and 10–15 mm were 0.0953,
0.0931 and 0.0925. Obviously, we could conclude that there was
no significant influence of the different sizes in the range of 3–
15 mm on the output accuracy of the AI CNN based on Fig. 14
and relative errors. However, compared with the three other sizes,
the relative errors of 3–5 mm were larger, even though these rela-
tive errors were acceptable. The reason why the size of 3–5 mm
had a negative influence on the work of AI CNN was that aggre-
gates with size of 3–5 mm showed less details in each inch. With
the decrease of the pixel dots in one inch, less details on angularity
remained after the convolutional operation in the field of the
aggregates’ edges. With the loss of some important feature infor-
mation, the regression results in fully connected layers and Eucli-
deanLoss layer easily deviated from the actual results.

4. Conclusions

The application of CNN using digital images for evaluating the
aggregate angularity was presented in this study, and the following
conclusions can be drawn:

(1) Based on the view-based approach, a self-developed device
for acquiring aggregate images was developed. Because of
the angle h in the imaging cameras, a self-developed device
was more reasonable for detecting several aggregates at the
same time.

(2) After a comparison among different factors under consider-
ation, 6 � 6 sized kernels were selected as the optimal way
to evaluate AI. This was mainly because the AI CNN with
6 � 6 sized kernels was less sensitive to the border of aggre-
gates and the surroundings. To further utilize the AI CNN,
the PPI of the acquired image should be more than 72.

(3) Sensitivity analysis to image resolution showed that there
was no significant influence of images resolution in the
range of 72–300 PPI. Sensitivity analysis to different light
conditions, sizes and textures of aggregates showed that
there were no significant influences of these on AI CNN with
6 � 6 sized kernels.

(4) The AI CNN with 6 � 6 sized kernels was the most accept-
able due to its relative error of 0.0938 and computational
time of 825 ms for computing the AI values of the testing
sample. Though the relative errors of AI CNN with 8 � 8
and 10 � 10 sized kernels were lower than that of the AI
CNN with 6 � 6 sized kernels, their computational times
were increased dramatically to 1343 ms and 1792 ms,
respectively, which may not be an acceptable efficiency for
AI evaluation.

(5) The relative errors of the AI CNN with 6 � 6 sized kernels
among bright, medium and dark conditions were 0.0938,
0.0976 and 0.0996, and the relative errors among granite,
basalt, marble and limestone were 0.0821, 0.1085, 0.0872
and 0.0971. The relative errors among aggregate sizes of
3–5 mm, 5–10 mm and 10–15 mm were 0.0953, 0.0931,
0.0925. All of these showed that the AI CNN with 6 � 6 sized
kernels had great stability for these light conditions, sizes
and textures of aggregates.

(6) Only the condition of two convolutional layers having the
same sized kernels was considered in this study. The condi-
tion of kernels that have different sizes in two convolutional
layers should be determined to further improve the accuracy
and efficiency of CNN in future work.

Acknowledgements

The authors gratefully appreciate the supports from the key lab-
oratory of road in Chang’an University and Northeast Forestry
University and the foundations for the project of Heilongjiang Traf-
fic and Transportation Department.

References

[1] M.E. Kutay, H.I. Ozturk, A.R. Abbaa, C. Hu, Comparison of 2D and 3D image
based aggregate morphological indices, Int. J. Pavement Eng. 12 (4) (2011)
421–431.

[2] E. Tutumluer, T. Pan, Aggregate morphology affecting strength and permanent
deformation behavior of unbound aggregate materials, J. Mater. Civil Eng. 20
(9) (2008) 617–627.

[3] R.D. Barksdale, C.O. Pollard, T. Siegel, S. Moeller, Evaluation of the Effects of
Aggregate on Rutting and Fatigue of Asphalt. Research Report. Georgia DOT
Project 8812, GA Tech Project E20-835, Georgia Institute of Technology,
Atlanta, 1992.

[4] T.W. Kennedy, G.A. Huber, E.T. Harrigan, R.J. Cominsky, C.S. Hughes, H. Von
Quintus, J.S. Moulthrop, Superior Performing Asphalt Pavements (Superpave�).
The product of the SHRP Asphalt Research Program. SHRP-A-410, TRB, National
Research Council, Washington, D.C., 1994.

[5] Leonardo T. Souza, Yong-Rak Kim, A.M. ASCE, Flavio V. Souza, Leandro S.
Castro, Experimental testing and finite-element modeling to evaluate the
effects of aggregate angularity on bituminous mixture performance, J. Mater.
Civil Eng. 24 (3) (2012) 249–258.

[6] D. Singh, M. Zaman, S. Commuri, Inclusion of aggregate angularity, texture, and
form in estimating dynamic modulus of asphalt mixes, Road Mater. Pavement
Des. 12 (2) (2012) 327–344.

[7] T.A.N. Yi-qiu, S.O.N.G. Xian-hui, J.I. Lun, C.H.E.N. Guo-ming, W.U. Xiao-ting,
Influence of coarse aggregate performance on high temperature performance
of asphalt mixture, China J. Highway Transport 22 (1) (2009) 29–33.

[8] JTG E42-2005, Test Methods of Aggregate for Highway Engineering.
[9] AASHTO T326-05(2009), Standard Method of Test for Uncompacted Void

Content of Coarse Aggregate (As Influenced by Particle Shape, Surface Texture,
and Grading).

[10] ASTM D3398—2000, American Society for Testing and Materials Standards.
[11] E. Masad, The Development of a Computer Controlled Image Analysis System

for Measuring Aggregate Shape Properties, in NCHRP-IDEA Project 77, National
Research Council, Washington, 2003.

[12] E. Tutumluer, C. Rao, J.A. Stefanski, Video image analysis of aggregates, FHWA-
IL-UI-278, 2000.

[13] Xu. Siyu Chen, Zhanping You Yang, Min Wang, Innovation of aggregate
angularity characterization using gradient approach based upon the
traditional and modified Sobel operation, Constr. Build. Mater. 120 (2016)
442–449.

[14] Bian Xuecheng, Li Gongyu, Li Wei, Jiang Hongguang, Morphology analysis of
coarse aggregate based on 3D imaging method by using two planar mirrors,
China Civil Eng. J. 47 (9) (2014) 135–144.

[15] Yu. Biao Leng, Kai Yu Liu, Xiangyang Zhang, Zhang Xiong, 3D object
understanding with 3D convolutional neural networks, Inf. Sci. (2015) 1–14.

[16] S. Ji, W. Xu, M. Yang, K. Yu, 3D convolutional neural networks for human action
recognition, IEEE Trans. Pattern Anal. Mach. Intell. 35 (1) (2013) 221–231.

[17] H. Lee, P. Pham, Y. Largman, A. Ng, Unsupervised feature learning for audio
classification using convolutional deep belief networks, Proc. Adv. Neural Inf.
Process. Syst. (2009) 1096–1104.

[18] V. Jain, J.F. Murray, F. Roth, S. Turaga, V. Zhigulin, K.L. Briggman, M.N.
Helmstaedter, W. Denk, H.S. Seung, 2007. Supervised learning of image
restoration with convolutional networks, in: Proceedings 11th IEEE Int’l
Conference Computer Vision.

[19] V. Jain, S. Seung, Natural image denoising with convolutional networks, Proc.
Adv. Neural Inf. Process. Syst. 21 (2009) 769–776.

[20] S.C. Turaga, J.F. Murray, V. Jain, F. Roth, M. Helmstaedter, K. Briggman, W.
Denk, H.S. Seung, Convolutional networks can learn to generate affinity graphs
for image segmentation, Neural Comput. 22 (2) (2010) 511–538.

[21] R. Osada, T. Funkhouser, B. Chazelle, D. Dobkin, Shape distributions, ACM
Trans. Graphics 21 (4) (2002) 807–832.

http://refhub.elsevier.com/S0950-0618(17)31732-4/h0005
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0005
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0005
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0010
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0010
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0010
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0015
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0015
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0015
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0015
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0015
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0020
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0020
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0020
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0020
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0020
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0020
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0025
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0025
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0025
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0025
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0030
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0030
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0030
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0035
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0035
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0035
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0055
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0055
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0055
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0055
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0065
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0065
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0065
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0065
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0070
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0070
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0070
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0075
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0075
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0080
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0080
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0085
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0085
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0085
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0095
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0095
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0100
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0100
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0100
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0105
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0105


Z. Tong et al. / Construction and Building Materials 155 (2017) 919–929 929
[22] G. Patane, M. Spagnuolo, B. Falcidieno, A minimal contouring approach to the
computation of the Reeb graph, IEEE Trans. Visualization Comput. Graphics 15
(4) (2009) 583–595.

[23] J.-L. Shih, C.-H. Lee, J.T. Wang, A new 3Dmodel retrieval approach based on the
elevation descriptor, Patt. Recognit. 40 (1) (2007) 283–295.

[24] M. Chaouch, A. Verroust-Blondet, 3D model retrieval based on depth line
descriptor, in: Proceedings of the IEEE International Conference on Multimedia
and Expo, Beijing, China, 2007, pp. 599–602.

[25] P. Daras, A. Axenopoulos, A 3D shape retrieval framework supporting
multimodal queries, Int. J. Comput. Vision 89 (2) (2010) 229–247.

[26] Y. Gao, M. Wang, D.-C. Tao, R.-R. Ji, Q.-H. Dai, 3D object retrieval and
recognition with hypergraph analysis, in: IEEE transactions on image
processing, 2012, 21(9):4290–4303. 21 (9) (2012) 4290– 4303.

[27] B. Leng, Z. Xiong, Modelseek: an effective 3D model retrieval system,
Multimedia Tools. Appl. 51 (3) (2011) 935–962.
[28] Chetana Rao, Erol Tutumluer, In Tai Kim, Quantification of coarse aggregate
angularity based on image analysis, Transp. Res. Record J. Transp. Res. Board
1787 (1) (2002) 117–124.

[29] Yingying Zhu, Chengquan Zhang, Duoyou Zhou, Xinggang Wang, Xiang Bai,
Wenyu Liu, Traffic sign detection and recognition using fully convolutional
network guided proposals, Neurocomputing 214 (2016) 758–766.

[30] Yuan Dong, Wu. Yue, Adaptive cascade deep convolutional neural networks for
face alignment, Comput. Stand. Interfaces 42 (2015) 105–112.

[31] D. Tomè, F. Monti, L. Baroffio, L. Bondi, M. Tagliasacchi, S. Tubaro, Deep
convolutional neural networks for pedestrian detection, Signal Processing:
Image Commun. 47 (2016) 482–489.

[32] Q. Lu, J. Harvey, R. Wu, Investigation of Noise and Durability Performance
Trends for Asphaltic Pavement Surface Types: Four-Year Results, Univ. of
California, Davis, CA, 2011.

http://refhub.elsevier.com/S0950-0618(17)31732-4/h0110
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0110
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0110
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0115
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0115
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0125
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0125
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0135
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0135
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0140
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0140
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0140
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0145
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0145
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0145
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0150
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0150
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0155
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0155
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0155
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0160
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0160
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0160
http://refhub.elsevier.com/S0950-0618(17)31732-4/h0160

	Innovation for evaluating aggregate angularity based upon 3D convolutional neural network
	1 Introduction
	2 Research approaches
	2.1 3D feature detection for aggregate
	2.2 AI characterization
	2.3 Convolutional neural network
	2.3.1 Localization convolutional neural network
	2.3.2 AI convolutional neural network

	2.4 Sensitivity analysis

	3 Results and discussion
	3.1 Performance of localization convolutional neural network
	3.2 Performance of AI convolutional neural network
	3.2.1 AI estimation with different sizes of kernels
	3.2.2 AI estimation with different resolutions
	3.2.3 AI estimation with different light conditions
	3.2.4 AI estimation with different aggregate shapes and textures


	4 Conclusions
	Acknowledgements
	References


