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HIGHLIGHTS

« Project presents an application of convolutional neural networks (CNN) in evaluating graphite powder dispersion.

« Different Faster R-CNNs are established by the processes of structure design, training and testing.

« The optimal well-trained Faster R-CNN is able to locate graphite powder bunch with acceptable precision and high efficiency.
« The method based on the Faster R-CNN had the capacity of quasi real-time autonomous dispersion evaluation in GPU mode.
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Artic{e history: The ice-snow melting performance of ice-snow pavement is significantly influenced by the dispersion of
Received 14 January 2018 graphite powder, particularly through the distribution of graphite powder bunches. In recent years, opti-
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cal microscope (OP) images have been utilized to detect graphite powder bunches and evaluate their dis-
persion. However, because graphite powder bunches and other objects in OP images often have various
shapes, and conventional manually processed images of tasks have the disadvantage of low efficiency, it
is a challenge to detect graphite powder bunches and evaluate their dispersion using OP images.
Therefore, this paper presents a novel application of a Faster Region Convolutional Neural Network
(Faster R-CNN) using OP images and video sequences for the autonomous detection of graphite powder

Keywords:
Graphite powder bunch
Dispersion of graphite powder

The Faster R-CNN bunches and an evaluation of their dispersion. The research procedure is as follows: (a) generate a data-
Optical microscope (OP) base for the Faster R-CNN, (b) design 30 Faster R-CNNs to find the optimal one, and (c) conduct an anal-
Region proposal networks ysis of the training and testing results, along with new image testing, comparative studies, and video

testing. The results show that a Faster R-CNN with nine anchors and a ratio of 0.3, 1.0, and 1.6, and with
the sizes of 32, 128, and 192, has an average precision of the bunches and a dispersion uniformity of 91.2%
and 84.0%, respectively. Its mean average precision is 87.5%. The Faster R-CNN is considered optimal in
this research. The test time required to evaluate an image with a pixel resolution of 1024 x 1024 pixel
in GPU mode is approximately 0.04 s, which means the method based on a Faster R-CNN has the capacity
of a quasi-real-time autonomous dispersion evaluation in GPU mode to replace a human-assisted micro-
scopic dispersion evaluation in OP images. The results also provide the possibility for a quasi-real-time
evaluation using OP video sequences. Compared with a Fast R-CNN, a Faster R-CNN provides more rea-
sonable bounding boxes for bunches and reliable results in terms of the dispersion uniformity.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction functional pavement is a significant requirement. As a modifier
of ice-snow melting pavements, graphite powder has been widely
A functional pavement has become an important part of pave- used in thermally and electrically conductive asphalt concrete

ment construction in China, including ice-snow melting [1,2]. Graphite powder has high thermal and electrical conductiv-
pavements. The development of pavement materials that fit a ity, obvious anisotropy, and porosity. Additionally, compared with
other materials, such as carbon fiber, steel slag and copper slag [3],

the large specific surface area and lubricating property of graphite
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improves the ice-snow melting pavement properties, such as the
temperature performance, fracture toughness, and electrical con-
ductivity, as well as the optical absorption property and light-
thermal conversion efficiency [6-8]. These improved properties
have positive effects on the functional performance of thermally
and electrically conductive asphalt concrete pavement. Clearly,
the dispersion of graphite powder is an important factor for prop-
erties of ice-snow melting pavement. Therefore, it is important to
develop methods to evaluate the dispersion of graphite powder
in asphalt.

There are many methods used to evaluate the dispersion of
modifiers, such as a digital image method, mathematical morphol-
ogy measurement, and alternating current impedance spec-
troscopy (AC-IS). Kang et al. [9] quantitatively evaluated the
dispersion of modified particles by extracting the characteristic
parameters of the dispersed phase in microscopic images. Fang
et al. [10] segmented a scanning electron microscope (SEM) pho-
tograph of rubber filled with carbon black (CB), and evaluated
the dispersion of CB particles by acquiring the geometric character-
istics of the particles based on the principle and method of math-
ematical morphology. Woo et al. [11] evaluated the dispersion of
fiber based on the intrinsic electrical conductivity of the cement
composites using AC-IS. Wang et al. [12] evaluated the cracking
resistance of cement mortar and the dispersion of its modifiers
using SEM. Compared with other evaluation methods, the micro-
scopic digital image method has certain advantages: (1) visualiza-
tion of the material morphostructure, and (2) the potential to be
combined with advanced image processing techniques. In recent
years, a dispersion evaluation using a microscopic digital image
method has obtained certain achievements. Xiao et al. [13] contin-
uously observed the dispersion of Styrene-Butadiene-Styrene (SBS)
in asphalt during the mixing process using a fluorescence micro-
scope (FM), and qualitatively analyzed the microscopic dispersion
of SBS modified asphalt. Yao et al. [14] observed the dispersion
state of a nanomaterial modified asphalt using an atomic force
microscope (AFM), and analyzed the modified effects of three types
of nanomaterial on the matrix asphalt. Gao et al. [15] captured
microstructural images of carbon-fiber-reinforced cement-based
composites (CFRC) using SEM, and analyzed the dispersion of car-
bon fiber in the concrete composites. Huang et al. [16] used a
transmission electron microscope (TEM) to analyze the effects of
the carbonization pressure on the microstructure of graphitized
pitch-derived carbons. The results indicate that the dispersion
and orientations of the sample prepared at 30 MPa are better than
those of the sample prepared at 60 MPa. Shen et al. [17] measured
the microstructure and dispersion of asphalt at different diffusion
positions using AFM, and analyzed the diffusion mechanism of dif-
ferent types of regenerant. Wang et al. [18] determined the gray
thresholds of different components in OP images, and analyzed
the dispersion of carbon fiber. In summary, microscope methods
play an important role in analyzing the dispersion of modifiers.
Although the above methods can be used to evaluate the disper-
sion through the application of digital microscopic images, certain
problems remain: (1) some human assistance is required to locate
the bunches and evaluate the dispersion in digital microscopic
images, (2) the stability of algorithms used to locate the bunches
and evaluate the dispersion can be affected by the image quality,
and (3) only static images can be analyzed. Therefore, the develop-
ment of a graphite powder dispersion evaluation system based on
static OP images and videos, which possess sufficient stability
toward different real-world conditions, is a key research issue.

With the continuous development of deep learning techniques,
first proposed by Lecun et al. [19,20], convolutional neural net-
works (CNNs) have demonstrated significant advantages in the
field of object recognition [21,22] and property evaluation

[23,24]. In recent years, CNNs have been successfully applied in
civil engineering. For example, Tong et al. [23,25,26] employed
CNNs to calculate the lengths of the pavement surface cracks
and reflection cracks based on digital images and ground pene-
trating radar data, respectively. The results of these studies
demonstrated that CNNs have stability against the influence of
pavement materials and highway structures. Additionally, a
CNN was utilized to recognize different subgrade defects based
on ground penetrating radar images [27]. Cha et al. [28,29]
detected pavement damage and visual structure defects using
deep learning, and the results demonstrated that CNNs can be
used to find visual defects in different structures in real-world
situations. Lin et al. [30] detected structural damage using auto-
matic feature extraction through deep learning. Liao et al. [31]
presented a deep-learning method for a reduction in carbon
emissions. Additionally, there have been some studies combining
CNNs with images for damage detection during the past few
years [32-35]. In general, two properties of a CNN, stability and
automation during feature extraction, are considered attractive
in the inspection of bunches and a dispersion evaluation system.
Stability indicates a strong tolerance for translation and distor-
tion when learning deep features from input images. Automation
indicates the learning of deep features with no assistance from
humans. These two properties are important for evaluation prob-
lems in a dispersion analysis when handling complex back-
grounds and feature information in OP images. Therefore, it is
reasonable to employ CNNs to construct the relationship between
OP images and graphite powder dispersion based on the major
factors introduced above.

In this study, we use Faster R-CNNs to locate graphite powder
bunches in OP images and construct a relationship between OP
images and graphite powder dispersion. The novelty of this study
is that Faster R-CNNs can locate graphite powder bunches and
evaluate the dispersion in OP images autonomously. Additionally,
an optimal Faster R-CNN has acceptable stability, which is not
affected by the lighting conditions. Compared with former research
methods for evaluating the dispersion, we realized a method based
on a Faster R-CNN with no human assistance and better algorithm
stability. The rest of this article is organized as follows. In Section 2,
the procedure for generating a database of OP images is explained
followed by the description of the Faster R-CNN and training
implementation in our research. In Section 3, the results of the
training and validation processes, as well as testing, are discussed
and compared with a conventional Fast R-CNN. In Section 4, the
testing of an optimal Faster R-CNN on OP videos is presented to
realize a continuous detection and dispersion evaluation of gra-
phite powder bunches in asphalt.

2. Research approaches
2.1. Generation database for CNNs
2.1.1. Raw materials

(1) Asphalt

The asphalt used in this research was 90# petroleum asphalt for
heavy traffic road pavement (AH-90#). The basic indexes and cor-
responding requirements are shown in Table 1.

(2) Graphite

The graphite powder used in this research was analytically pure

DK graphite powder. The main physicochemical properties are
given in Table 2.
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Table 1

The basic indexes and requirements of AH-90#
Indexes Results Requirement
Penetration, 25 °C, 100 g, 5 s/(10~! mm) 87.2 80-100
Ductility, 5 cm/min, 15 °C/(cm) >125 >100
Softening point (ring and ball method)/(°C) 45.0 >42
Density (15 °C)/(g-cm~3) 1.03 -
Wax content (distillation method)/(%) 1.67 <3.0
Flashing point (COC)/(°C) 278 >245
Solubility (trichloroethylene)/(%) 99.7 >99.5
Residuum properties of = Mass loss/(%) -0.04 <108

film oven after aging Residual penetration 72 >54
ratio, 25 °C, 100 g, 5 s/(%)
Residual ductility, 5cm/ >100 >20

min, 15 °C/(cm)

2.1.2. Sample preparation

The dispersion of graphite powder in asphalt mortar depends
on the preparation technologies and methods. An FM300 high-
speed shear apparatus was used to prepare the asphalt mortar.
Asphalt mortar contains 400 g of asphalt and 73.7 g of graphite
powder, the latter of which accounts for 8% of the asphalt volume.
The dispersion of graphite powder in asphalt mortar was influ-
enced by the shearing temperature, time, and revolving speed
[36-38]. To acquire asphalt mortar with a different dispersion of
graphite powder, an orthogonal test, including the different tem-
peratures, shearing time, and revolving speed, was conducted
[39]. The detailed information of the orthogonal test is given in

Table 3.

2.1.3. OP images

The analytical method based on microscopic morphostructure
was an effective way to research the dispersion of modified asphalt
[40,41]. The quality of microscopic images captured by OP has a

Table 2
Main properties of graphite powder.
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close relationship with the preparation conditions of the samples.
The conditions including the bottom temperature of the micro-
scope slides, the temperature of the hot asphalt drops, the sizes
of the droplets, and the pressure of the cover glasses influenced
the preparation of the samples and sequentially influenced the
image quality. To prepare proper samples and capture high-
resolution microscopic images, the naturally flowing film method
[42] was used to prepare the observed samples.

Step 1. A microscope slide suspended above the electric furnace
was heated.

Step 2. Hot asphalt was dipped onto the slide with a fine glass
rod, and a cover glass was placed on the slide until the hot asphalt
naturally flowed and formed a film under the high temperature.

Step 3. The sample was observed using OP after the tempera-
ture of the slide was close to the indoor temperature.

According to the observation method above, the storage time of
the sample observed was 8-12 h, and the main observation range
was as shown in Fig. 1(g), where the red rectangles indicate
approximately the observation range of each observed dot in each
sample. A part of a microscopically observed sample is shown in
Fig. 1(a). The OP used in this research was a LW300LFT (LED) fluo-
rescence optical microscope connected with a microscopic digital
camera. The amplification of the objective lens in the microscope
was x10, which eliminated any chromatic aberrations with a
0.35 numerical aperture. The total amplification was x100. Addi-
tionally, a transmission light source was used for the observation.
A live observation image is shown in Fig. 1(b). As shown in Fig. 1(c)
through (f), the components of the graphite modified asphalt mor-
tar could be generally distinguished under the OP. Therefore, the
dispersion of graphite powder in asphalt mortar can be observed
using this method. Microscopically observed images at a pixel res-
olution of 2048 x 2048 are also shown in Fig. 1(c) through (f). In
these images, bunches in the black area are graphite powder, the

Density/(g-cm~3) Mohs Hardness

Particle diameter/(pm)

Carbon content/(%)

2.372 1-2 150 98.9

Ash content/(%) Ferric content/(%) Thermal conductivity/W-(m-°C)™" Electric conductivity/Q-cm

0.2 0.03 68-72 3.0 x 10°
Table 3
Orthogonal test schedule.

Serial number Temperature/(°C) Time/(min) Revolving speed/(r-min~") High-speed shear apparatus of modified asphalt

1 135 20 2000

2 135 25 2500

3 135 30 3000

4 135 35 3500

5 140 20 2500

6 140 25 2000

7 140 30 3500

8 140 35 3000

9 145 20 3000

10 145 25 3500

11 145 30 2000

12 145 35 2500

13 150 20 3500

14 150 25 3000

15 150 30 2500

16 150 35 2000
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Fig. 1. Microscopic observation of samples and images (x100).

dispersed black dots are uniformly dispersed graphite powder in
asphalt, the white bright spots are transmitted light spots, and
the yellow parts are asphalt.

2.2. Convolutional neural network

To locate graphite powder bunches in OP images and evaluate
graphite powder dispersion in asphalt, the Faster R-CNN method
was used for the real-time processing of images and videos. The
original Faster R-CNN was composed of a region proposal network
(RPN) to provide graphite powder bunch proposals in images, and
Fast R-CNN to locate graphite powder bunch proposals provided by
the RPN and to evaluate graphite powder dispersion in OP images.
The details of the Faster R-CNN in our research are explained in
this section, including the fundamental theories of a CNN, the
description of a Fast R-CNN and an RPN, and the realization of
the Faster R-CNN by sharing a CNN between an RPN and a Fast
R-CNN.

2.2.1. Fundamental theories

In this section, the fundamental theories and concepts of the
CNN are presented briefly, mainly including a convolutional layer,
pooling layer, fully connected layer, softmax layer, and regression
layer. Detailed information of these structural layers can be found
in research studies conducted by Tong et al. [24] and Cha et al. [29].

(1) Convolutional layer. The main function of a convolutional

layer in a CNN, which includes a set of kernels with learnable
weights, is to compute object features through a convolution
operation. Kernels have the same depth as the input of their
layer, but a smaller width and height. For the image convo-
lution, each kernel slides in the image from the left-upper
corner to the lower-right corner. As a result, the image can
be divided into several overlapping sub-windows to extract
features from images. A set of kernels can extract different
features from images.

(2) Pooling layer. The main function of a pooling layer (whether

max or mean pooling) is to decrease the spatial size of its
input, which reduces the computational costs and probabil-
ity of overfitting. A max pooling layer slides a window on the
input and outputs the maximum value from its respective
field, whereas a mean pooling layer slides a window on
the input and outputs the average value from its respective
field.

(3) Fully connected layer. As a conventional layer in a neural

network, a fully connected layer connects all neurons in its
previous layer. The main function of the layer is to create a
dot product and add a bias to its inputs in each neuron.

(4) Softmax layer. A softmax layer is the most common classifier

utilized in a CNN, whose main function is to predict the class
of its input. In general, the layer analyzes features from a
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fully connected layer, computes the possibilities of each
individual class, and shows the class with the highest prob-
ability as the classification results.

(5) Regression layer. There are two main functions of a regres-
sion layer in our research. First, a regression layer analyzes
the features from a fully connected layer and computes the
coordinates of graphite powder bunches in OP images. Sec-
ond, a regression layer is used to evaluate graphite powder
dispersion based on the numbers of bunches, and shows
the results calculated by a softmax layer.

2.2.2. Fast R-CNN

A flow chart of a Fast R-CNN is shown in Fig. 2 and Table 4. The
flow chart of the conventional CNN is also shown in Fig. 2. Com-
pared with a conventional CNN, a Fast R-CNN has two specific lay-
ers called the Region of Interest (ROI) layer and ROI pooling layer.
The two specific layers make the Fast R-CNN possible to locate
specific objects, whereas a conventional CNN can only recognize
objects in images but cannot locate them. The function of an ROI
layer was to produce sub-feature proposals from feature maps
from a convolutional neural network. The function of an ROI pool-
ing layer was to take sub-feature proposals and apply a max pool-
ing operation to extract a fixed-size feature vector from each sub-
feature proposal. Fixed-size feature vectors were imported into
fully connected layers, followed by a softmax layer and two regres-
sion layers, which were used to classify different components in OP
images, calculate the locations of the bunches, and evaluate the
graphite powder dispersion.

For each sub-feature proposal, the outputs of the softmax layer
were the probability (P = (Py, Py, P,)) of three classes, namely, gra-
phite powder bunches, light-spots, and the background. The out-
puts of the first regression layer were four parameters
representing the center coordinates (x, y), as well as the height
and width (h, w) of the object. The outputs of the second regression
layer were the evaluation results of dispersion in the OP image
based on the outputs of the softmax layer and the first regression
layer.

The training strategy of the Fast R-CNN was the mini-batch gra-
dient descent. Referring to similar researches by Cha et al. [28] and
Girshick [43], two images per iteration and 128 sub-feature pro-
posals as mini-batches (25% positive and 75% negative) for each
image were randomly selected to train the Fast R-CNN. Eq. (1)
shows the loss function of the mini-batch gradient descent, where
u and v are the label and coordinates of the bounding box of each
truth value, respectively. In addition, v=(x, y, h, w), u is 1 or zero
for a positive or background ROI, and d is the dispersion uniformity
within the range of 1 to zero. Eqgs. (2), (3), and (4) show L, Lreg1,
and Ly.g,, where X; and X; are the predicted value and ground truth
value in different parts of the loss function.

Loss(PuT" v D d)=Laqs(P u) +[u
>1 Y Lea(T{ 0) + Lieg2(D d) M

ie(x y h w)

1

Las =7 Te KXl

@)

| The second regression layer | Dispersion regressors

Softmax classifier | Softmax layer

| The first regression layer

| Bounding-box

o
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| Fully connected layers

T 1

2 5

Regions of Interest from
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feature proposals)

ROI Pooling layer
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(a) Flow chart of the Fast R-CNN

S1 layer

Input layer Cl layer

* SZ%/er
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I Light spot?
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(b) Flow chart of conventional CNN

Fig. 2. Flow chart of Fast R-CNN and conventional CNN.
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Table 4

Detailed specifications of Fast R-CNN.
Layer Operator Input Size Filter size Number Stride
Input - 1024 x 1024 x 3 - - -
L1 C1 1024 x 1024 x 3 20x20x 3 96 2
L2 P1 503 x 503 x 96 7x7 - 2
L3 Cc2 249 x 249 x 96 15 x 15 x 24 192 2
L4 P2 118 x 118 x 192 4 x4 - 2
L5 Cc3 58 x 58 x 192 4 x4x192 384 1
L6 C4 55 x 55 x 384 4 x 4 x 384 384 1
L7 ROI Pooling 384 - - -
L8 FC + ReLU 4096 - - -
L9 Dropout - - - -
L10 FC + ReLU 4096 - - -
L11 Dropout - - - -
L12 FC + ReLU 3 - - -
L13 Softmax + Regressor

Note: C = convolution operation; P = pooling operation; FC = fully connect; ReLU = rectified linear unit.

05(X; —X henX; — X, <1
et = { pe 3 0 s ot x| o

X1 —X3| — 0.5 when|X; — X5| > 1

-l N
Lregz ZWZH)G _X2H§ (4)
i=1

2.2.3. Region proposal network

As mentioned above, and shown in Fig. 2, a proposal method
should be used to produce sub-feature proposals from feature
maps in the ROI layer. In a Fast R-CNN, the 128 sub-feature propos-
als from two images per iteration as mini-batches were selected
randomly, which leads to many meaningless computations and
wastes a significant amount of time for the training and testing.
Therefore, a region proposal network, as the proposal method in
the ROI layer, was used to produce sub-feature proposals from
the feature maps in our research. The architecture of the RPN is
shown in Fig. 3 and Table 5. The inputs of the RPN are OP images
and the outputs are a set of rectangular object proposals, including
the probability of being a bunch or light-spot in each proposal. As
shown in Fig. 3 and Table 5, the work processes of the RPN include
two steps.

Step 1. Use a CNN to extract a feature map for each OP image. In
Fig. 3, the feature maps are outputs of the last layer of the CNN.
Notably, all the convolutional layers of the RPN in our research
are followed by a ReLU as an activation function to increase the
speed of convergence, which refers to work by Nair and Hinton
[44]. ReLU is presented in Eq. (5).

CNN
only with
convolutional
and pooling
layers

A possible sub-feature
proposal with 9 anchors

=0 d=0 =0

x x>0
0 x<0

RelU = { (5)

Step 2. Feed a part of the feature maps to the regression and
softmax layers. A part of a feature map, called the possible sub-
feature proposals, as indicated in the red square in Fig. 3, is pro-
duced by a sliding window. The functions of the regression and
softmax layers are predicting the coordinates of the multiple
bounding boxes and the probability of being an object in each
box, respectively.

As shown in Fig. 3, the key work of the RPN is to produce feature
maps to generate object proposals as sub-feature proposals in the
Fast R-CNN. In the RPN, there are nine rectangular boxes called
anchors with three different widths and heights in the possible
sub-feature proposals. Each anchor was expressed as (x;, y;, w¥,
hﬁ‘), k=1, 2, 3, where x; and y; were the center of the possible
sub-feature proposals, and w¥, h¥ were the width and height of
the anchor. As for the number of anchors, we referred to the work
of Cha et al. [28]. The intersection-over-union (IOU) was used to
compute the overlap between an anchor and a ground truth. The
10U was calculated using Eq. (6). An anchor was labeled as positive
if its IOU is higher than 0.7 [45] and was the highest among the
nine anchors. The other eight anchors were thus not used for the
training process of the RNP. The condition in which each IOU of a
possible sub-feature proposal was lower than 0.3 was regarded
as the background [45]. As for the detailed size and ratio of anchors
used in this research, 15 combinations of seven different ratios
(03,04, 0.7, 1.0, 1.3, 1.6, and 1.9) and two combinations of sizes
from six possible anchor sizes (32, 64, 96, 128, 192, and 256) were

Softmax ‘

> Regressor

Fig. 3. Architecture of the RPN.
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Table 5

Detailed specifications of the RPN.
Layer Operator Input Size Filter size Number Stride
Input - 1024 x 1024 x 3 - - -
L1 C1 1024 x 1024 x 3 20x20x3 96 2
L2 P1 503 x 503 x 96 7x7 - 2
L3 c2 249 x 249 x 96 15 x 15 x 24 192 2
L4 P2 118 x 118 x 192 4 x4 - 2
L5 c3 58 x 58 x 192 4x4x192 384 1
L6 C4 55 x 55 x 384 4 x4 x 384 384 1
L7 Sliding C1 52 x 52 x 384 6 x 6 x 384 256 2
L8 Sliding C2 24 x 24 x 256 24 x 24 x 256 - 1
L10 FC 256 - - -
L11 Softmax + Regressor

Note: C = convolution operation; P = pooling operation; FC = fully connect.

Wi

- ‘;w/ Predicted bounding box
i : . Anchor
hi o
(x')y i) el
v o w’ 5
hl,('l O A
(x:’,a,yi,a)
o (x ”y )) h g
b 4
Ground truth o

Fig. 4. A sketch map of the process used to calculate the loss function.

utilized to find the optimal anchor sizes and ratios because there
were no proper researches to reference. Then, the possible sub-
feature proposal with nine anchors was fed into a fully connected
layer, followed by a softmax layer and a regression layer, to com-

pute the probability of objects from zero to 1, and predict the cen-
ter coordinates, width, and height of a bounding box.

As for the training strategy of an RPN, the end-to-end mini-
batch gradient descent with one image per iteration by randomly
selecting 128 mini-batches was utilized. The loss function of the
end-to-end mini-batch gradient descent is shown in Eq. (7), where
i is a parameter with the relationship with the number of anchors,
pi and p; are the ground true label and predicted probability of
being a bunch, light-spot, or background in each anchor, respec-
tively. The functions of m;; and m;; are to calculate the differences
between the predicted bounding box and the anchor using Eq. (8),
where (x;y:), (XiqYiq), and (x',y’) are the predicted center coordi-
nates of the bounding box by the i anchor, i anchor, and ground
truth with the highest 10U with the i anchor, respectively,
whereas (w;h;), (w;gh;q), and (w,h’) are the width and height of
the predicted bounding box, the i anchor, and the ground truth
with the highest IOU with the i™ anchor, respectively. A sketch
map of the process used to calculate the loss function through
Egs. (7) and (8) is shown in Fig. 4. By the end-to-end mini-batch
gradient descent, the overlap between the predicted bounding
box and the ground truth box was improved.

__ DetectionResult N GroundTruth

Iou = DetectionResult U GroundTruth

(6)

A possible sub-feature
proposal with 9 anchors

Feature
map

Softmax

Sub-feature
proposal

Regressor

CNN

The second regression layer |Dispersion regressors
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Fig. 5. Architecture of the Faster R-CNN.
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2.2.4. Faster R-CNN by sharing CNN between RPN and fast R-CNN

In the Faster R-CNN, we combined the RPN with a Fast R-CNN
by sharing a CNN, as shown in Fig. 5. As can be seen from Fig. 4,
Table 4, and Table 5, the first six layers of both the RPN and Fast
R-CNN have the same specifications, and their weights and other
computations can be shared, which can save time in training and
testing. Four steps were applied to fine tune the parameters of
the RPN and the Fast R-CNN to form the Faster R-CNN.

Dispersion uniformity: 11.00%
CEI: 10.1 mm

Step 1. The RNP was trained with random initial weights. In this
step, the training targets were the object proposals of the Fast R-
CNN, including graphite powder bunches and light-spots.

Step 2. The training weights of the Fast R-CNN were gained from
the trained weights of the RNP in Step 1.

Step 3. The RPN was initialized with the final weights of the pre-
vious step and trained again.

Step 4. The object proposals, which were generated in Step 3,
were used to train the Fast R-CNN with the initial parameters
trained in step 3.

2.3. Database and implementation details

A database including 640 OP images (with a pixel resolution of
2048 x 2048) were collected by the method introduced in Sec-
tion 2.1.3. The images were taken under different conditions
(e.g., different lighting conditions and graphite powder dispersion),
and the images were taken from 64 microscope slides. These
images were cropped to 1024 pixels x 1024 pixels, and 2560
cropped images were acquired to generate the database for the
Faster R-CNN. The labels and bounding box coordinates of the

Dispersion uniformity: 12.91%

CEI: 12.0 mm

Dispersion uniformity: 8.68%

CEI: 8.6 mm

Dispersion uniformity: 4.12%

CEIL: 7.9 mm

Fig. 6. Sample images with bounding boxes and labels (LP is the label for lighting spots).
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objects were manually annotated in a Python environment. Some
labels and bounding boxes during the annotation process are
shown in Fig. 6. The standards for classifying the lighting spots,
graphite powder bunches, and background are shown in [18],
and the standards for a quantitative evaluation of dispersion are
shown in Eq. (9), where Degeciive is the dispersion uniformity of gra-
phite powder, which is a typical index used to evaluate the modi-
fier dispersion in asphalt. In addition, Ay, A, and Ay, are the areas
of graphite powder bunches, lighting spots, and background in an
OP image.

A
Deffective = m (9)

Additionally, the Clark-Evans nearest neighbor method [46] was
also utilized to evaluate the dispersion uniformity. The distance
between the nearest neighbor bunches was used to evaluate the
dispersion uniformity in an OP image, which is called the Clark-
Evans index (CEI). As mentioned above, all bunches were located
using bounding boxes. Thus, the CEI of the bunches was equal to
the minimum distance of the center coordinates of the bounding
boxes in an OP image. According to the definition, with the incre-
ment in the CEI, the modified asphalt showed a good dispersion
uniformity. Notably, the CEI from an OP image was one-hundred
times smaller as the truth value when the total amplification
applied was x100.

Precision (%)
o0
o0

111!

To test the Faster R-CNN precisely, a test dataset was selected
randomly from the 2560 cropped images with a pixel resolution
of 1024 x 1024. The selected testing set contained 768 images,
which were 30% of the total number. The remaining images were
used to generate a training and validation dataset. Considering
the method by He et al. [47] to realize a data augmentation, which
reduces the probability of overfitting and improves the perfor-
mance of a Faster R-CNN, a rotation operation was applied to the
training and validation set, as shown in Fig. 7.

All experiments were conducted in a Python environment on a
computer with a Core i7 6800 K @ 3.4 GHz CPU, 32 GB of DDR4
memory, and al2 GB NVIDIA Titan X GPU. The layers of the CNN
and FC layers were initialized by zero. The RPN and Fast R-CNN
networks were trained with a learning rate of 0.002, momentum
of 1.0, and weight decay of 0.0010 for 60,000 and 30,000 iterations,
respectively.

3. Results and discussion
3.1. Training, validation, and test results

During the training, the four-step strategy mentioned in Sec-
tion 2.2.4 was conducted for 30 cases, which was designed to find
the optimal anchor sizes and ratios, as mentioned in Section 2.2.4,
and its precision was evaluated based on the performance of the
testing set based on the average precisions of two objects, respec-
tively, and mean average precision [28]. The mean average preci-
sion in this research was the mean value of the average
precisions of the bunches, lighting spots, and dispersion uniformi-
ties. The average precisions of the two objects and mean average
precision are shown in Fig. 8. As shown in Fig. 8, the highest aver-
age precision of the bunches is 92.4% in Case 5, whereas the aver-
age precision of the dispersion uniformity and mean average
precision are 81.3% and 86.4%, respectively. However, the average
precision of the dispersion uniformity and mean average precision
are 84.0% and 87.5%, respectively, in Case 16, although its average
precision of bunches is 91.2%, which is lower than that in Case 5. To
create balance among the average precision of the bunches, the
lighting points, the dispersion uniformity, and the mean average
precision, Case 16 was considered as optimal, with ratios of 0.3,
1.0, and 1.6 and sizes of 32, 128, and 192.

3.2. Testing new images

To further test the performance of the Faster R-CNN in Case 16,
16 new OP images with a pixel resolution of 2048 x 2048 with dif-
ferent dispersion uniformities and lighting conditions, as shown in
Table 3, were acquired using the method introduced in
Section 2.1.2. Each image was cropped into four images with a
pixel resolution of 1024 x 1024 and imported into the Faster

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Case

m Mean Average Precision m Average Precision of Bunches m Average Precision of Lighting Spots = Average Precision of Dispersion Coefticient

Fig. 8. Test performance of Faster R-CNNs in different cases.
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Fig. 9. An example of outputs of the Faster R-CNN under proper lighting conditions.

R-CNN in Case 16 to test the precision. The results of the outputs
showed a mean average precision of 88.4% and average precisions
of the bunches, lighting points, and dispersion uniformity of 92.4%,
89.4%, and 83.4%, respectively, which are similar to the test results
described in Section 3.1. Therefore, we concluded that a Faster R-
CNN can ensure a similar precision under real-world conditions.
Two of the sixteen new OP images and their outputs are shown
in Figs. 9 and 10.

Fig. 9 shows an OP image under proper lighting conditions and
its outputs. We found that all the bunches and light spots were
located by the Faster R-CNN, which were reasonable outputs of
the Faster R-CNN. The reason why the Faster R-CNN could locate
bunches and light spots was mainly owing to a set of kernels in
convolutional layers. As mentioned above, the kernels in L1
extracted low-level features of bunches and light spots based on
their different weight matrix, such as a part of the profile curves
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Fig. 10. An example of outputs of the Faster R-CNN under poor lighting conditions.

with a random shape and color information. For example, 96 ker-
nels in L1 can extract 96 random shapes and color information fea-
tures. Kernels in other convolutional layers can assemble high-
level features based on low-level features, such as bunches with
a random shape and specific colors in an RGB (red, green, blue)
color space. A softmax layer and regression layer can classify and
calculate the coordinates based on high-level features. Notably,
there are several incomplete bunches shown in Fig. 10, which

may influence the evolution of dispersion uniformity. The problem
can be solved through a continuous inspection using an OP video.
Therefore, it is necessary to apply the Faster R-CNN in Case 16, not
only in OP images but also in OP videos.

Fig. 10 shows an OP image in poor lighting conditions and its
outputs. In general, the Faster R-CNN could locate bunches under
poor lighting conditions, the reason for which is mainly from dif-
ferent kernels with a different weight matrix extracting different
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(a) Raw image
Dispersion uniformity inground truth:
(Disp y ing
6.08%)

(c) Outputs of the Fast R-CNN

(Predicted dispersion uniformity: 6.86%)

Predicted CEI: 13.0 mm

(b) Outputs of Faster R-CNN

(Predicted dispersion uniformity: 5.49%)

Predicted CEI: 12.4 mm

(d) Results of method proposed in [18]

(Predicted dispersion uniformity: 7.54%)

Predicted CEI: 14.1 mm

Fig. 11. Example of comparative studies.

low-level color information and assembling complete high-level
color information. As shown in Fig. 10(b) through (e), there are
some bunches missing. These bunches concentrate on the dark
areas, which are weak observation areas in an OP. Clearly, this
problem can be solved by continuously moving the observation
area. Therefore, the results in Fig. 10 also show the necessity to
apply the Faster R-CNN in Case 16, not only in OP images but also
in OP videos.

3.3. Comparative study

The proposed Faster R-CNN was compared with the traditional
Fast R-CNN and the method proposed in [ 18] to show the superior-
ities in the location of graphite powder bunches and an evaluation
of graphite powder dispersion in asphalt. Notably, the training set
with data augmentation was also used to train the traditional Fast
R-CNN. The detailed specifications of the Fast R-CNN are given in
Table 4. A new OP image with a pixel resolution of 2048 x 2048
was taken using the method introduced in Section 2.1.2. The
image, which included graphite powder bunches and lighting

spots, was cropped into four images with a pixel resolution of
1024 x 1024, and imported into the Faster R-CNN in Case 16 and
the Fast R-CNN to test the precision. Additionally, the four cropped
images were analyzed using the method proposed in [18].

The training time in GPU mode of the Faster R-CNN in Case 16
and the Fast R-CNN were approximately 6 and 40 h, respectively.
The testing time required to evaluate an image with a pixel resolu-
tion of 1024 x 1024 in GPU mode was approximately 0.04 and
0.18 s for the two network types, respectively. Two records of the
computation times showed that the Faster R-CNN was superior
in terms of time, and provided a sufficient speed for quasi real-
time detection. The average 0.04 s required to evaluate an image
with a pixel resolution of 1024 x 1024 in GPU mode was accept-
able for dealing with OP video, whereas 0.18 s was not reasonable.

The outputs of the Faster R-CNN and Fast R-CNN, and the results
of the method proposed in [18], are shown in Fig. 11. As can be
seen in Fig. 11, the Fast R-CNN also shows good results with high
accuracy, as claimed in previous works in the field of deep learning
[22,28]. Although the Faster R-CNN showed similar results, it
provided more reasonable bounding boxes for the bunches and a
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Fig. 12. Sample of six sequential frames from the provided OP video.

closer result of the dispersion uniformity and CEI. For example, the
bounding box indicates precisely a large bunch in the bottom of
the image in Fig. 11(b), whereas the bounding box for locating
the same bunch in Fig. 11(c) includes some irrelevant information.
Additionally, as shown in Fig. 11, the predicted CEI of the Faster
R-CNN is 12.4 mm, which is closer to the true value compared with
other two methods. This is because the sub-feature proposals pro-

vided by the RPN in the Faster R-CNN were more effective than the
randomly selected sub-feature proposals in the Fast R-CNN. Addi-
tionally, nine anchors with different sizes and ratios in the Faster
R-CNN had a better capacity to locate the bunches than the fixed
sliding windows used in the Fast R-CNN.

As for the comparison between the Faster R-CNN and the
method proposed in [18], the Faster R-CNN located each bunch
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accurately, whereas the results of localization using the method
proposed in [ 18] were unacceptable with some important informa-
tion missing, particularly under poor lighting conditions.

4. Testing of videos

As shown in Fig. 1(g), the location and measurement was only
based on a local examination, which could not reflect the entire
dispersion uniformity of asphalt. To evaluate the entire scale dis-
tribution, a continuous observation and location should be real-
ized. Additionally, a continuous inspection using OP video can
solve the problem of incomplete bunches in OP images. There-
fore, the location and measurement for the entire specimen
should be realized using OP video based on the method using
OP images.

The well-trained Faster R-CNN realized the evaluation of an
image with a pixel resolution of 1024 x 1024 in GPU mode in
approximately 0.04 s, which provided the possibility for a quasi-
real-time evaluation using OP video. The testing speed indicated
that the Faster R-CNN could evaluate OP videos with a pixel reso-
lution of 2048 x 2048 at a frame rate of 6-8 fps, which was suffi-
cient to evaluate graphite powder dispersion, even though it was
insufficient for inspection objects in television and movie videos.

An OP video with a pixel resolution of 2048 x 2048 with a
frame rate of 6 fps was used to test the well-trained Faster R-
CNN. Fig. 12 shows a sample of six sequential frames from the pro-
vided OP video for an evaluation of graphite powder dispersion. As
shown in Fig. 12, the method based the Faster R-CNN has the
capacity of achieving a quasi-real-time autonomous dispersion
evaluation in GPU mode, which can replace a human-assisted
microcosmic dispersion evaluation based on static images with a
computer-visual evaluation using OP videos.

5. Conclusions

The application of a Faster R-CNN by sharing a CNN between an
RPN and a Fast R-CNN to locate graphite powder bunches and eval-
uate its dispersion using OP images and videos was presented in
this paper, and the following conclusions can be drawn:

(1) The Faster R-CNN was used in Case 16, in which nine
anchors had ratios of 0.3, 1.0, and 1.6 and sizes of 32, 128,
and 192, achieving an average precision in locating the
bunches of 91.2% and a dispersion uniformity of 84.0%. Its
mean average precision was 87.5%. The Faster R-CNN used
in Case 16 was considered the optimal one in this research.

(2) The training time in GPU mode of the Faster R-CNN in Case
16 was approximately 6 h, and the testing time used to eval-
uate an image with a pixel resolution of 1024 x 1024 in GPU
mode was approximately 0.04 s. The results provided the
possibility for a quasi-real-time evaluation using OP videos.

(3) Compared with the conventional Fast R-CNN, the Faster R-
CNN provided more reasonable bounding boxes for bunches
and a closer result of the dispersion uniformity. This was
because the sub-feature proposals provided by the RPN in
the Faster R-CNN were more effective than the randomly
selected sub-feature proposals of the Fast R-CNN. In addi-
tion, nine anchors with different sizes and ratios in the Fas-
ter R-CNN had a better capacity to locate the bunches than
fixed sliding windows in the Fast R-CNN.

(4) The method based on the Faster R-CNN had the capacity of a
quasi-real-time autonomous dispersion evaluation in GPU
mode. It can replace a human-assisted microcosmic disper-
sion evaluation based on static images using a computer-
visual evaluation of OP videos.
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