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Many image processing techniques (IPTs) were proposed to inspect pavement defects for
improving the precision and efficiency of the on-site inspections by humans. However, the var-
ious pavement conditions led to the unacceptable stability of IPTs. Therefore, an application of
convolutional neural networks (CNNs) is presented for pothole detection using digital images
in this study. Two CNNs, called conventional CNN and pre-pooling CNN, were designed,
trained, and tested using 96,000 pavement images. Additionally, a stability study and compar-
ative study were conducted based on the testing results. The main difference between the two
CNNs was that a pre-pooling layer was used in the pre-pooling CNN to pre-process pavement
images before the first convolutional layer. The results demonstrated that the optimised pre-
pooling CNN had the 98.95% recognition precision in the testing. The stability study indicated
that the optimised CNN model had the robustness in various real-world situations (e.g. light
conditions and pavement materials). Compared with the traditional IPT methods, the CNN
had a higher precision for extracting pothole features autonomously.

Keywords: pothole; convolutional neural network (CNN); feature extraction; structure
optimisation; object recognition

1. Introduction

Pavement condition assessment is essential when developing road network maintenance pro-
grammes. Some studies (Chan, Huang, Yan, & Richards, 2010; Jiang et al., 2017; Vijay & Arya,
2006) showed that pavement defects had negative effects on pavement conditions, even increas-
ing the risk of traffic accidents. As a typical pavement defect, potholes always lead to surface
uneven and affect the driving comfort and safety (Kwon, Kim, Rhee, & Kim, 2018; Yang, Qian,
& Song, 2015). Thus, it is necessary to detect potholes timely. However, pothole detection is very
challenging, mostly because they have various shapes under complex real-world conditions.
Several methods for pavement inspection were presented to complete the task, mainly includ-
ing 3D laser scanning (Chang, Chang, & Liu, 2005), vibration-based approach (De Zoysa,
Keppitiyagama, Seneviratne, & Shihan, 2007; Yu & Yu, 2006), autonomous robots (Tseng,
Kang, Chang, & Lee, 2011), and image processing techniques (IPTs) (Attard, Debono, Valentino,
& Di Castro, 2018; Koch, Georgieva, Kasireddy, Akinci, & Fieguth, 2015). Compared with other
methods, IPTs for pavement inspection were the most widely used one because of its flexibil-
ity. For example, Zakeri et al. (Zakeri, Nejad, & Fahimifar, 2016) employed a quadcopter-based
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digital imaging system and support vector machines to collect pavement surface data and locate
defect areas. Koch et al. (Koch & Brilakis, 2011) presented a method to detect potholes based on
the histogram shape-based threshold of a defect region in pavement images. Zhang et al. (Zhang
et al., 2015) applied a high spatial resolution multispectral digital aerial photography to collect
data from pavement surface distresses. Li et al. (Li, He, Ju, & Du, 2014) proposed a long-distance
crack detection technique based on IPTs. However, there are still certain problems: (1) conven-
tional IPTs need manual assistance, which is time-consuming, labour-intensive, and the results
depend on the experience of the inspectors; (2) the equipment is expensive; and (3) the precision
is not stable under different conditions (e.g. light conditions and pavement materials). Therefore,
there is a need to develop a method to detect potholes automatically with reasonable and stable
precision.

Convolutional neural networks (CNNs), first proposed by Lecun and Bengio (1995), have
been proved with high precision and robustness in object recognition (Barat & Ducottet, 2016;
Leng, Guo, Zhang, & Xiong, 2015; Xu, Zhu, Wong, & Fang, 2016). In recent years, the CNN
began to be utilised in civil engineering, especially in damage detection. For example, Abdeljaber
et al. (Abdeljaber et al., 2018) proposed a CNN-based approach to detect structural damage.
The results showed that the enhanced CNN could evaluate the actual amount of damages with
acceptable precision. Lin et al. (Lin, Nie, & Ma, 2017) used a CNN to automatically extract
features from low-level sensor data and detect damages based on the features. Cha et al. (Cha,
Choi, & Biiyiikoztiirk, 2017; Cha, Choi, Suh, Mahmoudkhani, & Biiyiikoztiirk, 2018) proved
that CNNs had the capacity of detecting pavement defects in real-world situations. Tong et al.
proposed CNN-based methods to evaluate pavement quality, including surface crack lengths
(Tong, Gao, Han, & Wang, 2017), reflection crack sizes (Tong, Gao, & Zhang, 2017), surface
texture conditions (Tong, Gao, Sha, Hu, & Li, 2018). In summary, the advantages of the CNN-
based method for damage detection are its automation and stability. Automation means that it
requires no manual assistance in identifying potholes. Stability means that various conditions
(e.g. different light conditions, different pavement materials, and other complex environments)
have no observable influence on its precision of recognising pavement defects, such as potholes.
Therefore, CNNs can be utilised to recognise and locate potholes using pavement images.

In this study, we used CNN to recognise and locate potholes in asphalt pavements. The main
advantages of our method are that the processes of feature extraction are automatic, and its pre-
cision is acceptable and stable in the various conditions. The main contribution of this study is
that we propose an accurate and robust method for pothole recognition and detection to various
real-world conditions (e.g. different light conditions) to replace the manual pavement inspection
methods autonomously, whose results can be used as the basis of pavement maintenance. The
rest of this paper is organised as follows: the methodology is introduced in section 2, includ-
ing the structure description and parameter optimisation, the generation of the CNN database,
and stability and superiority analysis methods. The results are discussed in section 3, including
parameter optimisation results, a stability study, and a comparative study. Finally, the conclusions
are summarised in section 4.

2. Methodology

The main research procedure is shown in Figure 1, including acquiring raw images, generating
a database, training and testing CNNs and find the optimal ones, and analysing its stability and
superiority. The processes of developing our CNNs are introduced in section 2.1, as shown in
Figure 2. The generation of the database for our CNNss is presented in section 2.2. The methods
to evaluate the stability and superiority of CNNs are shown in section 2.3.
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Figure 1. Flow chart of the methodology.
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Figure 2. Flow chart of developing CNNs.

2.1. Deep learning for pothole detection
2.1.1.  Brief overview of convolutional neural network

All of our CNNs are composed of an input layer, convolutional layers, pooling layers, fully
connected layers, and an output layer. There are several special layers in a CNN model:

(1) Convolutional layer. The function of a convolutional layer is to extract features from the
input data by convolution operations (LeCun & Bengio, 1995). A dot product operation was
performed between the convolutional kernel and the receptive field in the input data, and the
convolutional kernel continued to move at a certain stride to match different receptive fields
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Figure 4. An example of pooling.

(Cha et al., 2017), which was shown in Figure 3 and Equation (1).

_¢(in*®/+bj> (1)

where ©; and b; are the weight vector and bias vector of the convolutional kernel j, respectively.

(2) Pooling layer. The overfitting would occur while there are too many imported data in
the CNN (Leinweber, 2007). Thus, a pooling layer is used to reduce to the resolutions of the
feature maps acquired by convolutional layers, which reduced the imported data in the CNN to
prevent the overfitting. Additionally, by the reduction of the resolutions of the feature maps, the
sensitivity of the output to shifts and distortions will also reduce (LeCun & Bengio, 1995). Max
pooling and mean pooling are widely used in pooling operation, and their operation processes
are shown in Figure 4. A study (Wu & Gu, 2015) showed that max pooling had better precision
in pattern recognition using digital images than mean pooling. Therefore, the max pooling was
used in this research.

(3) Fully connected layer with dropout. The fully connected layer is used to resize the features
extracted by the convolutional and pooling operation to guarantee that features can be mapped
regardless of their sizes, which greatly enhanced the robustness of a CNN.

Dropout was employed in fully connected layers in our CNNs as a trick to prevent overfitting
and data contamination. Its validity has been proved in the study of Srivastava et al. (Srivas-
tava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). In each iteration, neurons in the
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Figure 5. The process of dropout.

fully connected layers were dropout temporarily according to a certain probability as shown in
Figure 5. The precision will not be affected by the insufficient data resulted in the dropout oper-
ation, such as a small part of images with inaccurate labels (Krizhevsky, Sutskever, & Hinton,
2012). The parameter of the dropout rate in our research was 0.5, referred to a previous study
(Srivastava et al., 2014).

(4) Softmax layer. The Softmax layer can map the output of fully connected layers to (0,1) for
a classification task, which is implemented by Equation (2),

p(y(i) = 1x9; ) M2
P (O 2|x(i); W) 1 eWsz(:)
v - @

PO = nfx; ) = :
WTx®

; ; e 3

POO =nxm| X s

where P(y? = n|x®; W) is the possibility of the i" image being the n™ disease, and the sum
of all possibilities is guaranteed to be 1. n = 2 in this research. W is a weight matrix. The loss
function of Softmax is Equation (3),

[ IR . M R
L=—13 ) Wi=j}log +32. W 3)
i=1 j=1 ZeWiTxf j=1
=1

where 1{y;=j} is a logical expression that returns either 0 or 1, x is the matrix associated

n
with the pavement image, ¥ is a parameter matrix obtained by training, and ’21 > W]2 is used to
j=1
prevent overfitting (Bengio, 2012).
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2.1.2. Different CNN structures

For a conventional CNN, as shown in Figure 6 (Cha et al., 2017), the input image first passes
through the 1st convolution layer, then the 1st pooling layer and other layers. Finally, the Soft-
max layer predicts whether the image includes a pothole or not. However, pothole areas are only
a small part of pavement surfaces, which means the efficiency of extracting features was low in
the model. Thus, we added a pre-pooling layer in the CNN model as shown in Figure 7 to solve
the problem. The pre-pooling layer reduces the resolution of the imported data by a max-pooling
operation before the first convolutional operation. After the pre-pooling, the characteristics irrel-
evant to potholes were reduced, such as pavement materials and image noises. However, the
characteristics relevant to the classification task, such as the pothole outlines, were still reserved.
Therefore, a pre-pooling layer was used in CNN before the 1st convolution layer to improve the
efficiency and precision of pothole detection, as shown in Figure 7. Therefore, two structures
of CNN were employed to recognise potholes and their precisions were compared to verify the
superiority of the pre-pooling CNN.

2.1.3. Parameter optimisation

Parameter optimisation is one of the most important steps of training the CNN. For example, a
too large learning rate will lead to the programme to fail to converge, while a too small learning
rate will lead to a waste of time during the training. In general classification algorithms, the
learning rate was kept from 0.01—1, the number of convolutional layers was kept from 1 to 5,
and the number of convolutional kernels was kept from 10 to 50 (Cha et al., 2017; Tong et al.,
2017). In order to optimise the structural parameters of CNNs, different parameters of CNNs
were combined to find the optimal one, as shown in Table 1.
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Table 1. Orthogonal test combinations.

Number of Number of
convolutional convolutional
No Learning rate layers kernels
1 0.01 1 10
2 0.01 2 20
3 0.01 3 30
4 0.01 4 40
5 0.01 5 50
6 0.05 1 20
7 0.05 2 30
8 0.05 3 40
9 0.05 4 50
10 0.05 5 10
11 0.20 1 30
12 0.20 2 40
13 0.20 3 50
14 0.20 4 10
15 0.20 5 20
16 0.50 1 40
17 0.50 2 50
18 0.50 3 10
19 0.50 4 20
20 0.50 5 30
21 1.00 1 50
22 1.00 2 10
23 1.00 3 20
24 1.00 4 30
25 1.00 5 40

Note: the number of convolution kernels in the 2st convolution was twice that
of the 1st convolution layer empirically.

2.2. Database and implementation details

To train and test the two types of CNNs, a database including 400 raw potholes images of 5,120
pixels x 3,072 pixels resolution was generated. Notably, the 400 raw images were collected
from different pavements (AC-13, AC-16, and SMA-16) under different light conditions. All
these images were cropped into 96,000 small images of 256 pixels x 256 pixels resolution.
Then, 72,000 small images were selected randomly as a training dataset and the rest was used
as a testing dataset. In each iteration of training, 5,000 cropped images from the training dataset
were selected randomly for validation.

After the two datasets were generated, they were labelled respectively. The smaller images
were manually annotated as “Intact” or “Pothole”, which were quadrature-encoded as [1 0]
and [0 1], respectively. The two CNNs were trained and tested using Caffe (Jia et al., 2014) on a
computer equipped with an Intel(R) Core(TM) i7-8750H CPU, 32.00 GB RAM, and an NVIDIA
GeForce GTX 1080 8 GB GPU.

2.3. Stability and superiority analysis methods
2.3.1. Stability analysis

The average precision in the testing can only reflect the overall precision of the model but not
indicate the stability of the model to various conditions. For example, the model may detect
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all the potholes in the AC-13 pavement under the bright light condition but only detect a part of
potholes in the SMA-16 pavement under shadowy light conditions. Therefore, a stability analysis
of'the CNN was necessary and the mean squared error (MSE) was applied to evaluate the stability
of CNN, which was shown in Equation (4).

1 m n eVV;Tx’
MSE = — =
| 222 =) log 57— “)
i=1 j=I1 Ze i Xi

=1

where m and n are the number of images and classification in the stability analysis; WjT is the
weights in the Softmax layer; x; is the data imported into the Softmax layer.

The stability analysis consisted of two parts:

(1) Different light conditions. In the testing dataset, 60 raw images under 3 different light
conditions (bright, shadow and dark) were selected and there were 20 images for each one. In this
part, the illuminance ranges of the bright and dark condition were 500 — 1000 /x and 5 — 300 Ix,
respectively. The shadow condition meant there was partial occlusion on the pavement surface.
The detection results of the CNN were used to verify its stability to the light conditions.

(2) Different pavement materials. In the testing dataset, 60 raw images from 3 different high-
way were selected, whose pavement materials were AC-13, AC-16, and SMA-16, respectively.
There were 20 images for each one. The detection results of the CNN were used to verify its
stability to the pavement materials.

2.3.2.  Superiority analysis

The CNN-based method was compared with two state-of-the-art methods (Sobel edge detection
and K-means clustering analysis) for detecting potholes. Sobel edge detection detected potholes
by extract the edges of the objects. K-means clustering detected potholes based on the differences
in gray value ranges between potholes and pavements. In the testing dataset, 3 raw images under
different situations were selected and the detection results of the three methods were compared
to verify the CNN-based method’s superiority.

3. Results and discussion
3.1. Structure optimisation

By comparing the precision of CNNs under different parameter combinations, the optimised
structure was selected, mainly including a comparison of two CNN models, and optimisation of
parameters based on precision and efficiency, where the precision meant the average accuracy of
each trained CNN to detect potholes, and the efficiency was measured by the total convergence
time during each training process.

(1) Pre-pooling optimisation. The detection precisions of two structures after 1500 iterations
were shown in Figure 8(a). The results showed the pre-pooling CNNs detected potholes with
acceptable precisions, while the conventional CNN could not recognise the pothole in the images
precisely. It indicated that the precision of the pre-pooling CNNs was better than the conven-
tional ones. Therefore, the utilisation of the pre-pooling layer had the capacity of improving the
precision.

(2) Optimisation for learning rate. Figure 8(a) presented that the test precision increased first
and then decreased as the learning rate increased. The test precision of the pre-pooling CNN was
maximum when the learning rate was 0.2, which was 93.07%. The test precisions were 85.74%
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Figure 8. The optimisation of the two CNNs with different learning rates.

and 83.49% when the learning rates were 0.01 and 1. It was because the pre-pooling CNNs with
low or high learning rate learned little or too many local features, which always led overfitting.
Figure 8(b) presented that the total convergence time increased first and then decreased as the
learning rate increased. The total convergence time of the pre-pooling CNN was minimum when
the learning rate was 0.2, which was 21.28 h. The total convergence time was 44.27 and 53.73 h
when the learning rate were 0.01 and 1. This was because a small learning rate led to too many
steps of feature extraction, which not only increased the total convergence time but also led to
overfitting easily. However, the CNN ignored a large part of useful features in the process of the
training when the learning rate was too large. It indicated that the 0.2 learning rate was suitable
for our pre-pooling CNN.

(3) Optimisation for the number of convolutional layers. Figure 9(a) presented that the test
precision increased first and then decreased as the number of convolutional layers increased. The
number of convolutional layers had a more significant impact on precision than the learning rate.
The test precision of the pre-pooling CNN was maximum when the number of convolutional lay-
ers was 2, which was 98.95%. The test precisions were 92.46% and 71.31% when the number of
convolutional layers was 1 and 5. It was because the convolutional layers only extracted the lim-
ited low-dimensional features of potholes when the number of convolutional layers was small,
which led the Softmax layer could not classify the defects precisely. However, too many features
were extracted during the convolution process when the number of convolutional layers was too
large. Too many features, especially some unnecessary features, led to overfitting and reduced
the precision. Figure 9(b) presented that the total convergence time increased as the number of
convolutional layers increased. This was because the parameters involved in the training process
increased correspondingly as the number of convolutional layers increased. Therefore, consider-
ing both the precision and efficiency, the 2 convolution layers was suitable for our pre-pooling
CNN.

(4) Optimisation for convolutional kernels. Figure 10(a) presented that the test precision
increased first and then decreased as the number of convolutional kernels increased. The test
precision of the pre-pooling CNN was maximum, which was 92.24% when the number of convo-
lution kernels was 20, which was slightly higher than other cases. This was because the number
of convolution kernels determined the number of features extracted by CNN. The features of
the potholes were limited, and a certain number of kernels could meet the demand of extract-
ing features. However, too many features from kernels, especially some unnecessary features,
led overfitting and reduced the precision. Figure 10(b) presented that the total convergence time
increased as the number of convolutional kernels increased. This was because the number of
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convolution kernels determined the number of features extracted by CNN, which led more con-
volution operations and more parameters and thereby increased the amount of computation.
Therefore, considering both the precision and efficiency, 20 convolutional kernels in the first
convolution layer was suitable for our pre-pooling CNN.

(5) CNN with the best performance. The results turned out that the optimal learning rate,
number of convolution layers, and number of convolutional kernels in 1st convolutional layer
were 0.2, 2, and 20. Empirically, the number of convolution kernels in the 2nd convolution
should be about twice that of the 1st convolution layer. Thus, and the number of convolutional
kernels in the 2nd convolutional layer should be 40. Besides, the structure parameters of the
CNN were shown in Table 2.

3.2. Testing for different light conditions

We selected 60 images from the testing dataset based on their light conditions, including bright,
shadow, and dark. Each light condition had 20 images. These images were cropped to obtain
small images of 256 pixels x 256 pixels resolution and then were imported into the optimised
pre-pooling CNN to verify its stability of different light conditions.

Figure 11 presented the convergence processes of the pre-pooling CNN to the 60 images
during the training. For the bright condition, the pre-pooling CNN converged quickly, and the
fluctuation of MSE during iteration was small. It indicated that the pre-pooling CNN detected
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Table 2. Detailed parameters of the pre-pooling CNN.

Layer number Type Input size Filter size Number Stride
LO Input 256 x 256 x 1 — — —
L1 Pre-pooling 256 x 256 x 1 — — —
L2 Convolution 128 x 128 x 1 Sx5x1 20 2
L3 Pooling 62 x 62 x 20 - - 2
L4 Convolution 31 x 31 x 20 5x5x%20 40 2
L5 Pooling 13 x 13 x 40 — — —
L6 Convolution 6 x 6 x 40 6 x 6 x40 120 1
L7 Sigmoid 1 x1 x 120 — — —
L8 Fully connected 1 x1 x 120 — 84 1
L9 Fully connected 1 x1 x84 — 2 1
L10 Output I x1x2 — — -

Notes: The function of the 3rd convolution layer was to reshape the output of L5 to a vector in 1 x 1 x 120, which was
different from L2 and L4. Since this layer did not require the optimisation of the number of the kernels, the optimisation
for the number of convolutional layers mentioned in this paper did not include this layer.

bright
shadow
dark

Mean squared error

| . . .

"0 300 600 900 1200 1500

Number of iterations

Figure 11. Performance of the pre-pooling CNN with different light conditions.

potholes accurately under the bright conditions as shown in Figure 12(a). For the shadow con-
dition, the bright spot had a negative effect on the convergence of the training as shown in the
red curve in Figure 11, but it had no influence on the final results as shown in Figure 12(b).
It indicated that the well-trained pre-pooling CNN could recognise the light spots and potholes
well. Similarly, the deep colour of the pavement had a negative effect on the convergence of the
training as shown in the blue curve in Figure 11. For example, a large fluctuation occurred in the
660th iterations. However, it had no influence on the final results as shown in Figure 12(c).

3.3. Testing for different pavement materials

We selected 60 images from the testing dataset based on their pavement materials, including AC-
13, AC-16, and SMA-16. Each pavement material had 20 images. These images were cropped
to obtain small images of 256 pixels x 256 pixels resolution and then were imported into the
pre-pooling CNN.
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Figure 12. Examples of the Pre-pooling CNN detecting results with different light conditions. (a) The
pavement under bright light condition (500 - 1000 /x), (b) The pavement under shadow light condition and
(c) The pavement under dark light condition (5 - 300 /x).

Figure 13 presented the convergence processes of the pre-pooling CNN to the 60 images
during the training. For AC-13 pavements, the pre-pooling CNN converged quickly, and the
fluctuation of MSE during iteration was small. It indicated that the pre-pooling CNN detected
potholes accurately in AC-13 pavements as shown in Figure 14(a). However, the texture of AC-
16 and SMA-16 pavements had a negative effect on the convergence of the training as shown
in the red and blue curves in Figure 13, but it had no influence on the final results as shown in
Figure 14(b) and Figure 14(c). It indicated that the well-trained pre-pooling CNN could recognise
the potholes in different pavements.

3.4. Comparative study

The comparison of precision between two well-known methods (Sobel edge detection and
K-means clustering analysis) and the CNN-based method was used to verify the CNN-based
method’s superiority. In order to reflect the complexity of the real-world situations, 3 images
with different light conditions and pavement materials in the test set were selected.

Figure 15(a) presents an AC-13 pavement under a bright light condition. The output of
the CNN-based method was accurate as shown in Figure 15(b). Sobel edge detection could
not extract edge features of potholes as shown in Figure 15(c), while the results of K-means
clustering included much noise as shown in Figure 15(d).

Figure 16(a) presents an AC-16 pavement under a shadow light condition. The output of
the CNN-based method was accurate as shown in Figure 16(b). However, the two traditional
methods obtained little features about the pothole, as shown in Figure 16(c and d).
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Figure 13. Performance of the pre-pooling CNN in different pavements.
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Figure 14. Examples of the Pre-pooling CNN detecting results in different pavements. (a) AC-13, (b)
AC-16 and (c) SMA-16.

Figure 17(a) presents an SMA-16 pavement under a dark light condition. The output of the
CNN-based method was acceptable as shown in Figure 17(b), even in some areas without pot-
holes was included. However, the two traditional methods obtained little features about the
pothole, as shown in Figure 17(c and d).

It indicated that the CNN-based method recognised and located potholes accurately under
various conditions. Although K-means cluster analysis and Sobel edge detection extracted some
features about potholes, it could not accurately recognise and locate all of them. Therefore, the
CNN-based method had superiority in pothole detection under various conditions.



14 W. Ye et al.

(c) (d)

Figure 15. Pothole with the bright light condition from highway 1. (a) Raw image, (b) Pre-pooling CNN,
(c) Sobel edge detection and (d) K-means clustering analysis.

(c) (d)

Figure 16. Pothole with the shadow light condition from highway 2. (a) Raw image, (b) Pre-pooling
CNN, (c) Sobel edge detection and (d) K-means clustering analysis.
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Figure 17. Pothole with the dark light condition from highway 3. (a) Raw image, (b) Pre-pooling CNN,
(c) Sobel edge detection and (d) K-means clustering analysis.

4. Conclusions

The application of CNN using pavement images for pothole detection was presented in this study,
and the following conclusions can be drawn:

(M

“)

The pre-pooling CNN had the average precision higher than 80% during the training,
which meets the demands of the pavement inspection. The precision of the optimised
pre-pooling CNN was 98.95%, whose learning rate was 0.2, the number of convolution
layers was 2, and the number of convolutional kernels was 20.

Compared with the average precision of the pre-pooling CNN and the conventional CNN,
it indicated that the pre-pooling layer could improve the precision for pothole detection
using the same database.

The results of the stability analysis indicated that the outputs of the pre-pooling CNN
were little affected by different light conditions and pavement materials. It indicated that
the CNN-based method could be applied under various real-world conditions.

The comparative study results demonstrated that the CNN-based method recognised and
located potholes accurately under various conditions. Although K-means cluster analysis
and Sobel edge detection extracted some information about potholes, it could not accu-
rately recognise and locate all of them. Therefore, compared with other conventional
methods, the CNN-based method had superiority in pothole detection.
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