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Abstract

Pavement damage segmentation has benefited enormously from deep learning. However,
few current public datasets limit the potential exploration of deep learning in the applica-
tion of pavement damage segmentation. To address this problem, this study has proposed
Pavementscapes, a large-scale dataset to develop and evaluate methods for pavement damage
segmentation. Pavementscapes is comprised of 4,000 images with a resolution of 1024×2048,
which have been recorded in the real-world pavement inspection projects with 15 different
pavements. A total of 8,680 damage instances are manually labeled with six damage classes
at the pixel level. The statistical study gives a thorough investigation and analysis of the pro-
posed dataset. The numeral experiments propose the top-performing deep neural networks
capable of segmenting pavement damages, which provides the baselines of the open chal-
lenge for pavement inspection. The experiment results also indicate the existing problems
for damage segmentation using deep learning, and this study provides potential solutions.

Keywords: pavement damage dataset, supervised learning, damage segmentation, deep
learning, convolutional neural network, attention-based network

1. Introduction

Performance of pavement surface decays over time due to various factors, such as traffic
volume and weather, and, therefore, the understanding of the deterioration degree is essential
to efficient maintenance, which aims to keep and improve the high performance of the surface.
Pavement damage, a key characteristic of road surface deterioration degree, is evaluated with
three approaches: manual, semi-automatic, and fully automatic.

In the manual approach, investigators walk or slowly drive along the pavement to inspect
damages, which is subjective and time-consuming. In the semi-automated one, a fast-
moving vehicle automatically collects pavement surface images and an off-line and manual
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process of damage inspection is then performed in workstations, which is still very time-
consuming. Compared to the semi-automated one, the fully automatic approach adopts
some technologies of computer vision to perform the inspection using road surface images,
which brings the potential of real-time data processing with a low labor cost.

In the fully automatic approach, the application of computer vision on pavement visual
inspection involves three main tasks. The first one is damage recognition [3, 28, 61], also
known as damage classification, in which an algorithm should indicate the category of each
damage present in a 2D or 3D pavement image. Another task is damage detection [4, 43]:
bounding boxes identify and locate one or more effective damages in a pavement image. The
last one is damage semantic segmentation [55, 56] which splits an image into multiple sets of
pixels and each set has its individual damage category. These splits, called the segmentation
mask, are regarded as a simplified but informative representation of the original image. For
example, the boundary areas of the segments in a mask provide the position information
of pavement damages in an image. Segmentation results can also be used to measure the
damage morphology, such as the width and length of a crack. Besides, compared to the
results of damage recognition and detection, the ones from damage segmentation are more
informative and useful.

The explosive development of deep neural networks [26] brings a large number of out-
standing and state-of-the-art methods for semantic segmentation. Many top-performing
methods are nowadays extended into the application of pavement damage segmentation and
have achieved remarkable success [3, 4, 49, 55, 63, 64]. The predominant reason for the suc-
cess is the availability of the large-scale and public datasets, such as ImageNet [9], PASCAL
VOC [13], Cityscapes [7], and Microsoft COCO [30]. These datasets exploit the power-
ful capacity of deep neural networks. Unfortunately, there are a small number of public
datasets for pavement damage segmentation [44]. This condition has limited the potential
exploration of deep learning in the application of pavement damage segmentation. Besides,
the lack of publicly available datasets makes the existing algorithms incomparable since they
are reported as the state-of-the-art ones only in their own datasets.

This study introduces a large-scale dataset, called Pavementscapes, to solve the above-
mentioned issue of pavement damage segmentation. The contributions of this study can be
summarized as follows:

1. Propose a large-scale hierarchical image dataset for asphalt pavement damage seg-
mentation. This dataset can be used to train and test the approaches for pavement
damage segmentation, especially for deep neural networks. The proposed dataset con-
sists of 4,000 real-world pavement images annotated in image, block, and pixel levels.
For each level, there are six categories of visual pavement damages. The image-level
annotations defines the damage categories shown in each image. The block-level an-
notations use bounding boxes to identify and locate each damage. In the pixel-level
annotations, each pixel of a pavement image is labeled as one of the damage categories
or background. Besides, all images have a view of top-down shooting, which allows
users to measure the accurate morphology of pavement damages using segmentation
masks.
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2. Compare the top-performing segmentation methods of computer vision on the pro-
posed dataset. This study investigates the state-of-the-art deep-learning algorithms
based on the proposed dataset, which provides the baselines of an open challenge for
pavement damage segmentation. The comparison study also indicates the existing
issues and potential solutions for the segmentation task, including small damage seg-
mentation, unbalanced training set, and over-confidence in modern neural networks.

3. Record pavement damages with non-iconic views, which are also known as non-canonical
perspectives [38]). An instance has an iconic view if it is near the center of a digital
image. Despite the existing gap in human performance, current algorithms segment
damage fairly well on iconic views but struggle to do it otherwise – in the partially oc-
cluded and amid clutter [18], reflecting the complexity of real-world inspection projects.
An ideal model should also perform well in the non-iconic views. Thus, the proposed
dataset includes numerous pavement damages in non-iconic views.

The rest of the paper is organized as follows. Section 2 begins with the literature review
of the public pavement datasets and state-of-the-art segmentation models based on deep
learning. Section 3 describes the details of the proposed datasets, followed by the damage
segmentation experiments in Section 4. Finally, Section 5 concludes this study.

2. Related work

2.1. Pavement damage datasets

Recent studies have adopted various machine learning algorithms, especially deep learn-
ing for automatic pavement damage segmentation, such as [42, 64, 65]. To develop these
algorithms, several datasets of pavement images have been released and the majority of
them are summarized in Table 1. Three problems can be found in these public datasets.
The first one is the views of the pavement images. Most of these datasets captured the
images using smartphones with wide views, such as the most successful one RDD-2020 [2].
However, many real-world projects of pavement inspection require a top-down view because
pavement maintenance needs information on damage morphology, such as the dimensions
of cracks and portholes. A wide view cannot accurately provide morphological information
since the damage morphology is distorted in the view. In addition, many datasets present
damages with an iconic view, appearing objects in a profile unobstructed near the center of
a neatly composed image. However, pavement damages with non-iconic views, such as the
incomplete and occluded cracks, are common in real-world inspection projects.

Another problem is the annotations. Table 1 indicates that the existing datasets only
annotate one or two categories of pavement damages, e.g., crack and pothole. However,
asphalt pavement inspection requires several visual damage categories, such as eight in [24].
Besides, many datasets only provide image- and block-level annotations, which cannot be
used to train and test segmentation models. A few datasets include a small number of
images with pixel-level annotations, which still cannot meet the requirement of developing
a deep neural network for damage segmentation.

The last problem is the baseline algorithms on these datasets. Many datasets still use the
results of machine learning proposed thirty years ago as their baselines, even though a few
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Table 1: Summary of the existing pavement damage datasets. The algorithms in bold are the deep neural
networks. “Pavementscape” in the last row is the dataset proposed in this study.

Dataset Images Resolution Data collection device
View Damage category Annotation level Baseline algorithms

Top-down Wide-view Crack Pothole Rut Repair Image Block Pixel
Ouma and Hahn [37] 75 1080× 1920 Galaxy S5 cammer X X X Fuzzy c-means
CrackIT [36] 84 1536× 2048 Optical device X X X X K-nearest neighbor
CFD [41] 118 480× 320 Iphone 5 X X X Random decision forests
CrackTree200 [67] 206 800× 600 Area-arry camera X X X Minimum spanning tree
SDNET2018 [10] 230 4068× 3456 16MP Nikon Digital Camera X X X AlexNet
Crack500 [60] 500 2000× 1500 GoPro 7 X X X FPHBN
CrackDataset [21]
(segmentation part)

1205 1280× 960 Action camera X X X X U-net

GAPs v1 [12] 1,969 1920× 1080 Professional camera X X X X X ASINVOS net
GAPs v2 [45] 2,468 1920× 1080 Professional camera X X X X X ASINVOS net and ResNet34
RDD-2020 [2] 26,620 720× 960 LG Nexus 5X cameras X X X X MobileNet
Pavementscapes 4,000 2048× 1024 Professional camera X X X X X X X X Tables 4

novel deep neural networks have been adopted in some datasets. This phenomenon does not
explore the potential of deep learning in the application of pavement damage segmentation.

The three problems motivate us to release a new large-scale hierarchical image dataset
for asphalt pavement damage segmentation and analyze the proposed dataset with state-of-
the-art deep neural networks.

2.2. Deep neural networks for pavement damage segmentation

After the success of Long et al. [33] on semantic segmentation, a large number of deep
neural networks have been proposed and achieved the state-of-the-art results. Generally,
there are two main directions: convolution- and attention-based deep neural networks.

Convolution-based deep neural network, also known as convolutional neural network
(CNN), is a neural network that uses convolution in place of general matrix multiplica-
tion in at least one of their layers. For the segmentation problems, the most widely-used
CNN architecture is the fully convolution networks (FCN) [33], as shown in Figure 1, which
only consists of locally connected layers, e.g., convolution, pooling, and upsampling lay-
ers. No fully connected layer is utilized in this networks. An FCN extracts high-dimension
features from a pavement image using convolution and pooling layers and the features are
then upsampled into pixel-wise feature maps by upsampling layers. The upsampled feature
maps are finally imported into a softmax layer to predict the classes of all pixels in the
input image. Many FCN-based models have been used for pavement damage segmentation,
such as FCN-8s [55], U-net [14, 32], W-Net [17], a series of DeepLab [5, 31]. These studies
have demonstrated that the CNN models have significant superiority in pavement damage
segmentation, once given enough learning samples with reasonable pixel-wise annotations.

Another direction is the attention-based deep neural networks. Compared to an FCN
directly using a full image for segmentation, an attention-based network first splits an in-
put into a square-patch grid. Each patch is vectorized by concatenating its channels of all
elements and then linearly projected to the required size. After dividing the sample, the
network is agnostic to the position information about these patch vectors. Thus, learnable
position embeddings are linearly added to each vector, which allows it to learn about the
relative or absolute positions of the patches. These embedded patch vectors are then se-
quentially imported into a transformer encoder. The encoder consists of alternating layers
of self-attention and multi-layer perceptron. Self-attention of an embedded patch vector is
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Figure 1: Overview of fully convolution networks [33].

defined as its relationship to every other vector. Feeding the embedded patch vectors se-
quentially, a self-attention layer computes their self-attentions as introduced in [11]. These
self-attentions are then fed into a multi-layer perceptron layer to handle their dimension. The
self-attention outputs of the final transformer encoder are concatenated and imported into
a mask transformer. The outputs of the mask transformer, as the pixel-wise feature maps of
the input image, are imported into a softmax layer for object segmentation. The processes
can be summarized as Figure 2. Even though attention-based networks (e.g., transformer
segmentor [46], attention U-net [35] and R2U-net [39]) have achieved remarkable results on
the majority of benchmark datasets for semantic segmentation, there are only a few applica-
tions on pavement damage segmentation [48, 25, 48]. Therefore, this study should compare
the performances of convolution- and attention-based deep neural networks on pavement
damage segmentation, once given a new large-scale hierarchical pavement damage dataset.
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Figure 2: Overview of an attention-based deep neural network [46].

3. Proposed dataset

This section describes the proposed dataset, including image collection (Section 3.1),
categories and annotations (Section 3.2), the protocol of dataset split (Section 3.3), and the
statistical analysis (Section 3.4 ). The proposed dataset, named Pavementscapes, is com-
prised of 4k images with a resolution of 1024× 2048, which were collected from 15 different
pavements in China. A total of 8,680 damage instances in six categories are manually labeled
in image, block, and pixel levels.

3.1. Image collection

In order to guarantee the comprehensiveness of the proposed dataset, the areas for image
collection are made up of 15 pavements at different locations in China (Jiangxi, Gansu,
Heilongjiang, and Xinjiang provinces), which have various service years (1-10 years), traffic
volumes, weather, and surface materials (AC-13, AC-16, SMA-13, etc). Figure 3 presents
the details of these pavements.

Pavement images were captured using a multi-function detection vehicle equipped with
a professional camera, as shown in Figure 4. The camera was installed with a top-down
shooting view of pavement surfaces, and it captured PNG images with a size of 1024×2048×1
when the vehicle moved about 60 km/h. More than 500k images were gathered and 4k of
them with at least one damage were used to make up the Pavementscapes dataset.

3.2. Categories and annotations

The Pavementscapes dataset consists of six damage categories in total, covering the
majority of the visual damage categories in the Chinese Highway Performance Assessment
Standards (JTG H20-2007) [24], as shown in Table 2.

The proposed dataset provides annotations at image, block, and pixel levels. Using La-
belme library [58], these annotations were labeled in-house by five annotators with at least
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Figure 3: Study area of the Pavementscape dataset in the Google map. The blue curves are the investigated
pavement areas.

Figure 4: Multi-function detection vehicle equipped with a professional camera.
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Table 2: Pavement damage types in the Pavementscapes dataset and [24].

Damge type Included in the Pavementscapes dataset or not

Crack
Longitudinal X
Lateral X
Alligator X

Others

Pothole X
Material loose ×
Rut X
Wave crowding ×
Repair area X

five-year experiments on pavement inspection to guarantee high quality. At the image level,
annotators label the damage categories presented in each image, in which multi-class an-
notations have existed. At the block level, bounding boxes identify and localize damages,
which are stored in Excel format. The position information of a bounding box is represented
by its left-top and right-bottom coordinates in an image. At the pixel level, annotators as-
sign each pixel to one of the six categories or “background” class by labeling these images.
The “background” class has the semantic of “anything else” except the six damage cate-
gories. The pixel-level annotations are also restored in the PNG format. To guarantee the
annotation quality, an annotator should take at least 10 min to label one pavement image.
Figure 5 shows some pavement images and their pixel-level annotations. In practice, these
images and their annotations should be transformed into a TFRecord format, which can
save computer memory [1]. Even though three types of annotations have been provided,
this study only focuses on pixel-level ones. This is because the pixel-level annotations can
also represent the information of the image- and block-level ones. The boundary areas of the
pixel-level annotations provide the position information of pavement damages in an image,
while the pixel classes include the category information of pavement damages. Of course,
users can only use the image- and block-level annotations if they only need to train and test
a damage detection model.

3.3. Protocol of dataset split

The Pavementscapes dataset has been pre-split into separate training, validation, and
test sets for any supervised algorithms of computer vision. The protocol of dataset split is not
random, but rather in the principle that makes each split representative for various pavement
surface scenarios. Specifically, each split set is made up of pavement images collected with
the following properties: (i) with a real-world distribution of the damage numbers across
individual categories; (ii) in the different geographic locations of China with completely
different climate conditions; (iii) at the fine and poor sunshine; (iv) with the different service
years. Following this scheme, this study designs a protocol of the Pavemenetscape dataset
split with 2,500 training images, 500 validation images, and 1,000 testing images.

To evaluate how representative the three splits w.r.t the protocol properties, an FCN
[33] was trained by the 600 images from the training set and then evaluated by the testing
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Figure 5: Examples of pavement images and pixel-level annotations from the Pavementscapes dataset. The
masks with gray-scale values of 0 are the “background” pixels; other masks with different gray-scale values
are the pixels belonging to different classes, such that 30, 60, 90, 120, 150, and 180 gray-scale values stand
for the pixels of “longitudinal crack”, “lateral crack”, “alligator crack”, “pothole”, “rut”, and “repair area”,
respectively.

9



set, as well as eight subsets of the testing set. For each subset, this study randomly selects
three-eighths of the testing set. The accuracies of the testing set and its subsets are very
uniform, varying less than 2.0%. Similar phenomena can also be found in the properties of
geographic locations and service years. Interestingly, the performance on the fine sunshine
is higher than the one on the whole test set. This is mainly because the images in lighting
conditions represent damage features better than in the other conditions. To analyze this
behavior in-depth, an additional test is performed by using images collected in low- or
high-sunshine conditions, observing a 3.2% accuracy decrease in the low one and a 1.1%
increase in the high one. Similarly, extreme training samples for one condition, such as all
training images collected from the SMA pavement, improve the performance on the special
testing samples but decrease the one on the whole testing set. These results highlight the
comprehensiveness of the proposed dataset that should cover the majority of pavement
surface scenes in the real world.

3.4. Statistical analysis

This section provides a statistical analysis of the proposed datasets, including (i) the
distribution of visual damages, (ii) scene complexity under various real-world conditions,
(iii) annotation accuracy, and (iv) non-iconic views. Regarding the first aspect, we com-
pare the Pavementscapes dataset to Crack500 [60] and CrackDataset [21] having pixel-level
annotations. Note that many other pavement damage datasets only have the image- and
block-level annotations, such as the ones in Table 1. However, this study restricts this part
of the analysis to those with a focus on damage segmentation because any pixel-level anno-
tations can be easily converted into the image- and block-level annotations but the image-
and block-level annotations cannot be transformed into the pixel-level ones.

Damage distribution. Figure 6a presents the numbers of damages across individual classes
on the Pavementscapes dataset. In terms of the overall composition, the distribution of
different damages is not uniform but close to the distribution of these damages in the real
world, which makes deep neural networks easy to learn different damage features. Figure
6b presents the damage distributions in the training, validation, and testing sets. The
distributions on the three sets are similar to the distribution of the proposed dataset. The
ratio of the damage numbers in the training, validation, and testing sets is about 6:1:2.

Figure 6a also compares the Pavementscapes dataset with the Crack500 and Crack-
Dataset datasets. The proposed dataset exceeds the other two datasets in the inherently dif-
ferent configurations. The Pavementscapes dataset involves different pavement surface dam-
ages in wide roads (at least one lane with 3.75 m), whereas the Crack500 and CrackDataset
datasets are only composed of pavement crack scenes. As a result, the Pavementscapes
dataset exhibits six types of pavement visual damages, while the other two datasets only
include crack damages. Besides, the other two datasets do not refine the crack category into
some sub-categories, such as longitudinal, lateral, and alligator cracks.

Scene complexity. The scene complexity is assessed on the Pavementscapes dataset, where
the dataset is split based on the environmental conditions when the images were collected.
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Figure 6: Damage distribution: (a) comparison of different datasets and (b) distribution in the training,
validation, and testing sets of the Pavementscapes dataset. Class 1, Class 2, Class 3, Class 4, Class 5,
and Class 6 stand for “pothole”, “rut”, “repair area”, “longitudinal crack”, “lateral crack”, and “alligator
crack”, respectively. The number of the “crack” super-class are the sum of the numbers of Class 4, Class 5,
and Class 6.

Figure 7 shows the image distributions under various real-world conditions. The distribu-
tions of the pavement images are uniform under various service years, sunlight conditions,
and surface materials, which ensures the comprehensiveness of the proposed dataset. Once
given the proposed dataset, deep neural networks can learn the knowledge of damage features
in different environments, which can ensure the generality of deep learning models.

Annotation accuracy. The quality of the annotations is assessed in the study. First, 50
images were randomly selected and labeled three times by different annotators following the
quality control in Section 3.2. More than 92% of pixels were labeled as the same classes.
Second, the annotators were required to select a “background” label if they did not have the
full certainty about the pixel class, such as some small damage instances. After excluding
the “background” pixels, we recounted 95% agreement in the annotations of the 50 images.
Finally, all annotations of different categories of cracks were coarsely annotated as “crack”
super-category, for example, the longitudinal-crack pixels are annotated as “crack”. In
the 50 images, 98% pixels in the coarse annotations were defined with the same category.
Therefore, the Pavementscapes dataset has annotations with good and stable quality.

Non-iconic views. One goal of the proposed dataset is to collect non-iconic pavement images.
Most pavement image datasets only include the images on an iconic view, such as Crack500
and CrackDataset. Besides, the current deep learning systems perform fairly well on iconic
views. However, in many pavement inspection projects, many pavement images present
many damages on non-iconic views, such as partially occluded cracks. Unfortunately, the
current deep learning systems struggle to segment objects on the non-iconic views. The
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Figure 7: Numbers of pavement damages under different real-world conditions: (a) service years, (b) weather
when the images were collected, and (c) pavement materials.
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Pavementscapes dataset collects 4,828 damage instances on an iconic view (e.g., repair areas
in the third row and left column of Figure 5) and 3,852 damages on different non-iconic
views (e.g., alligator cracks in the second row and right column of Figure 5). The proposed
dataset with both iconic and non-iconic views allows to train deep neural networks with
reasonable segmentation performance on different views.

4. Experiment

This section provides the numerical experiment that uses the Pavementscapes dataset
to train and test top-performing deep neural networks. Sections 4.1 and 4.2 introduces the
metrics and implementation details in the experiment, respectively. Section 4.3 discusses
the performances of convolution- and attention-based deep neural networks on pavement
damage segmentation. Finally, Section 4.4 provides the recommendations and future scopes
on the damage segmentation task.

4.1. Metrics

This experiment uses five metrics to evaluate the performance of deep neural networks
for damage segmentation: pixel accuracy (PA), mean intersection over union (mIoU), and
expected calibration error (ECE), floating point operations (FLOPs), and network parame-
ters.

Pixel accuracy. Let Ω = {ω0, ω1, . . . , ωm} be the set of classes, where ω0 is the “background”
class and ωi is one of the damage classes, i = 1, . . . .m. Given an image with T pixels, the
pixel accuracy is defined as

PA =
1

|T |

|T |∑
j=1

1ω(j) (ω̂(j)) , (1)

where ω∗(j) and ω̂(j) are the labeled and predicted class of pixel j, and 1 is the indicator
function of class ω(j). Note that the pixels belonging to the “background” class do not
consider in the metric, as do in many benchmark datasets [7, 9, 13, 30].

Mean intersection over union. This metric measures overlap between labeled and predicted
areas of a object as

mIoU =
1

m

M∑
i=1

|Gi ∩ P i|
|Gi ∪ P i|

(2)

where Gi and P i are the ground truth and predicted pixel set of class i. This experiment
do not consider the IoU of the “background” class, as do in many benchmark datasets
[7, 9, 13, 30].
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Expected calibration error. In a learning system, a network should not only make correct
predictions but also show when it may fail. The confidence of a network is defined as a
mass of belief supporting the hypothesis that the prediction of a network is correct. This
experiment utilizes the expected calibration error (ECE) [15] to measure the confidence of
a network and calibrate whether its confidence matches its accuracy. First, the prediction
confidence of pixel j is defined as

pc(j) = p̂(ω∗(j)), (3)

where p̂(ω∗(j)) is the predicted probability for pixel j in its true class. Let bk be the bin
of pixels whose prediction confidence falls into the interval (k−1

K
, k
K

], k = 1, . . . , K. The
accuracy and confidence of bin bk are then computed, respectively, as

ac(bk) =
1

|bk|
∑
j∈bk

1ω(j) (ω̂(j)) , (4a)

co(bk) =
1

|bk|
∑
j∈bk

pc(j). (4b)

A network is well calibrated with ac(bk) ≈ co(bk) for all bins, and the ECE2 is defined as

ECE =

∑K
k=1 |bk| × |co(bk)− ac(bk)|∑K

k′=1 |b′k|
. (5)

The ECE in this experiment does not consider the “background” pixels.

Floating point operations and network parameters. This experiment measures the complexity
of a deep neural network using floating point operations (FLOPs) and network parameters.
FLOPs are widely used to describe how many operations are required to run a single instance
in a deep neural network [11, 16, 59]; calculation processes can be found in [20]. Lower values
of FLOPs and network parameters always mean that an algorithm processes a new instance
with fewer computation costs.

4.2. Implementation details

The experiment only focuses on deep neural networks for pavement damage segmentation
because many previous studies [3, 4, 50, 51] have demonstrated that deep learning completely
outperforms the other machine learning algorithms involving manual feature engineerings,
such as support vector machine and random forest.

The experiment considers the convolution- and attention-based deep neural networks
for pavement damage segmentation. For the convolution-based deep neural networks, the

2The code of ECE is available at https://github.com/tongzheng1992/E-FCN, which has been released
by the first author in the previous study [54].

14

https://github.com/tongzheng1992/E-FCN


Table 3: Architecture of VGG16 network.

Stage Layer Details

Stage 1
Conv 1-1 3×3 Conv. 16 ReLu with 1 strides
Conv 1-2 3×3 Conv. 16 ReLu with 1 strides
Pooling 2×2 max-pooling with 2 strides

Stage 2
Conv 2-1 3×3 Conv. 32 ReLu with 1 strides
Conv 2-2 3×3 Conv. 32 ReLu with 1 strides
Pooling 2×2 max-pooling with 2 strides

Stage 3

Conv 3-1 3×3 Conv. 64 ReLu with 1 strides
Conv 3-2 3×3 Conv. 64 ReLu with 1 strides
Conv 3-3 3×3 Conv. 64 ReLu with 1 strides
Pooling 2×2 max-pooling with 2 strides

Stage 4

Conv 4-1 3×3 Conv. 128 ReLu with 1 strides
Conv 4-2 3×3 Conv. 128 ReLu with 1 strides
Conv 4-3 3×3 Conv. 128 ReLu with 1 strides
Pooling 2×2 max-pooling with 2 strides

Stage 5

Conv 5-1 3 3 Conv. 256 ReLu with 1 strides
Conv 5-2 3×3 Conv. 256 ReLu with 1 strides
Conv 5-3 3×3 Conv. 256 ReLu with 1 strides
Pooling 2×2 max-pooling with 2 strides

Pavementscapes dataset is used to train and test a series of the original FCN models (FCN-
32s, FCN-16s, and FCN-8s) [33], U-net [40], and DeepLabv3+ [5]. These models use the same
backbone, VGG16, as shown in Table 3. For the attention-based deep neural networks, four
models was considered, including self-attention net [57], criss-cross attention (CC-attention)
net [19], double-attention net [6], and segmentation transformer [62]. The patch size of the
attention-based models are 32 × 32. Other detailed hyper-parameters of these networks is
the same as their original works.

During training, all networks use the generalized dice loss function [47], which reduces
the negative effects of unbalanced learning set. In this study, the unbalanced learning set
means that the number of pixels belonging to different classes are very different, such that
the proposed dataset includes a very small number of crack pixels and a very huge number
of background pixels in the training set of the Pavementscapes dataset. The phenomenon
cannot be avoided because cracks only occupy very small areas in a pavement. Given a
pixel with one-hot label y and predicted probabilities p̂, the generalized dice loss function
is defined as

L(y, p̂) = 1− 2yp̂ + 1

y + p̂ + 1
. (6)

All models are achieved based on TensorFlow 2.8 version. The input image size are set
as 1024 × 2048 × 1. The training batch size is 24 and the popular ADAM optimizer with
momentum 0.9 and weight decay 1e-4 is used to optimize the networks for backpropagation.
Note that some types of data augmentations cannot be used in the Pavementscapes dataset

15



Table 4: Testing performances of deep neural networks on the Pavementscapes dataset. GFLOPs stands
for 109 (giga) floating point operations and M means million. The best and second results in each term are
marked in bold and italics.

PA/% mIoU ECE/% GFLOPs Parameter/M
FCN-32s [33] 66.53 51.94 22.48 - -
FCN-16s [33] 67.02 52.21 22.41 - -
FCN-8s [33] 67.32 52.98 22.30 177 134.3
U-net [40] 69.56 54.71 22.14 194 19.4
DeepLabv3+ [5] 71.90 57.51 21.81 783 41.1
Self-attention net [57] 73.07 58.74 21.32 619 10.5
CC-attention net [19] 73.15 58.52 21.14 804 10.6
Double-attention net [6] 74.01 59.23 21.10 338 10.2
Segmentation Transformer [62] 74.50 59.74 20.95 340 10.5

since flips and rotations change the semantics of longitudinal and lateral cracks. The deep
neural networks are trained on an Nvidia V100 GPU with 32GB memory.

4.3. Results of damage segmentation

Table 4 display the overall test performance of the deep neural networks. Some testing
examples are shown in Appendix A. The attention-based networks exceed the convolution-
based ones on PA and mIoU, even though the FLOPs and network parameters of the
attention-based models are larger than the ones of the convolution-based ones. In detail, the
segmentation transformer model achieves the best segmentation performance, followed by
double-attention and CC-attention nets. This demonstrates that the attention-based models
outperform the convolution-based ones on pavement damage segmentation. This behavior
can be explained by Table 5. The two types of deep neural networks have similar and high
PAs and mIoUs in the “rut”, “repair area”, and “pothole” classes, but the PAs and mIoUs
of convolution-based models in the three crack classes are lower than these of the attention-
based models. This is mainly because the attention mechanism allows the attention-based
models to focus on the features of some small target objects [34], such as the cracks with
thin widths. However, the convolution-based feature extraction in the convolution-based
models easily ignores the small features, e.g., the boundary areas of cracks and background.
Therefore, attention-based deep neural networks have the powerful potential for the accuracy
improvement of pavement damage segmentation, especially for some small damages.

Table 4 indicates that the two types of deep neural networks can accurately segment
the “rut”, “repair area”, and “pothole” instances but cannot do it well on the three types
of cracks. This problem derives from the fact that the proportion of crack pixels in the
training set is much lower than the ones of other classes. Unfortunately, the fact cannot be
changed in the projects of pavement inspection because the cracks and some other damages
only occupy very small parts of a pavement. In detail, the proportion of crack pixels is
less than 1%. Thus, the training set of the Pavementscapes dataset is very unbalanced.
Such an unbalanced training set makes deep neural networks tend to classify crack pixels to

16



Table 5: Testing IoU results of different damage classes on the Pavementscapes dataset. The best and
second results in each term are marked in bold and italics.

Longitudinal crack Lateral crack Alligator crack Pothole Rut Repair area
FCN-32s 25.82 27.17 25.38 67.17 75.92 90.17
FCN-16s 25.36 26.51 25.56 67.32 76.17 92.34
FCN-8s 25.93 27.27 26.42 68.13 77.42 92.73
U-net 26.99 30.26 29.14 69.33 80.10 92.45
DeepLabv3+ 33.12 35.25 33.84 71.31 79.25 92.31
Self-attention net 35.62 37.25 34.92 72.82 78.92 92.89
CC-attention net 35.46 37.36 34.74 72.14 78.82 92.58
Double-attention net 35.00 38.29 36.12 73.01 80.22 92.74
Segmentation Transformer 36.20 39.14 36.42 73.42 80.42 92.81

“background” during training since the trend does not introduce a large loss, even though the
generated dice loss 6 has been used to reduce the negative effect. This behavior demonstrates
that more advanced loss functions should be considered in the future to train the deep neural
networks for the pavement damage segmentation task.

Table 4 also shows that the two types of deep neural networks have similar ECEs, demon-
strating the two types of deep neural networks are over-confident because their accuracies
do not match their confidences. Figures 8 and 9, respectively, shows the pixel distribution
and pixel accuracy histograms of the deep neural networks in Table 4. Note that the back-
ground pixels are not considered in the two figures. The average confidence of each network
is substantially higher than its average pixel accuracy, indicating that the network is not
calibrated. This problem is mainly because the deep neural networks work within the prob-
abilistic framework, in which the features from the backbone are imported into a softmax
layer to generate probabilities of the classes for decision-making. Probability theory only
captures the randomness aspect of the features but neither ambiguity nor incompleteness
[22, 23], which are inherent in damage features. For example, a deep neural network may ex-
tract incomplete damage features from an image with a non-iconic view. Besides, a network
sometimes extracts ambiguous features from some small damages. Such uncertain features
lead that multiple classes having similar probabilities. In such a case, deep neural networks
in the probabilistic framework often arbitrarily assign the pixel to one and only one of the
possible classes, which may result in misclassification and finally leads to over-confidence.
The problem of over-confidence is common in the deep neural networks work within the
probabilistic framework [15]. Section 4.4 will provide a potential way to solve the problem.

Table 4 indicates the conflict between performance and computation cost. Compared
with the convolution-based models except for DeepLabv3+, the attention-based models cost
more FLOPs but have larger PAs and mIoUs. Moreover, the training time of an attention-
based model is twice that of a convolution-based model, demonstrating a small improvement
in terms of PAs and mIoUs always requires large increases in computation costs. The
costs of the attention-based networks are unbearable, even though the GPU memory and
computation force has a significant increase in recent years. Therefore, attention-based
deep neural networks with light weights are required for the task of pavement damage
segmentation.
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Figure 8: Testing pixel distribution on the Pavementscapes dataset: (a) FCN-32s, (b) FCN-16s, (c) FCN-
8s, (d) U-net, (e) DeepLabv3+, (f) Self-attention net, (g) CC-attention net, (h) Double-attention net, (i)
Segmentation transformer.
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Figure 9: Testing pixel accuracy histograms on the Pavementscapes dataset: (a) FCN-32s, (b) FCN-16s, (c)
FCN-8s, (d) U-net, (e) DeepLabv3+, (f) Self-attention net, (g) CC-attention net, (h) Double-attention net,
(i) Segmentation transformer.
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Figure 10 presents the mIoUs of the two types of deep neural networks under various
real-world conditions. These networks have stable performances on different service years,
weathers, and pavement materials since their IoUs and PUs do not significantly change
under different conditions. This demonstrates that the two types of deep neural networks
can perform damage segmentation well in the real world.

4.4. Recommendations and future scopes

Deep neural networks achieve some good results on the Pavementscapes dataset, which
can be considered as the baseline of the PavmentScapes challenges. However, they still face
several problems that are not easy to be solved by using traditional deep neural networks.
This study provides the recommendations for these problems as follows.

1. Small damage instances. Current deep neural networks sometimes ignore cracks with
thin widths, especially the convolution-based networks, though the features of these
cracks are important for decision-making. This behavior makes these networks have
low performances on crack segmentation. Attention-based deep neural networks show
the potential capacity to solve this problem. In the future, more attention-based
networks should be trained and tested by the Pavementscapes dataset, which may
replace the convolution-based networks for pavement damage segmentation.

2. Unbalanced training set. Even though the Pavementscapes dataset has the real-world
distribution of different damage instances, it still has the unbalanced problems in the
numbers of different classes, such that the background pixels is much more than the
sum of the damage pixels and the crack pixels are less than the pixels of other damages.
This fact introduces a negative effect on learning systems that tend to assign a pixel
to the background class or the damage classes with a large number of pixels. Similar
behaviors are common in the segmentation task of medical and cell images [8, 27].
In the medical image segmentation, many morphology-based loss functions are used
to solve the unbalanced problem, such as focal loss [29], dice loss [47] used in the
experiment, and IoU Loss [66]. Therefore, these loss functions should be introduced
into the deep neural networks to improve the performance of crack segmentation.

3. Over-confidence. Two types of deep neural networks are not calibrated well in the
damage segmentation task. This problem derives from the use of the probability
framework. During the last decade, many theories have been combined with deep
neural networks to solve the problem, and one of the successful cases is the evidential
deep neural network [52], which converts the features from the backbone of a deep
neural network into Dempster-Shafer belief functions, rather than the probabilities
using a softmax layer. This architecture allows the network to represent the feature
uncertainty [53] and reduce the confidence of the network [54]. Such architecture
should be considered to be combined with the attention-based models to make the
deep neural networks well-calibrated.
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Figure 10: Stability anaylsis using the Pavementscapes dataset under different (a) service years, (b) weathers,
and (c) pavement materials.
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5. Conclusions

This study has proposed a large-scale hierarchical image dataset for asphalt pavement
damage segmentation, called Pavementscapes. The statistical study and the deep learning
experiment provide an in-depth analysis of the dataset. The following conclusions are can
be drawn.

1. The Pavementscapes dataset consists of 4,000 pavement images with a resolution of
1024× 2048 and 8,680 damage instances, which were recorded from several real-world
projects of pavement inspection in China. Six damage classes are included in the
dataset. The proposed dataset exceeds the other public pavement dataset in the
number of pavement images, damage classes, annotation levels, and shooting views.

2. The statistical analysis demonstrates that the Pavementscapes dataset has a reasonable
damage distribution, complex pavement scenes, and high annotation accuracy, which
ensure the completeness and comprehensiveness of the dataset. In addition, the images
with different non-iconic views improve the complexity and truth of the dataset. In
summary, the dataset represents the real-world pavement damages well.

3. The numerical experiment uses the Pavementscapes dataset to train and test the top-
performance deep neural networks. The results demonstrate that the deep neural
networks have the powerful potential to segment pavement damages once given enough
good training samples. The attention-based models outperform the convolution-based
ones on the segmentation task, which may be the new direction for visual damage
segmentation. The experiment results can be considered as the baseline for the public
damage segmentation challenge.

4. The results of the numerical experiment indicate three problems with the use of deep
neural networks in pavement damage segmentation: the segmentation of small dam-
age instances, the unbalanced training set, and the over-confidence of deep neural
networks. The three problems are not easy to solve using the current state-of-the-art
deep networks.

5. Future work will focus on three main aspects, corresponding to the above three prob-
lems. First, the attention mechanism should be further applied in the segmentation
of small damage instances, which has the potential to improve the performance of
crack segmentation. Other advanced morphology-based loss functions should be in-
troduced into deep neural networks to solve the problem of unbalanced learning set.
Finally, some uncertainty frameworks, such as Dempster-Shafer theory, should be used
to overcome the over-confidence problem.
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Appendix A. Examples of segmentation results

There are eight examples in the appendix. For each example, Figures (a), (b), (c), and
(d) are the original image, ground trurh, segmentation results from the DeepLabv3+, and
segmentation results from the segmentation transformer, respectively. The masks with gray-
scale values of 0 are the “background” pixels; other masks with different gray-scale values
are the pixels belonging to different classes, such that 30, 60, 90, 120, 150, and 180 gray-
scale values stand for the pixels of “longitudinal crack”, “lateral crack”, “alligator crack”,
“pothole”, “rut”, and “repair area”, respectively.
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Figure A.11: Example 1.

Figure A.12: Example 2.
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Figure A.13: Example 3.

Figure A.14: Example 4.
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Figure A.15: Example 5.

Figure A.16: Example 6.
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Figure A.17: Example 7.

Figure A.18: Example 8.
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