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Abstract
Image segmentation has been implemented for pavement defect detection, from which

types, locations, and geometric information can be obtained. In this study, an inte-

gration of a fully convolutional network with a Gaussian-conditional random field

(G-CRF), an uncertainty framework, and probability-based rejection is proposed for

detecting pavement defects. First, a fully convolutional network is designed to gener-

ate preliminary segmentation results, and a G-CRF is used to refine the segmentation.

Second, epistemic and aleatory uncertainties in the model and database are considered

to overcome the disadvantages of traditional deep-learning methods. Last, probability-

based rejection is conducted to remove unreasonable segmentations. The proposed

method is evaluated on a data set of images that were obtained from 16 highways. The

proposed integration segments pavement distresses from digital images with desirable

performance. It also provides a satisfactory means to improve the accuracy and gener-

alization performance of pavement defect detection without introducing a delay into

the segmentation process.

1 INTRODUCTION

Digital imaging technology has become popular for

autonomous pavement defect detection (Tong, Gao, Han,

& Wang, 2018; K.C.P. Wang & Smadi, 2011). In the past

10 years, many algorithms have been utilized for automated

defect detection using digital images, such as edge detectors

(Abdel-Qader, Abudayyeh, & Kelly, 2003), cracktrees (Zou,

Cao, Li, Mao, & Wang, 2012), and percolation models

(Yamaguchi & Hashimoto, 2010). Also, a promising and new

definition of crack width was proposed for its unambiguous

measurement (N. Wang, Zhao, Li, Zhao, & Zhao, 2018).
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However, these unsupervised algorithms are limited by their

unacceptable generalization performance and low stability in

various real-world conditions (Cha, Choi, & Büyüköztürk,

2017).

Machine learning algorithms have improved the

autonomous pavement crack detection significantly in

the past decade. Artificial neural networks (ANNs) (Adeli

& Samant, 2000; Rafiei, Khushefati, Demirboga, & Adeli,

2017), support vector machines (SVMs) (Lin & Liu,

2010), and restricted Boltzmann machine (Rafiei & Adeli,

2017, 2018) are typical machine-learning algorithms and

have widely been used for defect detection in practice.
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Nevertheless, these algorithms require a set of specific fea-

tures to be provided to the algorithms, thereby images with

different new features will not be properly analyzed, which

results in inadequate generalization performance (Daniel &

Preeja, 2014; Nejad & Zakeri, 2011).

Substantial developments in deep learning have provided

a feasible approach for autonomous pavement defect detec-

tion (Cha et al., 2017; Zhang et al., 2017). The most promis-

ing advantage of deep learning is that objects are detected

by learning features in small local receptive fields and fusing

them into global features from example data autonomously

(LeCun, Bengio, & Hinton, 2015; P. Wang & Bai, 2018). It

provides a method for obtaining the type, location, and geo-

metric information of objects such as defects with no human

assistance (Molina-Cabello, Luque-Baena, López-Rubio, &

Thurnhofer-Hemsi, 2018; Tong, Gao, Sha, Hu, & Li, 2018).

1.1 Related works
Generally, the methods for pavement crack detection using

deep learning can be classified into three groups: recognition-

based, location-based, and segmentation-based methods. The

recognition-based methods are the primal approach for detect-

ing pavement cracks in digital pavement surface images. First,

original pavement images are cropped into small pieces and

imported into convolutional neural networks (CNNs) for dis-

tress recognition (Cha et al., 2017; Tong, Gao, & Zhang,

2018). Then, pavement defects are recognized and located

in the cropped images. AlexNet (Gao, & Mosalam, 2018;

Krizhevsky, Sutskever, & Hinton, 2012) and LeNet-5 (El-

Sawy, Hazem, & Loey, 2016; Guo, Yao, & Chen, 2016) as typ-

ical CNNs are adopted and modified to detect defects. How-

ever, there are two main disadvantages of recognition-based

methods: (a) the location results are coarse and depend on the

sizes of the cropped images and (b) the geometric information

cannot be obtained.

The methods of the second type for detecting pavement

defects using deep learning are the location-based methods.

In the second methods, deep-learning models are designed to

locate a distress with a box. Under the location-based meth-

ods, region-based CNNs (R-CNNs) (Farfade, Saberian, &

Li, 2015; Ren, He, Girshick, & Sun, 2015) and their modi-

fied models (Girshick, 2015; Girshick, Donahue, Darrell, &

Malik, 2016) have been developed to overcome the disadvan-

tages of the recognition-based methods. For example, faster

R-CNNs are used for structural visual inspection (Cha, Choi,

Suh, Mahmoudkhani, & Büyüköztürk, 2018), material prop-

erty evaluation (Liu, Sha, Tong, & Gao, 2018), and crack

detection (Kim, Ahn, Shin, & Sim, 2019). The location errors

are reduced; however, the geometric information still cannot

be obtained.

The segmentation-based methods, as the third type of

method, acquire the geometric information of pavement

defects by pixelwise classification. Pixelwise classification

means a deep-learning algorithm classifies each pixel in a

pavement image into one of the class memberships (e.g.,

pavement, crack, and pothole). Fully convolutional net-

works (FCNs) (Long, Shelhamer, & Darrell, 2015; L. Wang,

Ouyang, Wang, & Lu, 2015) and their modified models (Shen,

Gan, Yan, & Zeng, 2017; Zhou, Zhang, Lei, Li, & Tu, 2016)

have achieved remarkable success in the field of image seg-

mentation. For example, Zhang et al. (2017) proposed an auto-

mated pixel-level asphalt pavement crack detection approach

using an FCN-based method. In their study, the algorithm has

high precision and F-measure for crack detection. A CNN

with a dense conditional random field (M. Wang & Cheng,

2019) is used to detect pipe defects. The results demonstrate

that the model improves the defect segmentation precision

obviously. Autonomous concrete crack detection (Dung &

Anh, 2019) is also realized using deep FCNs. FCN-based

methods outperform other methods in geometric information

extraction and realize type recognition, defect location, and

geometric information segmentation based on pavement dig-

ital images. In addition, FCNs are also used to detect other

structure defects (L. C. Chen, Papandreou, Kokkinos, Mur-

phy, & Yuille, 2017; N. Wang et al., 2018; Xue & Li, 2018).

Therefore, it is feasible to use FCNs to detect pavement defects

(e.g., cracks, potholes, and bleeding areas).

However, two problems remain: First, the defects, noise

patterns, and transition regions are nearly indistinguishable in

some digital images. It leads to the random errors in the defect

labels, which can be regarded as data corruption (Sui, Feissel,

& Denoeux, 2018) or aleatory uncertainty (Tran, Jauberthie,

Le Gall, & Travé-Massuyès, 2018). For example, a random

error occurs when an operator labels a small area of a crack

as an area of pavement. Similar random errors are inevitable

and always lead to unreasonable convergence. The probabil-

ity of these random errors is not easy to be measured. It is

considered as an aleatory uncertainty. Second, the informa-

tion loss that is due to the translation variance (Krizhevsky

et al., 2012) and the unreasonable structures of FCNs leads to

the epistemic errors in the feature maps. For example, an algo-

rithm in a crack detection system extracts a feature related to

cracks ambiguously. The errors of these confusing features are

considered as an epistemic uncertainty. If left unaddressed, a

trained FCN model might be biased or even output ridiculous

results.

The uncertainty framework and probability-based rejec-

tion can be used to overcome the problems that are due

to the aleatory and epistemic uncertainty. The uncertainty

framework is a technique for modeling uncertainty in opti-

mization problems without using a probability distribution

(Bertsimas, Brown, & Caramanis, 2011; Bertsimas, Dunn,

Pawlowski, & Zhuo, 2018). Further, the uncertainty frame-

work in the study is to represent an uncertainty problem as

one or more parameters. It was proposed by Bi and Zhang
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(2005) and Bhattacharyya, Pannagadatta, and Smola (2005).

In practice, the uncertainty framework has been demonstrated

to lead to improvements in many statistical problems. For

example, Pant, Trafalis, and Barker (2011) proved that the

uncertainty theory was able to deal with imbalanced data.

S. Chen, Leng, and Labi (2019) developed an algorithm for

simulating autonomous driving by considering prior knowl-

edge. Prior knowledge can also be considered as an uncer-

tainty. Studies have shown that uncertainty theory can be used

to handle uncertainties in labels for machine learning (Big-

gio, Nelson, & Laskov, 2011; Natarajan, Dhillon, Raviku-

mar, & Tewari, 2013). Ben-Tal, Bhadra, Bhattacharyya, and

Nemirovski (2012) showed that the uncertainty theory could

be used to reduce feature uncertainty. Probability-based rejec-

tion is a method for distinguishing false results from rea-

sonable results based on Bayes’ rule (McGrayne, 2011). It

has been widely used to remove false decisions (Laukkanen,

2016) and classification results (Moskát & Hauber, 2007) and

has demonstrated success in handling aleatory and epistemic

uncertainties. In summary, according to the literature review,

the uncertainty framework and probability-based rejection

have the potential to solve the uncertainty problems that

are discussed above and to further improve the accuracy of

FCNs. However, few studies have been conducted on integrat-

ing FCN, the uncertainty framework, and probability-based

rejection.

1.2 Contributions
This paper presents a combination of FCN with Gaussian-

conditional random field (FCN-GCRF), the uncertainty

framework, and probability-based rejection for pavement

defect detection using digital images. The objective of this

study is to develop a novel computer vision technique for

further improving the precision of pavement defect detection,

via which types, locations, and geometric information can

be obtained. In the proposed technique, an FCN is used as

a front end to preliminarily highlight the areas of pavement

defects at the pixel level. A G-CRF and SVMs are combined

with the FCN to refine these areas to improve the precision.

Epistemic and aleatory uncertainties are integrated into the

combination to overcome the disadvantages of the traditional

deep-learning methods. Last, probability-based rejection

is conducted to remove false segmentation. The proposed

combination is still an end-to-end supervised algorithm.

Our contributions in this study can be summarized as

follows:

1. An FCN-based method that is deeply integrated with a

G-CRF and SVMs for detecting pavement defects at the

pixel level with satisfactory precision is proposed, via

which types, locations, and geometric information can be

obtained.

2. An uncertainty-framework method is presented for con-

sidering the aleatory and epistemic uncertainty (e.g., the

errors in the features and the labels) to further increase

the precision of pavement defect detection using deep-

learning methods.

3. A probability-based method is presented for rejecting

falsely identified areas of pavement defects in the segmen-

tation results to increase the reliability of the output. Addi-

tionally, it demonstrates that there are always transition

regions between defective areas and undefective areas on

the asphalt pavement.

The remainder of the paper is organized as follows: In Sec-

tion 2, the proposed combination is described in detail, includ-

ing the structure of the FCN-GCRF, the procedures for inte-

grating the uncertainty framework, and the probability-based

rule for rejecting false segmentation results. In Section 3, the

database and implementation details for the proposed combi-

nation are presented, followed by the results and a discussion

in Section 4. The conclusions of this study are presented in

Section 5.

2 METHODOLOGY

The combination of the FCN with a G-CRF is described in

Section 2.1. Then, the method for integrating the uncertainty

framework with the FCN is presented in Section 2.2. The

probability-based rejection rule is presented in Section 2.3.

Last, the end-to-end combination model is summarized in

Section 2.4.

2.1 FCN with G-CRF
This section describes the proposed FCN with Gaussian-

conditional random field and SVMs. The brief

overview of the existing FCN is described in Section

2.1.1. In Section 2.1.2, a Gaussian-conditional random field

is integrated with FCN to generate more reasonable dense

feature maps. In Section 2.1.3, a method for combining

SVMs and FCN to improve the generalization is presented.

2.1.1 Brief overview of FCN
FCN is the state-of-the-art technology for image segmenta-

tion. An FCN for generating dense feature maps for pavement

defect detection is designed, as shown in Figure 1. According

to Figure 1, the dense feature maps are generated via convolu-

tion, pooling, and dilated convolution. The processes of con-

volution and pooling are expressed in Equations (1) and (2),

𝑧𝑙
𝜇,𝜈

=
+∞∑
𝑖=−∞

+∞∑
𝑗=−∞

𝑥𝑙−1
𝜇,𝜈

⋅ 𝑘𝑙
𝑟𝑜𝑡𝑖,𝑗

⋅ 𝜒 (𝑖, 𝑗) + 𝑏𝑙 (1a)



4 TONG ET AL.

F I G U R E 1 Architecture of FCN for generating dense feature maps

(a) A 1-dilated convolution (b) A 2-dilated convolution (c) A 4-dilated convolution

F I G U R E 2 Examples of dilated convolution operations

𝜒 (𝑖, 𝑗) =
{
1, 0 ≤ 𝑖, 𝑗 ≤ 𝑛

0, other (1b)

𝑥𝑙
𝜇,𝜈

= 1
1+𝑒𝑧

𝑙−1
𝜇,𝜈

(1c)

𝑧𝑙+1
𝜇,𝜈

= max
(
𝑥𝑙
𝜇,𝜈

)
+ 𝑏𝑙+1 (2a)

𝑥𝑙+1
𝜇,𝜈

= 1

1+𝑒𝑧
𝑙+1
𝜇,𝜈

(2b)

where xl
𝜇,𝜈 and xl-1

𝜇,𝜈 are the output and input of a kernel

kl
i,j in the 𝜇th row and 𝜈th column from the lth convolutional

layer; kl
roti,j is the transposed matrix of a kernel kl

i,j; and bl is

the bias in the lth convolutional layer.

Previous studies (Shi, Ye, & Wu, 2016; Sun, Song, Jiang,

Pan, & Pang, 2017) show that the pooling operation always

leads to large spatial information loss in the processing of

upsampling. Thus, dilated convolution is applied in the FCN

for upsampling without increasing the number of parameters.

A dilated convolution operation is considered as a normal con-

volution operation with a specified number of holes (zeros).

Examples of dilated convolution operations are presented in

Figure 2.

After the dilated convolution, the generated dense feature

maps are upsampled via bilinear interpolation. By the process,

the final dense feature maps have the same size as the input

image. Each pixel in the feature maps as a pattern is classified

into one of the class memberships by predicting a probabil-

ity score vector. The pixel-level segmentation is achieved by

predicting the class of each pixel.

2.1.2 Combination of FCN and G-CRF
In an FCN, the dense feature maps are used to generate seg-

mentation results at the pixel level. In a study (Chandra &

Kokkinos, 2016), a G-CRF was introduced in the FCN for the

pixel-level classification, as illustrated in Figure 3. As shown

in Figure 3, the energy of dense feature maps is generated

by combining the vertical and horizontal factors. Consider

the output of the decoder in Figure 4 as a matrix that con-

tains P pixels, where P is equal to the number of pixels in

the imported image. Each pixel p ∈ {p1,…, pP} belongs to a

class l ∈ {1,…, L}. In the segmentation task, we specify the
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F I G U R E 3 G-CRF for the pixel-level classification

pixel-level ground-truth labels y∈ℝP and an inferred hypoth-

esis x ∈ ℝN, where N = P × L. A G-CRF defines the energy

of the inferred hypothesis x as Equation (3):

𝐸(𝐱) = 1
2
𝐱𝑇 (𝐴 + 𝜆𝐈) 𝐱 − 𝐵𝐱 (3)

where A and B are a symmetric N×N matrix of pairwise terms

and an N × 1 vector of unary terms, respectively. Therefore,

E(x) can be regarded as the posterior log-likelihood of the

inferred hypothesis x, which represents the vertical and hori-

zontal connectivity relationships between pixels in the outputs

of the decoder. Thus, it is more reasonable to use E(x) for the

pixel-level classification than the outputs of the decoder.

2.1.3 Integration with support vector
machines
In a traditional FCN integrated with a G-CRF (Chandra &

Kokkinos, 2016), E(x) is imported into fully connected layers

and a softmax layer for pixel-level classification. Considering

the generalization performance limits and the overfitting

of fully connected layers (Srivastava, Hinton, Krizhevsky,

Sutskever, & Salakhutdinov, 2014), SVMs are used to

replace the structure in this study. As an SVM outperforms

multiclassification in binary classification in practice (Jarray,

Boughorbel, Mansour, & Tlig, 2018; R. Wang, Li, Li, &

Zhang, 2019), the multiclassification problem is converted

to multiple binary-classification problems, as shown in

Figure 4. The classes of lSVM1, lSVM2, and lSVM3 are

{Pavement, Defect}, {Crack}, and {Pothole, Bleeding}.

As the uncertainty framework is integrated with the SVMs

in Section 2.2, the foundation of SVM is briefly recalled. For

the remainder of the paper, let {xi,yi}
n

i=1 be the training set

that is provided for the pixel-level classification in SVMs,

where xi ∈ℝp and yi is the label for the task. Namely, xi (i= 1,

…, n) denotes the energies of the inferred hypothesis that are

generated by the G-CRF.

An SVM, which is a variation on the simpler maximal mar-

gin classifier, uses the hinge loss as the loss function and bal-

ances the minimization of the total loss and the maximization

of the margin. An SVM is formulated as in Problem (4):

min
𝑤,𝑏

1
2 ‖𝐰‖22 + 𝐶

𝑛∑
𝑙=1

max
{
1 − 𝑦𝑖

(
𝐰𝑇

𝒙𝑖

)
, 0
}

(4)

where w denotes the hyperplane parameters and C is the con-

stant for the maximization of the margin, which can be tuned

via training.

Problem (4) can be reformulated as Problem (5) to use

the gradient descent algorithm to train the FCN and SVMs

synchronously:

min
𝑤,𝑏

1
2
‖𝐰‖22 + 𝐶

𝑛∑
𝑙=1

𝜉𝑖

s.t. 𝑦𝑖
(
𝐰𝑇

𝒙𝑖 − 𝑏
)
≥ 1 − 𝜉𝑖 𝑖 = 1,… , 𝑛

𝜉𝑖 ≥ 0 𝑖 = 1,… , 𝑛

(5)

2.2 Uncertainty framework
In this section, an uncertainty framework is incorporated into

the FCN to handle the uncertainties in features and labels. The

methods against uncertainty in features and labels are pre-

sented in Section 2.2.1 and Section 2.2.2, respectively. The

fusion method against the two uncertainties is described in

Section 2.2.3.

F I G U R E 4 Architecture of the proposed FCN
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2.2.1 Uncertainty in features
Uncertainty in the features mainly arises due to the indistin-

guishability between defects and noise patterns in the data

set (Zhang et al., 2017) and the unreasonable structure of

the FCN, among other factors. It derives from the epistemic

errors. The objective of the uncertainty framework for the fea-

tures is to provide a method for training a feature-robust FCN

model that considers such epistemic uncertainties and realizes

high accuracy.

The uncertainty in the features is modeled in each training

data element xi as Δxi, where Δxi ∈ ℝp. The features in the

training data set take values (xi+Δxi) for i = 1, …, n. Thus,

the uncertainty in the features is defined as the following set:

𝑢𝑥 =
{
Δ𝐗 ∈ ℝ𝑛×𝑝 |||‖‖Δ𝒙𝑖‖‖𝑞 ≤ 𝜌, 𝑖 = 1, 2,… , 𝑛

}
(6)

where 𝜌 is the degree parameter of the considered perturba-

tion of the features in the training data set, which is used to

represent the deviation of the features from their nominal val-

ues. 𝜌 can be determined via accuracy optimization of the

FCN, which is discussed in Section 4.1.2. The FCN without

the feature uncertainty is equivalent to the nominal FCN if

𝜌 = 0. Hence, the FCN with the feature uncertainty is pre-

ferred over the nominal FCN if 𝜌 is reasonable. Additionally,

ux is the Cartesian product, as shown in Equation (6). Thus,

it can also be used to consider alternative uncertainty sets for

feature uncertainties in future works. In this study, the norm

uncertainty set ux is considered as an example and we apply

it in practice in Section 4.

As discussed in Section 2.1.3, the energy E(x) is imported

into the SVMs. Therefore, Problem (5) should be reformu-

lated as Problem (7) to take the uncertainty set into account.

min
𝐰,𝑏

max
Δ𝐗∈𝑢𝑥

𝑛∑
𝑖=1

max
{
1 − 𝑦𝑖

(
𝐰𝑇

(
𝒙𝑖 + Δ𝒙𝑖

)
− 𝑏

)
, 0
}

(7)

Referring to the study of Xu, Caramanis, and Mannor

(2009), the robustness counterpart to Problem (7) is reformu-

lated as Problem (8).

min
𝐰,𝑏

𝑛∑
𝑖=1

𝜉𝑖

s.𝑡. 𝑦𝑖
(
𝐰𝑇

𝒙𝑖 − 𝑏
)
− 𝜌‖𝐰‖𝑞∗ 𝑖 = 1,… , 𝑛

(8)

where ||w||q* is the dual norm of w. In Problem (8), 𝜉i is deter-

mined by w, b, yi, and 𝜌. The sum of 𝜉i can be minimized via

the training of the SVMs and the FCN, for which the proce-

dure is the same as for the FCN model.

2.2.2 Uncertainty in labels
The uncertainty in labels is one of the most important prob-

lems in pixel-level classification. It occurs naturally in the

labels that are specified by humans because pixel-level label-

ing is time-consuming, complex, and semiobjective. It is an

aleatory uncertainty. A scenario is considered in which a sub-

set of the pixel-level labels deviates from the true classes.

Since aleatory uncertainty occurs randomly, it is modeled

in a part of the training data set in yi asΔyi, whereΔyi ∈ {0,1};

Δyi is equal to 1 if the label deviates from the true class and

0 otherwise. Thus, the uncertainty in the labels is defined as

the following set:

𝑢𝑦 =

{
Δ𝐲 ∈ {0, 1}𝑛

|||||
𝑛∑
𝑖=1

Δ𝑦𝑖 ≤ 𝜆, 𝑖 = 1, 2,… , 𝑛

}
(9)

where 𝜆 is a positive integer that corresponds to the consid-

ered random deviation in the labels, which represents the devi-

ation of the labels from their nominal values. 𝜆 can be deter-

mined via the accuracy optimization of the FCN, which is

discussed in Section 4.1.2. The FCN with uncertainty in the

labels is equivalent to the nominal FCN if 𝜆 = 0. Hence, the

FCN model with uncertainty in the labels is preferred over

the nominal FCN if 𝜆 is reasonable. Unfortunately, uy is not

a Cartesian product. Thus, the true labels in the training data

set are modeled as yi(1 − 2Δyi).

As discussed in Section 2.1.3, the labels for the FCN are

compared with the outputs of the three SVMs to compute the

loss function. Therefore, Problem (5) is reformulated as Prob-

lem (10) to take the aleatory uncertainty set into account.

min
𝐰,𝑏

max
Δ𝐲∈𝑢𝑦

𝑛∑
𝑖=1

max
{
1 − 𝑦𝑖

(
1 − 2Δ𝑦𝑖

) (
𝐰𝑇

𝒙𝑖 − 𝑏
)
, 0
}

(10)

The robustness counterpart to Problem (10) is

Problem (11):

min
𝑛∑
𝑖=1

𝜉𝑖+𝜆𝑞 +
𝑛∑
𝑖=1

𝑟𝑖

s.t. 𝑞 + 𝑟𝑖 ≥ 𝜙𝑖 − 𝜉𝑖 𝑖 = 1,… , 𝑛

𝜉𝑖 = max
{
1 − 𝑦𝑖

(
𝐰𝑇

𝒙𝑖 − 𝑏
)
, 0
}

𝑖 = 1,… , 𝑛

𝜙𝑖 = max
{
1 + 𝑦𝑖

(
𝐰𝑇

𝒙𝑖 − 𝑏
)
, 0
}

𝑖 = 1,… , 𝑛

𝑟𝑖, 𝜙𝑖, 𝜉𝑖 ≥ 0 𝑖 = 1,… , 𝑛

𝑞 ≥ 0

(11)

In Problem (11), the minimization of ri depends on w, b,

yi, and 𝜆. The sum of ri over i is minimized via the training of

the SVMs and the FCN, for which the procedure is the same

as for the FCN model.

2.2.3 Uncertainty in both features and labels
In this section, the methods in Section 2.2.1 and Section 2.2.2

are integrated into the FCN model to provide a new classifier
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that is stable under uncertainty in both features and labels.

The integration can be considered as an extension of the two

previous uncertainty frameworks to handle the errors in both

features and labels in the training data set.

Naturally, Problem (5) is reformulated as Problem (12) to

consider ux and uy, where 𝜌 and 𝜆 are the degree parameters

of the considered perturbation of the features and the posi-

tive integer of the considered random deviation of the labels

in the training data set, respectively. If 𝜌 = 0 or 𝜆 = 0, the

FCN is equivalent to the FCN without the uncertainty frame-

work. Then, the robustness counterpart to Problem (12) is

Problem (13):

min
𝐰,𝑏

max
Δ𝐲∈𝑢𝑦

max
Δ𝐗∈𝑢𝑥

𝑛∑
𝑖=1

max
{
1 − 𝑦𝑖

(
1 − 2Δ𝑦𝑖

)
×

(
𝐰𝑇

(
𝒙𝑖+Δ𝒙𝑖

)
− 𝑏

)
, 0
}

(12)

min
𝑛∑
𝑖=1

𝜉𝑖+𝜆𝑞 +
𝑛∑
𝑖=1

𝑟𝑖

s.t. 𝑞 + 𝑟𝑖 ≥ 𝜙𝑖 − 𝜉𝑖 𝑖 = 1,… , 𝑛

𝜉𝑖 = max
{
1 − 𝑦𝑖

(
𝐰𝑇

𝒙𝑖 − 𝑏
)
+𝜌‖𝐰‖𝑞∗, 0} 𝑖 = 1,… , 𝑛

𝜙𝑖 = max
{
1 + 𝑦𝑖

(
𝐰𝑇

𝒙𝑖 − 𝑏
)
+ 𝜌‖𝐰‖𝑞∗, 0} 𝑖 = 1,… , 𝑛

𝑟𝑖, 𝜙𝑖, 𝜉𝑖 ≥ 0 𝑖 = 1,… , 𝑛

𝑞 ≥ 0

(13)

In Problem (13), the minimization of ri depends on w, b,

yi, 𝜌, and 𝜆. The sum of ri over i is minimized via the training

of the SVMs and the FCN, whose procedure is the same as for

the FCN model.

2.3 Probability-based rejection
Falsely identified areas are always identified in the seg-

mentation results (Long et al., 2015), such as highlighted

background areas in object areas. The decision rule of the

classifier is one of the causes. In an FCN, a probability distri-

bution for each pixel is provided by the SVMs. The class with

the maximal probability is regarded as the class of the pixel.

Sometimes, this leads to a mistake if the maximal probability

is not predominant. Therefore, a rejection rule based on the

Bayes rule is proposed to avoid this scenario in this study.

The confidence metric, which is denoted as CM(Hj), is

defined in Equation (14):

CM
(
𝐻𝑗

)
=

𝑃
(
𝑝1𝑝2⋯𝑝𝑀 |𝐻𝑗

)
𝑃
(
𝐻𝑗

)∑𝑀
𝑖=1 𝑃 (𝑝1𝑝2⋯𝑝𝑀 |𝐻𝑖 )𝑃 (𝐻𝑖)+𝑃 (𝑝1𝑝2⋯𝑝𝑀 |𝐻𝑀+1 )𝑃 (𝐻𝑀+1)

(14)

where Hj is the assumption that a pixel belongs to class j,
with j ∈ {Background, Crack, Pothole, Bleeding, Conflict}.

“Conflict” denotes that the output probability distribution of

the proposed FCN cannot indicate to which class the pixel

belongs and the distribution is equivocal. M is equal to 4 in

this study. P(Hi) and P(HM+1) are the prior probabilities of

class j and “Conflict,” respectively. In this study, we assume

that the prior probabilities are equal.

By considering the independence of each class, the poste-

rior probability is simplified and computed via Equations (15)

and (16):

𝑃
(
𝑝1𝑝2⋯ 𝑝𝑀 |𝐻𝑗

)
=

𝑀∏
𝑖=1

𝑃
(
𝑝𝑖|𝐻𝑗

)
𝑗 = 1,… ,𝑀 + 1 (15)

𝑃
(
𝑝𝑘|𝐻𝑗

)
= 1
𝑛

∑
𝑛
𝐾𝑒𝑟

(
𝑝𝑘 − 𝑎

𝑗

𝑘

)
𝑗 = 1,… ,𝑀 (16a)

𝐾𝑒𝑟 (𝑥) = 1√
2𝜋ℎ

exp
(
− 𝑥2

2ℎ2

)
(16b)

𝑃
(
𝑝𝑘

||𝐻𝑀+1
)
= 1
𝑀 − 1

∑
𝑘≠𝑗

𝑃
(
𝑝𝑘|𝐻𝑗

)
(16c)

where h is the standard deviation in the Gaussian distribution;

pk is the probability of a pixel belonging to class k, which is

specified by the SVMs.

Once a rejection threshold TH has been specified, a rejec-

tion decision can be made via Equation (17):

𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 ⇒ max
𝑗=1,…, 𝑀

CM
(
𝐻𝑗

)
+

CM
(
𝐻𝑀+1

)
𝑀

≤ 1 − TH (17)

2.4 Model with FCN-GCRF, the uncertainty
framework, and probability-based rejection
The FCN-GCRF with the uncertainty framework and proba-

bility-based rejection is combined as illustrated in Figure 5.

The loss function of the model in Figure 5 is defined as

Loss = 1
𝐻

⎛⎜⎜⎝
𝐻∑
𝑖=1

𝐶∑
𝑗=1

1
{
𝑦𝑖 = 𝑗

}
log e𝑎

𝑙+2
𝑖,𝑗∑𝐶

𝑙=1 e
𝑎𝑙+2
𝑖,𝑙

⎞⎟⎟⎠ (18)

where 1{yi = j} is the logical expression. The loss function

will return 1 if a predicted class of the ith sample is true, 0 if a

predicted class is false, and 0.25 (1/M) if a rejection decision

has been made.

In addition, pixel-level accuracy is also used to measure the

performance of the algorithm during the training as

mPA = 1
𝑛

𝑛∑
𝑖=1

𝑝𝑟

𝑝𝑡
(19)

where n is the number used in the training or validation. pr is

the number of pixels in an image that are classified correctly.

pt is the total number in the image.
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F I G U R E 5 Implementation process of the end-to-end combination model

3 DATA SET AND
IMPLEMENTATION DETAILS

In this section, the database for the proposed combination is

presented in Section 3.1. The implementation details for the

combination model are presented in Section 3.2.

3.1 Image collection
The asphalt pavement sections that are used to generate a

database on which to train and test the proposed algorithm

are located in four provinces in China, as shown in Figure 6.

A Datong SH5047XJCA2D5 multifunction inspection vehi-

cle was used to collect pavement images. The camera lens was

kept perpendicular to pavements, and the distance between

the camera and the pavements was invariant in acquiring

images. Pavement digital image collection was conducted on

16 asphalt pavements with various service lifetimes, condi-

tions, traffic volumes, and mixture types to guarantee the com-

pleteness of the database. The resolutions of collected pave-

ment images are in the range of 72–300 pixels per inch. The

ratio between the distress length in images and the actual

length is 1:2 in this work.

3.2 Implementation details
A total of 8,820 pavement defect images with various reso-

lutions and sizes are acquired. In the proposed method, the

sizes of the input images are not fixed. Thus, the original

images are directly used to generate a database. Randomly,

5,292 and 1,764 pavement images were selected for the train-

ing and validation data sets, respectively. The remainder of the

database was utilized as a testing data set. The corresponding

ground-truth images of pavement defects are labeled at the

pixel level manually. Pavement, cracks, potholes, and bleeding

are labeled in a Python environment, and there is no rejected

area in the ground-truth images. Figure 7 shows several

examples.

As the uncertainty framework and probability-based rejec-

tion are not included in the Caffe (Jia et al., 2014), it is recom-

piled as discussed in Section 2. During each training iteration,

images are fed into the network in mini-batches of size 16.

To accelerate the convergence and avoid the overfitting, loga-

rithmically decreasing learning rates are adopted with a base

learning rate of 0.01. The momentum and weight decay are

0.9 and 0.005, respectively. Models with various values of 𝜌

and 𝜆 are trained using the recompiled Caffe for 60,000 iter-

ations and saved every 500 iterations to evaluate their accu-

racy on the validation data set. The above procedures are per-

formed on a computer that is equipped with an Intel® CoreTM

i7-8750H CPU, 32.00 GB RAM, and an NVIDIA GeForce

GTX 1080 8 GB GPU.

4 RESULTS AND DISCUSSION

4.1 Training performance
4.1.1 Training performance of various models
Figure 8 shows the losses of the validation data set in mod-

els #1–#4 during the training processes, which are com-

puted via Equation (18). The differences in models #1–#4 in

Figure 8 are summarized in Table 1. 𝜌 and 𝜆 in models #3 and

#4 are 0.03 and 0.04. TH in model #4 is 0.25. Model #1 has

been verified as a state-of-the-art technique for current crack

detection systems (Dung & Anh, 2019; Yang et al., 2018). The

previous studies (Cha et al., 2017; Tong, Gao, & Zhang, 2017)

prove that the supervised methods (e.g., CNNs and FCNs) are

more superior in pavement distress detection than the unsu-

pervised methods, and only the supervised methods are con-

sidered in this study.
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F I G U R E 6 Asphalt pavement sections in China. The maps are supported by Google Earth

F I G U R E 7 Examples in the database

Figure 8 shows that the final losses of models #1 and #2

were 0.140 and 0.096, respectively. Hence, the out-of-sample

accuracy and generalization performance are improved by

replacing the fully connected layers and a softmax layer with

the SVMs. This is mainly because large weights and biases

of the fully connected layers were required during the train-

ing, which results in overfitting. However, SVM classifiers try

to find a hyperplane of imported features that maximizes the

margin of separation using only a normal vector w and a dis-

placement term b (Equation (6)). Thus, an SVM has fewer

parameters than a fully connected layer, although the dimen-

sion of w is always higher than the dimension of the imported

features. Reasonable simplified parameters are essential for

preventing overfitting (Srivastava et al., 2014). The validation

results of models #2 and #3 demonstrate that the uncertainty

framework improves the proposed algorithm in terms of out-

of-sample accuracy. Hence, there are errors in the labels and

features of the training data set due to data corruption, which

negatively affect the fitting during training. The label errors

are due to pixel-level classification differences for defect areas

among humans, especially for the defect boundaries. Eight

people performed the labeling for over 3 months. The fea-

ture errors derive from the noise patterns in the database and

the inherent drawbacks of the FCN-based methods. The uti-

lization of the uncertainty framework enables this to be over-

come. It provides an effective way of avoiding data corruption

and feature derivation. Additionally, the fluctuation of losses

in model #3 is less than those of models #1 and #2. This is
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F I G U R E 8 Segmentation loss errors of the deep-learning models

also mainly due to the uncertainty framework. In deep learn-

ing, the parameter 𝜆 can also be regarded as a regularization

term for controlling the weight iteration. By comparing mod-

els #3 and #4, the losses are reduced further. With the use

of probability-based rejection, the condition that the maxi-

mal probability is not predominant is removed. We can con-

clude that various pixel-level classifications with equivocal

probability distributions are rejected in model #4. Therefore,

compared with current crack detection systems based on deep

learning (Dung & Anh, 2019; Yang et al., 2018), the proposed

process (model #4) improves the accuracy and generalization

capacity for pavement detection systems.

Figure 9 presents the pixel-level classification accuracies

of the four models. The rejected pixels are regarded as

half-correct classifications. The accuracies are bounded from

above by the training accuracy and from below by the valida-

tion accuracy. Model #4 realized the highest average accuracy,

while the average accuracy of model #3 is also acceptable. The

gaps for models #3 and #4 between the training and validation

curves are less narrow than the ones of the other two mod-

els. Hence, the accuracy and generalization performance of a

deep-learning model can be improved by utilizing the uncer-

tainty framework and probability-based rejection. In addition,

models #3 and #4 realized small standard deviations among

the classes. This is because the two models fully consider the

T A B L E 1 Differences in models #1–#4

Number G-CRF SVM classifier
Uncertainty
framework

Probability-
based rejection

Models #1
√ × × ×

Models #2
√ √ × ×

Models #3
√ √ √ ×

Models #4
√ √ √ √

uncertainty of the boundaries between pavements and defects,

while models #1 and #2 do not. The boundaries between pave-

ments and defects are fuzzy and vary among humans.

In addition, compared with the sum of the individual effi-

cacies, the integration of an FCN with a G-CRF and SVMs, an

uncertainty framework, and probability-based rejection have

two advantages: (a) the parameters in the three parts can be

adjusted simultaneously, which is promising to improve the

accuracy, and (b) an end-to-end method can be conducted by

the integration, which processes the raw data directly to avoid

the information loss among the three parts.

4.1.2 Parametric studies on training samples
Since the training data set used in this study is not as large as

a typical training data set (Everingham, Van Gool, Williams,

Winn, & Zisserman, 2010), a parametric study on training

samples is conducted to determine whether the database is

sufficient. Training data sets of the following sizes are gen-

erated: 1,058 (20%), 2,117 (40%), 2,646 (50%), 3,175 (60%),

3,704 (70%), 4,234 (80%), 4,763 (90%), and 5,292 (100%).

Figure 10 presents the validation results of the paramet-

ric studies. The required number of pavement images is at

least 4,234 for models #3 and #4. However, the required num-

bers for models #1 and #2 are 5,292 and 4,763, respectively.
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F I G U R E 9 Pixel-level classification accuracies of the deep-learning models. Ba, C, P, and Bl denote background, crack, pothole, and

bleeding, respectively

F I G U R E 1 0 Validation results of parametric studies

Hence, the generalization performances and out-of-sample

accuracies of the deep-learning methods are improved by

the combination with the SVMs and the uncertainty frame-

work. It provides a reasonable approach for developing a deep-

learning pixel-level classifier with high out-of-sample accu-

racy and generalization performance using a training data set

that is smaller than a typical training data set. In addition, the

training data set in this study is sufficient for developing the

proposed method.

4.1.3 Training performances with various
uncertainties
As discussed in Section 2.2, reasonable values of parameters

𝜌 and 𝜆 can improve the accuracy of the models theoretically.

In Section 4.1.1 and Section 4.1.2, we consider the models

with 𝜌 of 0.03, 𝜆 of 0.04, and TH of 0.25. The optimality of

the training and validation performances cannot be verified,

though the performances are acceptable. In practice, the fea-

ture and label uncertainties can be determined by varying the
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F I G U R E 1 1 Validation performance of model #4 with various

feature and label uncertainties

values of 𝜆 and 𝜌. TH can be determined from the rejection

percentage and the error rejection percentages.

Figure 11 presents the pixel-level accuracy of model #4

with various feature uncertainties and label uncertainties.

Only the validation results of the validation data set are

reported in Figure 11. The probability-based rejection of

model #4 is not considered in Figure 11. The optimal values

of 𝜌 and 𝜆 are 0.05 and 0.04. The validation accuracy of the

model with 𝜌 equal to 0.05 and 𝜆 equal to 0.04 is 91.81%. The

validation accuracy of the model without 𝜌 or 𝜆 is 86.17%.

The uncertainty framework can improve the pixel-level accu-

racy. By varying the values of 𝜆 and 𝜌, the optimal uncer-

tainty parameter values can be determined in the application

for pavement defect detection.

In Figure 11, as 𝜆 increases, the accuracy of the model

increases initially and subsequently decreases. Hence, label

uncertainty exists in the training data set. The real label uncer-

tainty is approximately 0.05; hence, approximately 0.04 of the

pixel labels in Section 4.1.1 are not correct. As 𝜌 increases,

the accuracy of the model increases initially and subsequently

decreases. Hence, feature uncertainty exists in model #4. The

real feature uncertainty is approximately 0.03. Therefore, the

structure of the convolution and pooling layers in the model

is not optimal but reasonable. By comparing the effects of the

two parameters, it concludes that the different judgments for

defect areas among people have a larger effect than the struc-

ture of the convolution and pooling layers. This is because

the pixel-level accuracy increases from 87.25% to 91.18% as

the value of 𝜆 increases from 0 to 0.04, while the accuracy

increases from 89.75% to 91.18% as the value of 𝜌 increases

from 0 to 0.05.

Figure 12 presents the rejection percentages, error rejec-

tion percentages, and correct rejection percentages of model

#4 with different THs at the pixel level. Error rejection refers

to a rejection action for a pixel that was classified correctly.

The model with 𝜌 equal to 0.05 and 𝜆 equal to 0.04 is

reported in Figure 12. With the decrease of TH, model #4

tends to reject more pixels; hence, increasingly many pre-

dicted probability distributions are regarded as blurry by

the probability-based rejection criterion. As the number of

rejections increases, model #4 makes fewer incorrect pixel-

level segmentations. However, it can also be found that the

error rejection percentages increase with the decrease of TH.

Hence, model #4 rejects much correct pixel-level segmen-

tation, which is not expected in the task. Thus, a reason-

able TH value is necessary. To balance the error and cor-

rect rejection percentages, a TH value of 0.25 is optimal. The

model with TH equal to 0.25 rejects sufficiently many incor-

rect pixel-level segmentations but makes a small number of

error rejections.

F I G U R E 1 2 Rejection performance of model #4 with 𝜌 equal to 0.05 and 𝜆 equal to 0.04
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T A B L E 2 Overall performances of four models in the evaluation

mPA mIoU fwIoU
Model #1 0.782 0.722 0.882

Model #2 0.801 0.736 0.908

Model #3 0.813 0.745 0.914

Model #4 0.822 0.758 0.921

4.2 Testing performance
4.2.1 Overall performance
To further evaluate the performance of the optimal model,

the testing data set and three indices are used (Long et al.,

2015). The indices are the mean pixel accuracy (mPA), the

mean intersection over union (mIoU), and the frequency-

weighted IoU (fwIoU), which are expressed in Equations

(20)–(22):

mPA = 1
𝑘

𝑘∑
𝑖=0

𝑝𝑖𝑖∑𝑘

𝑗=0 𝑝ij
(20)

mIoU = 1
𝑘 + 1

𝑘∑
𝑖=0

𝑝ii∑𝑘

𝑗=0 𝑝ij +
∑𝑘

𝑗=0 𝑝ji − 𝑝ii
(21)

fwIoU = 1∑𝑘

𝑖=0
∑𝑘

𝑗=0 𝑝ji

𝑘∑
𝑖=0

𝑝𝑖𝑖∑𝑘

𝑗=0 𝑝𝑖𝑗 +
∑𝑘

𝑗=0 𝑝𝑗𝑖 − 𝑝𝑖𝑖

(22)

where k is the number of pavement defects; pii is a true pos-

itive; pij is a pixel that belongs to class i but is predicted to

belong to class j, namely, a false positive; and pji is a false

negative.

Table 2 presents the overall performances of the four

models in the evaluation. Parameters 𝜌 and 𝜆 in models #3

and #4 are 0.04 and 0.05, respectively. TH in model #4 is

0.25. The rejected areas are not regarded as incorrect seg-

mentations. According to Table 2, the out-of-sample accu-

racy and the generalization performance are improved by the

SVMs, the uncertainty framework, and the probability-based

rejection. The reasons why the SVMs and the uncertainty

framework improve the out-of-sample accuracy and the

F I G U R E 1 3 Examples of segmentation results. Various rejected areas are circled by yellow circles for clarity
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generalization performance have been discussed in Sec-

tion 4.1.1. Probability-based rejection improves the perfor-

mance of model #4 by removing false segmentation, as shown

in Figure 13. The results in Figure 13 indicate that model #4

has similar accuracy levels in asphalt pavements with different

colors. For example, the results of the distress segmentation

in rows 2, 3, and 5 are in similar accuracy levels, although

these pavements have different colors. As the features related

to pavement distresses in asphalt and concrete pavements are

similar, model #4 has the potential to have similar accuracy

levels to detect concrete pavement distresses after fine-tuning

(Li, Grandvalet, & Davoine, 2018). Additionally, it prefers

to reject areas around the defects, which are the boundaries

between defects and asphalt. The definition of the bound-

aries is blurry and varies from one labeler to another. Hence,

SVMs sometimes output plausible probability distributions

and cause incorrect classifications and segmentations. This

phenomenon is avoided by probability-based rejection. Addi-

tionally, pavement inspectors can analyze the development

tendencies of pavement defects based on the distribution of

the rejected areas.

Although the proposed combination realizes reason-

able pavement defect detection performance, there remain

incorrect segmentations in the testing data set. This is due

F I G U R E 1 4 Performance of model #4 on various pavements

F I G U R E 1 5 Plot of the PAs, IoUs, and fwIoUs of model #4
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to the defect similarity, such as the shape similarity between

potholes and bleeding areas. In addition, some crack features

are not evident in the pavement images. These factors lead to

feature uncertainty. For example, the pavement distresses in

Figure 13 are well segmented except the crack on the far

right at the top in row 3. The features of the pavement in

this part are similar to the features of the crack, such as tex-

tures. It is even difficult for humans to distinguish the crack

from the pavements. In the view of deep learning, it leads

to the confusing feature extraction in the convolutional and

pooling layers. The confusing features are used for the pixel-

level classification in SVMs. With the use of the confus-

ing features the algorithm is not able to capture the crack.

The tolerance of the feature uncertainty framework is lim-

ited. In addition, some defects always occur in the same

areas, which leads to a label uncertainty in the database.

The tolerance of the label uncertainty framework is also

limited. Therefore, a more reasonable label formulation

should be adopted to overcome this problem.

4.2.2 Performance on various pavements
In pavement engineering, it is important to verify that model

#4 performs well on the pavements with various service life-

times, conditions, traffic volumes, and mixture types. The

testing data set is divided according to the pavements to study

the pavement stability of model #4. The mPAs, mIoUs, and

fwIoUs of the 16 pavements are plotted in Figure 14. The

PAs, IoUs, and fwIoUs that are obtained by model #4 for the

1,764 testing images are plotted in Figure 15. Parameters 𝜌,

𝜆, and TH in model #4 are 0.05, 0.04, and 0.25, respectively.

Figures 14 and 15 show that model #4 has similar mPAs,

mIoUs, and fwIoUs among pavements. Hence, the stability of

model #4 is acceptable. The end-to-end deep-learning model

can detect pavement defects in various pavements because the

many kernels in the convolution layers can extract many low-,

mid-, and high-level features related to pavement defects

automatically.

4.2.3 Processing time for a real-time system
The proposed combination is expected to be embedded in a

multifunction testing vehicle system. Thus, the computation

time should be as low as possible. The models #1–#4 are

implemented using Caffe on a computer that is equipped with

an Intel® CoreTM i7-8750H CPU, 32.00 GB RAM, and an

NVIDIA GeForce GTX 1080 8 GB GPU.

The computation times of the four models are listed in

Table 3. The speed of model #4 is ideal, and no detection delay

is introduced by the SVMs, the uncertainty framework, or

the probability-based rejection algorithm. Therefore, model

#4 can be used for a real-time detection system. The process-

ing times of the four models are similar because the complex-

ity of the whole calculation is not increased by the SVMs,

T A B L E 3 Computation times of four models for defect detection

(unit: s/image)

Mode Model #1 Model #2 Model #3 Model #4
GPU 0.124 0.152 0.153 0.162

GPU parallel 0.076 0.088 0.092 0.103

the uncertainty framework, or the probability-based rejection.

Hence, the proposed combination improves the precision of

the supervised algorithm without substantially increasing the

computational complexity or computation time. In addition,

a model parallel computation (X. W. Chen & Lin, 2014) can

be used to solve the problem of the continuous improvement

of image resolutions in recent years. We conducted a parallel

computation with two GPUs. The computation times decrease

obviously, as shown in Table 3.

5 CONCLUSIONS AND
RECOMMENDATIONS

In this study, a novel combination for defect detection using

pavement digital images is presented. The performance of

the proposed combination is discussed in detail. The follow-

ing conclusions can be drawn from the presented results and

discussion:

1. The proposed combination, integrated with GCRF, the

uncertainty framework, and probability-based rejection,

realizes an mPA of 0.822, an mIoU of 0.758, and an fwIoU

of 0.921 in the evaluation for pavement defect detec-

tion. The out-of-sample accuracy, the generalization per-

formance, and the pavement stability of the combination

are acceptable. The combination can be utilized to replace

onsite inspections by humans partially and to provide the

defect information in its entirety.

2. The generalization performance and out-of-sample accu-

racy of an FCN-based model can be improved by replac-

ing fully connected layers and the softmax layer by SVMs

to avoid overfitting because an SVM has fewer parameters

than a fully connected layer or a softmax layer.

3. The problems of epistemic and aleatory uncertainties exist

in the pavement defect detection. The integration of the

uncertainty framework using 𝜌 and 𝜆 can reduce the nega-

tive effects of the two uncertainties and improve the accu-

racy and generalization performance of the proposed com-

bination for pavement defect detection.

4. The probability-based rejection approach improves the

performance of model #4 by removing unreasonable seg-

mentations. Additionally, it prefers to reject areas in

the boundaries between defects and asphalt. The blurry

areas always lead SVMs to output plausible probability
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distributions, which may cause incorrect segmenta-

tions. The phenomenon is avoided by probability-based

rejection.

5. Compared with the sum of the individual efficacies, the

integration of an FCN with a G-CRF and SVMs, an uncer-

tainty framework, and probability-based rejection have

two advantages: a simultaneous parameter adjusting in the

three parts and an end-to-end method for processing the

raw data to avoid information loss.

6. The computation time of the proposed combination is

ideal, and the combination can be embedded into a mul-

tifunction testing vehicle system for real-time detection.

The SVMs, uncertainty framework, and probability-based

rejection algorithm do not introduce a detection delay

because the complexity of the whole calculation is not

increased by the integration.

7. The proposed integration provided a way to segment pave-

ment defects from pavement digital images. The segmen-

tation results can be used for defect measurement based on

some state-of-the-art technologies in the future, for exam-

ple, crack width measurement (W. Wang, Zhang, Wang,

Braham, & Qiu, 2018).
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