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Crack length measurement is an important part of asphalt pavement detection. However, some
crack measurement techniques cannot satisty the needs of accuracy and efficiency. This study
discusses application of deep convolutional neural networks (DCNN) in automatic recognition
of pavement crack length in batches. Original red, green and blue images were transformed to
grey-scale images to calculate their threshold and pre-extract cracks’ properties by k-means
clustering analysis. Then the pre-extracted crack images were used as both training and test-
ing samples. The process of accomplishing DCNN to recognise the crack length included
the structure designing, training, and testing of the networks. The output results of well-
trained DCNN were compared with those of the actual measurement to verify the accuracy
of the networks. The result indicates that the training strategy including two processes over-
comes the lack of crack labelled images and improves the accuracy of the network, combining
with quadrature encoding and stochastic gradient descent. Recognition accuracy of DCNN is
94.36%, maximum length error is 1 cm and mean squared error is 0.2377. The error rates of
length ranges 6—7 cm and 7-8 cm are bigger than other ranges Therefore, the networks can be
adopted to measure the crack length accurately, but more 68 cm crack images should be used
to improve the accuracy of the networks in future.

Keywords: asphalt pavement crack; deep convolutional neural networks (DCNN); deep
learning; picture processing; stochastic gradient descent; k-means clustering analysis

1. Introduction

Crack is a type of pavement disease, which is also an important evolution part of pavement sur-
face condition index. The attenuation effect of transverse and longitudinal cracks at pavement
condition is evaluated by equivalent area impact of crack length. Accordingly recognising crack
length automatically and efficiently is significant for the guidance of pavement maintaining.
However, manual measurement and eye measurement having disadvantages of large workloads
and low accuracy, do not meet the increasing demand of maintaining pavements. Many schol-
ars, who are devoted to developing the crack detection system, have made great progresses.
The Komatsu system realised the smart crack detection preliminarily (Fukuhara, Terada, Nagao,
Kasahara, & Ichihashi, 1990). However, this system cannot judge the types of cracks and can
only be used in the night. University of Arkansas developed a real-time crack measurement sys-
tem (digital highway data vehicle) (Luo, Li, & Wang, 2016), collecting data and recognising
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crack at a high speed. But this system needs an auxiliary of supercomputer. Bursanescu et al.
scanned the pavement by laser sensors and drew 3D images to analyse crack damage informa-
tion without shadow interference, while the disadvantages of this method are the large amount of
data and high demand for hardware equipment (Bursanescu & Blais, 1997). Although the above
methods can calculate the crack length, due to accuracy and hardware, all of these have not been
used in engineering widely.

With the development of computing technology, the convolutional neural network (Barat &
Ducottet, 2016; Leng, Guo, Zhang, & Xiong, 2015; Shi, Bai, & Yao, 2016; Xu, Luo, Wang,
Gilmore, & Madabhushi, 2016) and deep learning (Dong, Liu, & Lian, 2016; Shu et al., 2016)
have advantages in the field of image recognition. Deep learning is a perception with hidden
layers, which groups low-level features to form abstract high-level features to find the charac-
teristics of the distributed data. The convolutional neural network is a type of artificial neural
networks, whose network structure of shared weights reduces the complexity of network mod-
els and the number of parameters is similar to biological neural networks. Images are used as
the input data of the network directly avoiding the complex traditional recognition algorithm in
the feature extraction and data reconstruction. The network structure has high invariance in the
transformation of translation, scaling, tilting and so on (Ijjina & Chalavadi, 2016; Liu, Zhang, &
Liu, 2016; Xu, Zhu, Wong, & Fang, 2016). By introducing deep learning and the network to the
field of the pavement health monitoring and road maintenance, instead of manual measurement,
the accuracy and the efficiency of length recognition are increased without high hardware and
human cost. However, these are little related research.

Therefore, as a technological means, attempts have been made to employ the DCNN method to
provide an appropriate model for recognition of the crack length in asphalt pavements. The pro-
cesses of accomplishing DCNN included the structure designing, training and testing of DCNN.
In this work, to increase the robustness of DCNN, crack images of asphalt pavement were pre-
processed according to grey-scale characteristics of pavements and cracks. The neural networks
model with initialisation parameters was developed in the structure designing of DCNN. The
training of DCNN included pre-train processes and fine-tune processes, which were designed
based on deep learning to give the DCNN ability of recognising crack length. Meanwhile,
stochastic gradient descent (SGD) was adopted to speed up the training rate in the feed-forward
algorithm in the training of DCNN. At last, 8000 images were inputted into the DCNN to cal-
culate the crack length. The result was compared with the result of the actual measurement to
verify the accuracy of the DCNN. Using the above methods to structure, train and test the DCNN,
automatic recognition of pavement crack length in batches had been achieved.

2. Acquisition and preprocessing of crack images
2.1. Crack datasets

To ensure that the ratio between the crack length in images and the actual length is 1:2 in this
work, the camera lens was kept perpendicular to pavements; and the distance between the camera
and the pavements was invariant in acquiring images. Image capture instrument is shown in
Figure 1. The camera was installed in a holder, so the operator only controls the switch to use the
continuous capture mode in the collection. To get crack images in different light conditions, we
collected images on both sunny and cloudy days.

Original images of cracks were divided into 200 x 200 images and found to be equal to the
size of the DCNN input layer. Seven thousand and five hundred divided images with cracks and
500 divided images without crack were selected as the training sample. To ensure the integrity
of the sample, all lengths of cracks should be included in the training sample. To evaluate one
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Figure 1. Image capture instrument.

iteration of training, 500 images were randomly selected from the training sample as the testing
sample. Notably, 500 images did not take part in this iteration to guarantee the independence
between the training sample and the testing sample. Meanwhile, we draw a curve according to
crack length manually. The widths of lines were all only 1 pixel. So the lengths of crack in images
were the numbers of pixels in these lines. Considering the ratio of 1:2, the actual lengths were
acquired. The actual lengths were utilised as target sample for DCNN in the training and the
standard results in the testing.

2.2. Extract crack features

Collected original images were red, green and blue images in jpg format, including colour infor-
mation, which increases the difficult of feature detection and recognition of crack characteristics.
Considering computer hardware, the colour information was changed and images were saved as
grey-scale pictures in bmp format.

Grey values of cracks and pavement in grey-scale map are obviously different, so it is feasible
to extract crack features by utilising the difference. One thousand grey histograms based on part
of the training sample were drawn by MATLAB. Four histograms are shown in Figure 2, all
of which have two obvious peaks, peak 1 and peak 2. It is generally believed that the clustering
centre of each peak can be used to distinguish the segmentation value of each composition (Bona,
Borba, Benetti, Duan, & Griggs, 2013). One thousand histograms were adopted to do k-means
clustering analysis to calculate clustering centres, which were used to determinate the gray-scale
ranges of components. The average value of peak 1 was 80.59 and that of peak 2 was 151.81.
The grey-scale range of cracks and pavement was adjusted based on the clustering centre and
was confirmed in ranges of 50—110 and 110-250,00, respectively.

Grey-scale maps were extracted to ensure that only the information about crack length and
shape were saved in images, as the following steps: (1) original images (Figure 3(a)) of cracks
were divided into 200 x 200 images as Figure 3(b). (2) The colour information was changed
and 200 x 200 images were saved as grey-scale pictures in bmp format as Figure 3(c). (3) Grey-
scale range was cut to highlight the information of length and shape. The result of an image is
shown in Figure 3(d). (4) Grey-scale range of 50.05-110.14 was inputted to divide the images.
The result of an image is shown in Figure 3(e). (5) The result was saved as a grey-scale map in
bmp format.
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Figure 2. Gray-scale images of crack.

The extracting process of crack images is shown in Figure 3. Comparing Figure 3(b) with (d),
the crack features are shown clearly by dividing the images with the grey-scale range. Therefore,
the grey-scale range was used as the gist of extraction in batches (some isolate black spots need
no’t be disposed).

3. Deep convolutional neural (DCNN) network

To handle the cracks’ complex shapes and sizes in images, the convolutional neural network with
deep learning was adopted in this work. The processes of developing the DCNN to recognise the
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Figure 3. Extracting process of crack images.

crack length are shown in Figure 4. The process mainly includes the structure of DCNN, the
training of DCNN and the testing of DCNN. Remarkably, if the result of testing cannot satisfy
the demand, we should structure and train the DCNN all over again.

3.1. Structure designs of DCNN

The convolutional neural network is a widely used type of deep neural network structure.
Fukushima put forward neocognitron which could be considered as one origin of CNN
(Fukushima, 1984). Then Lecun et al. developed this structure and utilised it to recognise 2D
images and 3D human movement (LeCun, Bengio, & Hinton, 2015). Now CNN is mainly used
to recognise 2D and 3D images (Hu, Chang, Nian, Wang, & Li, 2016; Nian, Li, Wang, Xu, &
Wu, 2016), which has high invariance in the transformation of translation, tilting and so on.
This property is used to solve the problem that crack’s displacement and shape change irregu-
larly in the length recognition. Meanwhile, images as the multi-dimensional vectors are inputted
into convolutional neural networks, which decreases the complexity of feature extraction and
data classification in the process of reconstruction effectively. In addition, due to the same neu-
ron weights in the same feature map, network parallel learning is realised, which is also a big
advantage of CNN, compared with fully connect neural network.

Crack length recognition of the DCNN is composed of two convolutional layers (C1 and
C2) and two subsampling layers (S1 and S2), followed by two fully connected layers (FC1
and FC2) and the output layer, respectively. The details of DCNN are shown in Figure 5 and
Table 1. Notably, the type of pooling used in two subsampling layers was max-pooling. Using

44 The structure of DCNN |
L —

NO | The training of DCNN |

4{ The test of training |
YES, <

| Save the DCNN |

The train samples:
8000 Grey-scale maps

The test samples:
8000 Grey-scale maps

Figure 4. Process of DCNN.
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Figure 5. Structure of DCNN.

Table 1. Structure indexes of DCNN.

Layers Filters Channels Size Stride
Cl1 16 2 [5,5] 1
S1 N/A 16 [2,2] 2
C2 16 4 [5,5] 1
S2 N/A 16 [2,2] 2

max-pooling, the maximal values in 2 x 2 submatrices of convolutional maps were obtained as
a result.

3.2. Deep learning

Deep learning has attracted great attention in recent years and has been widely used in the image
recognition field with good performance (Guo, Wang, Lei, Tu, & Li, 2016; Zhao & Du, 2016).
It is also robust to represent crack information, including length. However, training the DCNN
is a challenging task because it largely relies on the parameters across layers (Bengio, Courville,
& Vincent, 2013). Hinton et al. proposed a stacked layer-wise training method for training deep
belief networks (Hinton & Salakhutdinov, 2006). It is a type of popular deep architecture. In
their work, well-trained deep belief networks are used for recognising hand-written digits. It
shows strong data representation ability of the deep architecture. Now deep learning methods
are effective in practice, including fields of object recognition, natural language processing and
speech recognition (Krizhevsky, Sutskever, & Hinton, 2012; Larochelle, Mandel, Pascanu, &
Bengio, 2012). It is the regularisation function that guides the learning towards basins of attrac-
tion of minima that support better generalisation from training dataset. The greedy strategy does
not always get the optimal answers (Goodfellow, Courville & Bengio, 2013). Recent studies
focus on training deep hierarchy models jointly, expecting to find a better way to train the
deep models.

Deep learning was used combined with the convolutional neural network to recognise the
crack length of input images. The bounding box of crack and the key points (continuous black
spots) were detected first. Crack images were aligned by similarity transformation with key
points. Current available crack estimation datasets did not contain enough labelled images to
train the DCNN. To overcome this problem, two steps (fine-tune process and pre-train process)
were taken to train the DCNN as shown in Figure 6. In the pre-train process, the randomly ini-
tialised network was first trained by a related task using images owning enough labels, which
were blue boxes as shown in Figure 6. In the fine-tune process, parameters learnt in the pre-
train process were used as initialisation for the new task. In the DCNN, networks for a crack
identification task were tainted first using images owning enough labels, which were blue boxes
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Figure 6. Diagram of deep learning.
Table 2. Classes of images.
Length range (cm) number Length range (cm) number
0-1 800 4-5 1100
1-2 500 5-6 1500
23 1000 67 1300
34 1200 7-8 600

as shown in Figure 6. DCNN trained by the crack identification task was able to extract fea-
tures. Later the parameters learnt in the pre-train process were fine tuned for the task of length
reorganisation.

Due to the deep learning strategy, the DCNN was trained for the two crack identification tasks
and length classification task. Thus, two datasets for the two different tasks were used. In the
crack identification task (the pre-train process), a dataset was generated containing 1200 images,
which was randomly selected from 8000 images. In the length identification task (the fine-tune
process), the DCNN was trained based on all of the 8000 images. Crack images were assigned to
eight classes as shown in Table 2. The above-mentioned processes were realised based on Caffe
in the condition of Inter(R) Core(TM) i7-6700 CPU, 8.00GB Random Access Memory (RAM)
and NVIDA GeForce GTX 1060 6GB GPU.

3.3. Training of DCNN

An important property of DCNN is its learning ability used to find the mapping between input
data (8000 grey-scale maps) and output data (the crack length corresponding with images). The
mapping was realised by the training of DCNN. The main job was to confirm the weights and
bias. Before the training of DCNN, we quadrature encoded the target data to improve the rate
of response speed and the training convergence. Then the feed-forward algorithm was used to
train the DCNN, while SGD was adopted to reduce the calculation amount and accelerate the
convergence of training.
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3.3.1. Quadrature encoding

Quadrature encoding has advantages of high precision and fast response speed. The target data
are transformed into the form of quadrature encoding, making count convenient and the training
convergence rate faster.

The target data of the DCNN are the crack length corresponding with images, whose mea-
sured accuracy of length is centimetre. Generally, the crack length in a 200 x 200 pixels’ image
acquired by the photography method described above was less than 7 cm. Therefore, the tar-
get data matrixes in both pre-train and fine-tune process were transformed from 1 x 1000 to
8 x 1000. The sketch map is shown in Figure 7.

3.3.2. Feed-forward algorithm

The training in both the fine-tune process and pre-train process is the adjustment of weights and
biases to obtain output through applying a proper method. The supervised methods are the most
general methods for training. The mechanism of the supervised methods is to use the algorithm,
the least mean square method and its simplification to multilayer networks, which is the feed-
forward algorithm (Shi, Schillings, & Boyd, 2004; Zhang, Fu, Jiang, Liu, & Lv, 2015). Training
of the DCNN takes place in the feed-forward algorithm in order to decrease the error between
the DCNN output and the target data. The feed-forward algorithm begins with adjusting initial
random values for weights and biases in the pre-train process, and getting values of weights and
biases from DCNN that had accomplished the pre-train process in the fine-tune process. After
importing input images, the feed-forward algorithm of the intermediate results led to producing
the output vectors. Then the errors were calculated by the difference between the target data and
the DCNN output. By the feed-forward of the error in the DCNN, the weights and biases were
modified to decrease the error in the subsequent cycle of prediction (Prasad, Eskandari, & Reddy,
2009; Shafabakhsh, Ani, & Talebsafa, 2015; Xiao, Amirkhanian, & Juang, 2009). The flowchart
describing the development of training using feed-forward is shown in Figure 8.

3.3.3. Stochastic gradient descent

Gradient descent (GD) is a common method to confirm the neural network’s weights and bias
(Erdal & Khanesar, 2016). GD is a common method to minimise the risk function and the damage
function (Senov, 2015), including batch gradient descent (BGD) and SGD (Clemencon, Bellet,
Jelassi, & Papa, 2015; Shi, Si, Feng, & Zhang, 2016; Sopyla & Drozda, 2015). BGD is to min-
imise the damage function of the whole training sample, so the ultimate solution is the global
optimal solution. In the DCNN of this paper, 8000 images were inputted together to calculate,
each of whose iterative calculation amount was 8000 x 22. SGD is used to minimise the damage
function of a part of training samples. Although one iteration does not always make the damage

1 0000 0 OO
0100 0O0O0O
P d 001 00O0O0O
quadrature encode 0 0 0 1 00 0 0
|
01 23 45 6 17| 00001000
000 O0O0OT1O0TO0
000 O0O0OTI1TO
00 00 0 O0 01
The original target data The quadrature encoding data

Figure 7. Sketch of quadrature encoding.
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Figure 8. Flowchart of feed-forward algorithm.

function towards the global optimal solution, the overall direction is to the global optimal solu-
tion and the result is the near global optimal solution. In the DCNN, only 100 images were
inputted to calculate in an integration, whose calculation amount is 100 x 22. Obviously, SGD
was adopted under the condition of satisfying the calculation accuracy, reducing the calculation
amount and accelerating the convergence of training.

SGD was adopted to calculate the damage function of training sample {(x(V, y(), (x®,
Y@y, @™,y (x| @)y stood a grey-scale map gotten from Section 2.2 as shown
in Figure 3(e), following formula (1). The first term is mean square error reflecting the gap
between predicted values and real sample values, while the second is the regularisation term
used to reduce the range ability of weights and bias to prevent over fitting, and ¢ is tradeoff
control parameter.

m ngr S S
J(Wb) = [%ZJ(WIb; x<">|y<">)] +§ZZZ(W,€)2. e

i=1 =1 i=1 j=1

The aim at training is to minimise the damage function. The gradient of the J (W, b) function
about W and b is iterated to minimise the damage function of 100 images. Function W; and
function b; (« is learning rate) can be calculated by formulas (2) and (3). Notably, we used the
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values of @ 0.1, 1.0, 2.0 and 3.0 in the training of length identification task to find an appropriate
learning rate. And the range of « was 0.1-3.0.

9

W =W —a—7J(Wb), )
ij ij agij

b =pP — amJ(Ww). 3)

3.4. Results of training
3.4.1. Performance of crack identification task

DCNN was first trained by the crack identification dataset to transfer the weights and the bias for
the length classification task. The crack identification task was a multi-class classification task.
It was evaluated by error rate of classification. Figure 9 shows the error rate of DCNN in the
pre-train process. The horizontal axis represents the number of the iteration. The vertical axis
represents the DCNN’s error rate in corresponding iteration.

The trained DCNN in the crack identification task was able to extract crack features from
images. And parameters learnt in this task were used as initialisation of the length estimation
task.

3.4.2. Performance of length identification task

In the length classification task, the DCNN trained in the crack identification task was fine tuned
using the crack length database. The length identification error rate of the DCNN is presented in
Figure 10. Obviously, DCNN using learning rate 0.1 and 1.0 showed a higher error rate than 2.0.
And the learning rate of 3.0 was a high rate which led to the error rate increasing and DCNN over
fitting. So learning rate 2 was appropriate for the training in the length identification task; and
Table 3 shows the DCNN performance through the confusion matrix using learning rate 2. The
total number of each column is corresponding to Table 2. Each row shows the result of length
recognition of 8000 images. In the length recognition and test based on the well-trained DCNN,
one image uses about 3 ms in the PC, which has Intel(R) Core(TM) 15-2520M CPU, 4.00GB

0.450

0.445

0.440

Error rate

0.435

0.430 " . - T ‘ | ' T ‘ x

Iteration

Figure 9. Crack identification task.
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Figure 10. Length identification task.

Table 3. Confusion matrixes of testing.

0-lcm 12cm 2-3cm 34cm 4-5cm 5-6cm 6—7cm 7-8cm

0—1cm 799

1-2cm 1 490 23

2-3cm 10 949 19

34cm 28 1138 13

4-5cm 43 1033 17

5-6cm 54 1450 41

67 cm 33 1190 101
7-8 cm 69 499
Total 800 500 1000 1200 1100 1500 1300 600
Error 1 10 51 62 67 50 110 101
Error rate (%) 0.12 2.00 5.10 5.17 6.09 3.33 8.46 16.83

RAM and NVIDIA GeForce GT 630. Obviously, the length recognition based on DCNN is
efficient. So the developed DCNN showed the improvement that it has lower requirement for
hardware to analyse crack analysis with high efficiency.

As Table 3 and Figure 10 show, the accuracy of DCNN is 94.35% and mean squared error
(MSE) is 0.2377 following formulas (4) and (5), while the max error of fault length recognition
is controlled in the context of 1 cm meeting the demand of pavement crack length detection.
However, the length ranges of 6—7 cm and 7—8 cm have a bigger error rate than other ranges. So
more crack images whose length is between 6—8 cm should be used to improve the accuracy of
the DCNN in future

The number of the correct results
The accuracy of DCNN = - R 4)
The total number of images

1 n
MSA = — Z (target — predicted)z. %)
n

i=1
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3.5. Reliability analysis of the developed DCNN
3.5.1. Resolution analysis of the developed DCNN

The image resolution should be considered after developing DCNN. Five different pixels per
inch (PPI) 36 PPI, 54 PPI, 72 PPI, 180 PPI, 300 PPI were used to evaluate the sensitivity to
image resolution. Notably, the resolution of images acquired from the instruction in Figure 1 was
300 PPI. Then the PPI of 8000 images was changed to 36 PPI, 54 PPI, 72 PPI, 180 PPI, respec-
tively, to realise the aim of sensitivity analysis to image resolution and ensure the rationality of
comparison among the five datasets.

The five datasets were imported to develop DCNN. The MSE of the five datasets 36 PPI,
54 PPI, 72 PPI, 180 PPI, 300 PPI were 0.3128, 0.2443, 0.2431, 0.2412, 0.2377, respectively.
Therefore, image resolution had a non-significant influence on the accuracy of the developed
DCNN in the range of 54-300 PPI. However, low image resolution, such as 36 PPI, had a
bad effect on DCNN. So image resolution should be guaranteed higher than 54 PPI in service
of CNN.

3.5.2. Light analysis of the developed DCNN

Light conditions should be considered after developing DCNN. Eight thousand images were
collected in different light conditions. Three images with different light conditions are shown in
Figure 11(a). The 8000 images were divided by the conditions under which they were collected
either sunny or cloudy day. The results of the two different light conditions are shown in Tables 4
and 5. The results showed that there was no significant influence on the accuracy of the developed
DCNN. So in our method using DCNN, crack analysis can be done both in the day and night
without having to consider weather situations while essential illumination should be guaranteed
in the night for digital imaging. The reason why the light condition had no significant influence
on the work of DCNN is that the influence of lights was removed primarily in the process of
extracting crack features by k-means. The main influence of lights was on the widths of cracks
as shown in Figure 11(b) and some isolate black spots. However, the width changes of cracks
had little influence on the DCNN’s work. And these isolate black spots were wiped off by the
convolutional layers.

Figure 11. Results in sunny and in cloudy.
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Table 4. Confusion matrixes of crack images in sunny.

0—1cm 12cm 2-3cm 34cm 4-5cm 5-6cm 67 cm 7-8cm

0—1cm 356

1-2cm 280 9

2-3cm 3 595 5

34cm 20 701 7

4-5cm 30 450 6

5-6cm 27 742 21

67 cm 16 635 72
7-8 cm 38 364
Total 356 280 624 736 484 764 694 436
Error 0 3 29 35 34 22 59 72
Error rate (%) 0 1.07 4.65 4.76 7.02 2.88 8.50 16.51

Table 5. Confusion matrixes of crack images in cloudy.

0—1cm 1-2cm 2-3cm 34cm 4-5cm 5-6cm 6—7cm 78 cm

0—lcm 443

1-2cm 1 220 14

2-3cm 4 354 14

34cm 8 437 6

4-5cm 13 583 11

5-6cm 27 708 20

67 cm 17 553 29
7-8 cm 31 135
Total 444 220 376 464 616 736 604 164
Error 1 4 22 27 33 28 51 29
Error rate (%) 0.22 1.82 5.85 5.82 5.36 3.80 8.44 17.68

4. Application in pavement

Developed DCNN was used to measure cracks in practice after the above processes. Four
highways in central China were detected. The pavement materials were SBS Asphalt Con-
crete (AC-16C), Asphalt Concrete (AC-16C), Asphalt Concrete(AC-16) and Stone mastic
asphalt (SMA-13) in four highways separately. Forty images from each road were acquired
using the above-mentioned collection method and image capture instrument. Forty images
were transformed into grey-scale maps and divided into 200 x 200 pixels. Grey-scale maps of
487,200 x 200 pixels with cracks and 125 grey-scale maps without cracks were imported into
the DCNN and the lengths of cracks were calculated.

The detection results are shown in Table 6. The results showed that the accuracies of DCNN
were 0.2318 following formulas (5), while the max error of fault length recognition was con-
trolled in the context of 1 cm meeting the demand of pavement crack length detection. However,
the length ranges 7—8 cm have a bigger error rate than other ranges. All of the results showed that
the developed DCNN can be transferrable to other asphalt pavements with similar accuracy of
the results in the length identification task, and pavement materials’ textures had little influence
on the developed DCNN.

5. Conclusions

In this work, recognition of asphalt pavement crack length using DCNN networks was
conducted. The following conclusions can be drawn:
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Table 6. MSE results of DCNN application in pavement.

Highway1 Highway?2 Highway3 Highway4
0-lcm 0.2315 0.2218 0.2104 0.2004
12cm 0.2291 0.2301 0.2298 0.2135
2-3cm 0.2234 0.2279 0.2301 0.2238
34cm 0.2126 0.2341 0.2334 0.2358
4-5cm 0.2198 0.2316 0.2297 0.2324
5—6cm 0.2137 0.2356 0.2241 0.2335
6—7cm 0.2310 0.2407 0.2218 0.2211
7-8cm 0.2613 0.2830 0.2735 0.2771
Average 0.2278 0.2381 0.2316 0.2297

(a) Networks trained in crack task are able to extract discriminative crack features. The
trained network was further fine tuned in the length identification task by crack labelled
images to recognise crack length. The training strategy based on the two processes over-
comes the lack of crack labelled images and improves the accuracy of DCNN, combining
with quadrature encoding and SGD.

(b) One image uses about 3 ms in the PC, the accuracy of DCNN is 94.35% and MSE is
0.2377 in the length recognition and test based on the well-trained DCNN. Therefore,
the networks can measure the crack length accurately and efficiently.

(c) The length ranges 6—7 cm and 7—8 cm have a bigger error rate than the other ranges. So
more crack images whose length is between 6 and 8 cm should be used to improve the
accuracy of the DCNN in future.

(d) Image resolution in the range of 54—300 PPI had a non-significant influence on the accu-
racy of developed DCNN. And light conditions showed little significant influence on the
accuracy of developed DCNN for using the k-means and the convolutional layers.

(e) The application in central China showed that the developed DCNN could be transferrable
to other asphalt pavements with similar accuracy of the results in length identification.
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