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Abstract: Several data processing techniques (DPTs)
have been implemented for evaluating pavement surface
texture to partially replace onsite inspections by humans.
However, the extensively varying real-world situations
have resulted in challenges in the widespread adoption
of DPTs. To overcome these challenges, we propose the
use of a convolutional neural network (CNN) to cal-
culate the mean texture depth (MTD) without comput-
ing the surface texture feature statistics. Because a CNN
is capable of automatically learning data features, the
proposed method does not require the conjugation of
DPTs for extracting features. The proposed CNN was
trained and tested using 8,000 and 1,000 3D scan data
samples, respectively, and achieved an average error of
0.0024 cm. The stability of the CNN was analyzed based
on various test results. Comparative studies were con-
ducted to verify the superiority of the CNN over conven-
tional MTD algorithms. The results demonstrated that
the CNN-based method is significantly more stable in
various real-world situations. Additionally, the CNN-
based method achieved higher accuracy of automatic fea-
ture extraction than traditional MTD methods. Finally,
the CNN-based method was applied to evaluate the sur-
face texture statistics of four highways in Shanxi, China,
which were different from the training and testing sam-
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ples; the results establish the transferability of this method
to different highways.

1 INTRODUCTION

With the rapid development of pavement construction
in China, it has become increasingly important to in-
spect pavement lifecycle-performance and quality, dur-
ing its construction. Pavement surface texture is a key
parameter for evaluating and predicting asphalt pave-
ment lifecycle-performance and quality, during its con-
struction (Alhasan et al., 2016; Mosa et al., 2013).
The pavement surface texture reflects both its drainage
performance and rolling resistance (Bendtsen, 2004;
Sohaney and Rasmussen, 2013). It also influences vehi-
cle operation, durability, noise emission, and fuel con-
sumption (Zaniewski et al., 1982; Oijer and Edlund,
2004). Therefore, it is important to evaluate pavement
surface texture rapidly and accurately.

The evaluation parameters for pavement surface tex-
ture are highly numerous and diverse. These parame-
ters include the surface macrotexture, mega-texture for
vehicle suspension responses, and international rough-
ness index. As a key index, the surface macrotexture is
related to the tire-sidewall deformation of moving vehi-
cles (Wang et al., 2010), energy dissipation (Zhou et al.,
2014), and rolling resistance (Praticò and Vaiana, 2015;
Yuan and Lai, 2010). Therefore, it is essential to mea-
sure the macrotexture while evaluating and predicting
the pavement surface texture.
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The surface macrotexture (wavelengths between 0.5
and 50 mm) is assessed using both intrinsic and extrin-
sic indicators. The extrinsic indicators such as the pen-
dulum friction coefficient reflect the influence of the
surface macrotexture on vehicles. The intrinsic indica-
tors such as mean texture depth (MTD) and mean pro-
file depth (MPD) reflect both the geometry and surface
characteristics of surfaces and the indirect influences of
the surfaces on vehicles. The main methods for assess-
ing intrinsic indicators include volumetric, laser-based,
and 3D scan methods. The typical indicator used for
volumetric methods is the MTD (Yuan and Lai, 2010),
which can be calculated from the ratio between the vol-
ume and surface area. The MPD is a typical indica-
tor for laser-based methods (Wang et al., 2010; Zhou
et al., 2014). It is calculated from the ratio of the cross-
sectional area to the length. 3D scanning methods rely
on accurately scanning the pavement and evaluation of
the macrotexture characteristics from the scanned data
(Garbowski and Gajewski, 2017; Čelko et al., 2016).

The sand patch method is a popular volumetric
method that is widely used as a standard for pavement
condition assessment (ASTM E965-96, 1996; EN 13036-
1, 2010). Particularly, the electric sand patch method,
which is more precise than the manual sand patch test,
is widely used in China (JTG H20-2007, 2007). In prac-
tice, the sand patch method has demonstrated remark-
able performance of evaluation of asphalt surface tex-
ture exhibiting a close relationship between the MTD
and macrotexture (Praticò and Vaiana, 2015); however,
it also exhibits certain disadvantages. The sand patch
method is not observed to be reliable if it is used on
porous surfaces because of the negative effects of the
pavement pores (ISO 13473-1, 1997). Additionally, the
sand patch method is not appropriate for certain sur-
face conditions such as freshly paved surfaces and wet
pavements (JTG H20-2007, 2007). With regard to laser-
based methods, laser devices scan surface profiles and
calculate the MPD based on the profile height coordi-
nates. This method is less affected by pavement condi-
tions compared to the sand patch method. However, an
MPD calculated only from a profile cannot fully char-
acterize the pavement surface texture. Various studies
(Miao et al., 2011; Torbruegge and Wies, 2015) have
verified that the relationship between MPD and skid re-
sistance was not as close as expected when using laser-
based methods. For research on 3D scan methods, nu-
merous indexes such as power spectrum energy (Gendy
et al., 2011), root mean squared error (Kanafi et al.,
2014), and estimated texture depth (Vilaca et al., 2010)
have been developed to represent the surface macro-
texture based on 3D scanned data. However, these
indexes are not likely to capture the expected corre-
lations between macrotexture and pavement perfor-

mance. Therefore, it is necessary to develop a method
combining MTD and 3D scan data to overcome the dis-
advantages mentioned above. However, it is challeng-
ing to create a formula, unsupervised algorithm, or su-
pervised algorithm (Adeli, 2001; Amezquita-Sanchez,
2006) such as artificial neural network (ANN) to iden-
tify the relationship between 3D scan data and MTD for
understanding the effects of the various pavement mate-
rials. This is because different pavement materials have
different mean depth planes (MDPs) and maximum
height of the disturbing sand, which are mainly affected
by the pavement materials, geometry, and surface char-
acteristics. The MDP and maximum height of the dis-
turbing sand are key features for calculating the MTD
(Hu et al., 2016; Slabej and Kotek, 2014). A straightfor-
ward formula or unsupervised algorithm cannot extract
the different MDPs and maximum heights from the 3D
scan data of various pavement materials (Wen, 2009).

With the continuous development of deep learn-
ing techniques, convolutional neural networks (CNNs)
have demonstrated significant advantages in the field
of object recognition, such as string recognition (Barat
and Ducottet, 2016), script identification (Shi et al.,
2016), 3D object retrieval (Leng et al., 2015), and
human-action recognition (Xu et al., 2016b). First pro-
posed by Lecun et al. (LeCun and Bengio, 1995;
LeCun, 1989), CNNs can be considered as a type of su-
pervised highly nonlinear mapping that output target-
features in a specified format based on the input data.
CNNs have been successfully applied in the fields of
2D image recognition (Ortega-Zamorano et al., 2017),
3D object recognition (Fan et al., 2010), natural lan-
guage processing (Zeinalia and Story, 2017), audio clas-
sification (Zhu et al., 2016), brain–computer interac-
tion (Cecotti and Graser, 2011), human tracking (Fan
et al., 2010), image restoration (Jain et al., 2007), de-
noising (Koziarski and Cyganek, 2017; Jain and Se-
ung, 2008), and segmentation (Turaga et al., 2010). De-
tailed information regarding CNNs is available in Leng
and Xiong (2011) and Leng et al. (2010). For example,
Rafiei (Rafiei and Adeli, 2017) used a novel machine
learning model for estimating sale prices of real estate.
The robustness and automation of feature extraction
are generally considered desirable properties in various
engineering fields. Robustness indicates a strong toler-
ance for translation and distortion while learning deep
features from input data. Automation implies learning
deep features with no assistance from humans. These
two properties are important for regression problems in
MTD analysis when handling the complex foreground,
background, and feature information in 3D scan data
and extracting different MDPs from various pavement
materials. Therefore, CNNs can be utilized to construct
a relationship between scanned data and MTD.
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A CNN is a type of ANN whose structure of shared
weights reduces the complexity of a network model. Its
structure is similar to that of biological neural networks
(Xu et al., 2016a; Ijjina and Chalavadi, 2016). Data
are directly used as inputs in CNN algorithms, which
eliminates the complex data preprocessing steps re-
quired for conventional unsupervised algorithms. Com-
plex preprocessing is likely to result in the deletion of
important data. Additionally, the CNN network struc-
ture exhibits high tolerance for transformation (Arevalo
et al., 2016), translation (Li et al., 2016), scaling (Li
et al., 2016), tilting (Liu et al., 2016), etc. This prop-
erty is useful for analyzing complex 3D scan data.
CNNs have been used to detect structure performance
in recent years. For example, Tong and colleagues
(Tong et al., 2018; Tong et al., 2017) employed a CNN
to calculate the lengths of pavement cracks and con-
cealed cracks based on image data and ground pen-
etrating radar data, respectively. The results of these
studies demonstrated that CNNs exhibit remarkable
stability notwithstanding the influence of pavement ma-
terials and other interference factors. Cha and col-
leagues (Cha, et al., 2017a; Cha et al., 2017b) de-
tected pavement damage using CNNs, and the results
demonstrated that CNNs are capable of identifying
concrete-cracks in real-world situations. Lin et al. (2017)
detected structural damage using automatic feature-
extraction via deep learning. Liao presented a deep-
learning method for carbon emission reduction (Liao,
2017). Additionally, there have been a few studies
combining CNNs with images for damage detection,
in the past few years (Rafiei et al., 2017; Koziarski
and Cyganek, 2017). Therefore, it is reasonable to em-
ploy CNNs to construct a relationship between the 3D
scanned data and MTD based on the major factors in-
troduced above.

In this study, we used a CNN to construct a relation-
ship between 3D scan data and MTD. The first task in
this research was collecting pavement surface 3D scan
data for training and testing data sets and identifying
a deep representation of these data sets for our CNN.
The second task was to construct an accurate CNN that
was robust to various pavement surfaces to guarantee
stability and wide-range adaptability. The main advan-
tages of the proposed CNN-based evaluation of MTD
are that it requires no manual feature extraction and
that its prediction results are accurate and robust to var-
ious real-word conditions (e.g., different pavement ma-
terials). Our goal is to replace the sand patch method
with 3D scanning technology and CNNs in certain con-
ditions where the sand patch method is not convenient
for evaluating MTD, such as gap-graded surfaces, sur-
faces with defects, continuous pavement construction,
and freeway-condition inspection without affecting traf-

fic capacity. The remainder of this article can be sum-
marized as follows: our methodology, focusing on a
method to scan pavement surfaces, an architectural de-
scription of our CNN, and a few important functions
and parameters for network learning, is introduced in
Section 2. This is followed by a discussion of the per-
formance of our CNN-based method in Section 3. The
performance discussion of the CNN-based method in-
cludes the performance of training and testing, stabil-
ity analysis, comparative studies, and an application of
a trained CNN to four highways in Shanxi, China. No-
tably, the four highways used for the application of
the trained CNN were not the ones used to test the
CNN after training. Our conclusions are summarized in
Section 4.

2 METHODOLOGY

This section presents a method to scan pavement sur-
faces, an architectural description of our CNN, and a
few other important methods such as the backpropaga-
tion algorithm. The methods used to collect the surface
texture data and generate the training and testing data
sets are described in Section 2.1; this is followed by the
description of our CNN architecture in Section 2.2. Fi-
nally, other important functions and parameters used in
this study are described in Section 2.3.

2.1 Building data sets for CNN

2.1.1 Scanning method. The first step for developing
our CNN was to collect information regarding surface
texture features using a specific method. Generally, the
methods for 3D object representation are divided into
model-based and view-based approaches. Model-based
methods, generally referred to as 3D scanning, detect
digital objects directly from the original 3D objects us-
ing range measuring systems (Osada et al., 2002; Patane
et al., 2009). View-based methods (Passalis et al., 2006;
Ansary et al., 2007), generally referred to as structure
from motion, 3D reconstruction, and photogrammetry
3D reconstruction, first capture 2D images of the orig-
inal objects from fixed viewpoints using 2D cameras
and then use these images as object information. Sur-
face texture features cannot be accurately reflected by
view-based methods. However, 3D scan technology has
achieved remarkable performance of generation of 3D
model representations of pavement, as demonstrated in
the research by Hu et al. (2016). Therefore, a model-
based method was employed in this research.

A multiple-point 3D scanner was used to generate
point clouds of pavement surfaces from 52 core sam-
ples. The distributions of the training and testing core
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Fig. 1. The distributions of training and testing cores.

Fig. 2. Processes and results of 3D surface images.

samples are illustrated in Figure 1. The number of dots
per inch (DPI) of the point clouds was 100. The resolu-
tion in both the x and y directions is 0.25 mm. The scan-
ning process is illustrated in Figures 2a–c. As shown in
Figure 2c, four positions were defined on a core sam-

ple, and only the results inside the four positions were
retained for generating point clouds. Then, 3D surface
reconstruction of this point cloud of the core sample was
performed. An example result of 3D surface reconstruc-
tion is presented in Figure 2d. By shifting the four posi-
tions, different 3D surface images could be collected.

2.1.2 Training and testing data generation. The selec-
tion of training data is a key issue because the perfor-
mance of a CNN is largely dependent on the number
and quality of the training samples. In general, it is ad-
vantageous to acquire as many training data as possi-
ble or to collect training data that is representative of a
larger pavement structure. However, collecting a large
amount of training data implied the necessity of scan-
ning a large area of the pavement. Using the method
introduced in Section 2.1.1, 9,000 3D scanning results
were produced from 52 core samples. Eight thousand
of the 9,000 3D scanning results from 38 core sam-
ples of eight training highways were used to train the
CNN. The remaining 1,000 3D scanning results from the
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remaining core samples of four testing highways were
used as the testing data set. The distributions of the
training and testing highways are shown in Figure 1.

The target data is another important issue when
developing a CNN. As mentioned in the Introduction,
the main goals behind using a CNN to replace the sand
patch test are as follows: to acquire MTD results close
to the MTD measured by the sand patch test, reduce
the measurement time for pavement detection, prevent
operator error, and provide an alternative method for
use in certain conditions that are unsuitable for the
sand patch test. To measure the MTD of the scan range,
a modified electric sand patch test was utilized. In the
modified sand patch test, we first calibrated the electric
sand patch device by executing a series of tests on a
glass plate. Then, we patched sand in a scan range on
a core sample. Dry sand was gradually deposited in the
scan range, whose boundary was defined by the four
aforementioned positions, after scanning. We patched
5 ml of sand in a 75-mm2 area. The constant width
of the sand patching area was 75 mm. After the sand
was completely patched, we measured the length of
the sand patching area. Then, the MTD was calculated
using Equation (1). The test on the core sample had the
same device and operation as the field test, which could
guarantee results with a similar accuracy, although the
evaluation areas were different. The obtained MTD of
the core sample was close to the MTD obtained in the
field test conducted at the location from where the core
sample was collected.

MTD= V olume of dry sands

Area of scan range
(1)

2.2 Architecture description

Our CNN was created using multiple layers including
input, convolutional, pooling, and output layers (LeCun
and Bengio, 1995; LeCun, 1989). A deep representation
for the pavement is derived in the input layer. The con-
volution and pooling operations are conducted in the
convolutional and pooling layers, respectively. Figure
3 presents the CNN architecture used in our research.
Table 1 lists the detailed dimensions of each layer and
operation.

2.2.1 Input layer. The first layer of the CNN is the in-
put layer. Considering the fixed format requirement for
the input data fed into the input layer (Leng and Xiong,
2011), a transformation should be performed, as shown
in Figure 4. Figure 4a presents a portion of an original
data sample, where each column indicates the x, y, and z
coordinates of the pavement surface. Figure 4b presents
the format after the transformation, wherein the z coor-

dinates are represented in an image by a sequence of x
and y coordinates.

2.2.2 Convolutional layer. In contrast to a conventional
ANN, a CNN has a special structural layer that is used
to extract local features from the training data, which
is called a convolutional layer. In our research, given a
training data set {(xi , yi ), i = 1, . . . , n}, the input is xi ∈
R3 and the target output is yi ∈ R. The convolutional
layer calculates the feature maps in the following form:

I j = φ

(∑
i

xi ∗ � j + b j

)
(2)

� j = [
θij
]

3×3 (3)

where � j and b j are the weight vector and bias vec-
tor, respectively, of the convolutional kernel j. � j is
calculated as illustrated in Equation (3). θij are the
connecting weight parameters. θij vary from one convo-
lutional kernel to another. Therefore, different convolu-
tional kernels extract different features from the train-
ing data set {(xi , yi ), i = 1, . . . , n}. θij are acquired from
the training stage of the CNN. φ() represents an acti-
vation function. The sigmoid function was utilized as
the activation function in our research. I j represents the
feature maps acquired by convolutional kernel j. The
feature maps acquired from the convolutional layer en-
code the local features, and their dimensions depend on
those of the input data and convolutional kernels. An
example convolution is illustrated in Figure 5. As shown
in Figure 3, our convolutional layer consists of 16 con-
volutional kernels each of size 3 × 3. Sixteen feature
maps are acquired after xi is fed into the convolutional
layer.

2.2.3 Max-pooling with dropout. With the goal of cap-
turing the most relevant global features from the train-
ing data set, acquiring a form of spatial transformation
invariance, and reducing the computation complexity
for completely connected layers, a pooling operation
is utilized to down-sample the feature maps I acquired
from the convolution layer as shown in Equation (4).

I l+1
j = pooling

(
I l
1, . . . I l

i , . . . , I l
n

)
(4)

where I l+1
j is the result of the pooling operation on

the feature maps acquired by convolutional kernel j. I l
i

is the feature map acquired by convolutional kernel j.
Pooling() is the pooling function. i represents the ith in-
put from the 3D scan data described in Section 2.2.2.

An ideal pooling function is expected to preserve
task-related information while discarding irrelevant de-
tails. Two popular options are average-pooling and
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Fig. 3. Neural network for roughness analysis.

Table 1
Dimensions of layers and operations

Layer Height Width Depth Operator Height Width Depth Number Stride

Input 256 256 1 C 3 3 1 16 2
L1 128 128 16 P 2 2 – – 2
L2 64 64 16 Fc – – – 120 –
L3 – – 120 A – – – 120 –
L4 – – 120 E – – – – –
Output 1 1 n – – – – –

Note: C = convolution; P = pooling; Fc = full connection; A = activation (sigmoid); E = Euclidean Loss.

Fig. 4. Transformation of 3D scan data.

max-pooling. Average-pooling considers all the activa-
tions in a pooling region to contribute equally. This
is likely to downplay high activations because nu-
merous low activations are included with an identical
weight. Max-pooling captures only the strongest feature
parameters and disregards all other units in the pool-
ing region. This is likely to downplay medium activa-
tions because only high activations are utilized. These
two methods evidently have their own advantages and
disadvantages. Therefore, we employ a modified pool-
ing method, or more accurately, a “max-pooling with

dropout” method to prevent the disadvantages men-
tioned above.

With the inclusion of dropout, Equation (4) is trans-
formed to Equations (5) and (6):

Î l
i = ml ∗ I l

i (5)

Î l+1
j = pooling

(
Î l
1, . . . Î l

i , . . . , Î l
n

)
(6)

where ∗ and ml denote an element-wise product and
binary mask, respectively, with each element drawn
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Fig. 5. An example convolution.

Fig. 6. An illustrative example showing the procedure for max-pooling with dropout. It is supposed that the units (a1, a2, a3, a4)
are reordered as 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4.

independently from a Bernoulli distribution. Figure 6
presents an example to illustrate the process of max-
pooling with dropout. Compared to max-pooling with-
out dropout, where all the strongest activations form the
output, max-pooling with dropout is a stochastic proce-
dure because it is not guaranteed that the strongest ac-
tivations become the outputs.

The process used to formulate this stochastic proce-
dure is summarized as follows:

Step 1 Reorder the units in each pooling region in
nondescending order. As shown in Figure 2, suppose
the units (a1, a2, a3, a4) are reordered as 0 ≤ a1 ≤ a2 ≤
a3 ≤ a4.

Step 2 Set dropout rate. With dropout included, each
unit in the pooling region may be set to zero with a
probability pi. The feasibility of the occurrence of this

event is illustrated in Figure 6 with the probability set
according to probability theory in Equation (7),

P(remain ai ) = pi (1 − pi )n−1 (7)

where n denotes the number of units in the pooling re-
gion. pi is called the dropout rate and is typically set
to 0.5 because the maximum number of events can be
extracted using a dropout rate of 0.5 (Srivastava et al.,
2014).
Step 3 Handling special events. A special event that oc-

curs with a probability of pn
i is one wherein all the units

in a pooling region are dropped and the results of the
pooling operation are zero. A multinomial distribution
is adapted to handle this special event. Detailed infor-
mation regarding the multinomial distribution used in
max-pooling with dropout is available in Wu and Gu
(2015).
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Step 4 Calculate a final output for the pooling region. A
final output is received from a max-pooling operation
on the condition that a portion of the units in a pooling
region is removed and the others are retained.

2.2.4 Output layer. After the inputs xi pass through the
convolutional layers and max-pooling layers described
above, a feature representation Î l+1

j of fixed-size is ac-
quired. The layers following the max-pooling layer are
fully connected layer and Euclidean Loss layer. The
function of the fully connected layer with connecting
weights Wz in our CNN is identical to that in a conven-
tional CNN. For the feature representation set Î l+1

j with
a fixed-sized acquired from the pooling layer, a linear
transformation is performed using Equation (8). The
output of the fully connected layer is a vector with a
fixed number of dimensions.

φ(xi , Wz) = Wz Î j (8)

where Î j denotes the representation set of Î l+1
j .

In conventional CNNs (Zhu et al., 2016; Fu et al.,
2015), the layer following the fully connected layer is
a softmax layer, which considers the outputs of the fully
connected layer as likely scores for the corresponding
classes and then transforms the score vector into a prob-
ability distribution. However, considering that the goal
of our CNN is to perform quantitative surface texture
evaluation rather than simple classification, the softmax
layer is replaced with a Euclidean Loss layer in our net-
work. The function of the Euclidean Loss layer in our
CNN is to perform regression utilizing the output of the
fully connected layer. The regression task in the Eu-
clidean Loss layer is performed by calculating the Eu-
clidean distances between the outputs of the CNN and
the targets using Equation (9) and then minimizing the
distances via network learning by the Euclidean error
gradient as shown in Equation (10).

E = 1
2N

N∑
i=1

‖ŷi − yi‖2
2 (9)

∂ E

∂y
= 1

N

N∑
i=1

|ŷi − yi | (10)

where ŷi and yi denote the output of the Eu-
clidean Loss layer and the target outputs, respectively.
Equations (9) and (10) represent the most significant
difference between the Euclidean Loss layer and a soft-
max layer. The output of the Euclidean Loss layer is a
likely result for pavement MTD in our framework.

2.3 Network learning

The goal of CNN learning is to minimize the Eu-
clidean distance between the predicted result of pave-
ment MTD ŷi and the actual result of pavement MTD
yi for all the training data samples by adjusting the con-
nection weights Wz of the fully connected layer, weight
vectors � j , and bias vectors b j of the convolutional ker-
nels using the backpropagation algorithm. The conven-
tional backpropagation algorithm exhibits the disadvan-
tage of low convergence speed. Therefore, a modified
backpropagation algorithm with a damping term is uti-
lized to overcome this disadvantage.

In our backpropagation algorithm, Wz , � j , and b j are
optimized using Equations (11)–(13), respectively:

Wi (p + 1) = Wi (p) − αz
∂ E

∂Wi (p + 1)

+ β [Wi (p) − Wi (p − 1)] (11)

� j (p + 1) = � j (p) − α j
∂ E

∂� j (p + 1)

+ β [� j (p) − � j (p − 1)] (12)

b j (p + 1) = b j (p) − α j
∂ E

∂b j (p + 1)

+ β [b j (p) − b j (p − 1)] (13)

where p – 1, p, and p + 1 denote the p – 1th, pth, and p +
1th training iterations, respectively. Wi denotes the con-
nection weights of the neuron i in the fully connected
layer, whereas � j and b j denote the weight and bias
vectors, respectively, in convolutional kernel j. αz and
α j are the learning rates for the fully connected layer
and convolutional layer, respectively, and their range is
[0, + �]. β is the damping coefficient.

Based on our backpropagation algorithm, the proce-
dure for developing a CNN in our research is as follows:

Step 1 Assign stochastic parameters Wz , � j , and b j to
the initial CNN.

Step 2 Select 1,000 stochastic training samples {(xi , yi ),
i = 1, . . . , 1, 000} for each iteration, and then, input
them into the CNN. The input is xi ∈ R3, and the tar-
get output is yi ∈ R.

Step 3 Calculate the MTD of the 1,000 stochastic train-
ing samples, and then, evaluate the outputs using
Equation (9).

Step 4 Adjust the parameters Wz , � j , and b j using
Equations (10)–(12).

Step 5 Select another 1,000 stochastic training samples
and repeat Steps 2–4 until the obtained MTD satisfies
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Fig. 7. Training errors for different models.

the criterion that the error calculated using Equation
(9) is lower than 10−2 cm.

Step 6 Input the testing data set into the well-trained
CNN, and calculate the error for the testing data set
using Equation (9).

The above procedure was performed using Caffe on
a computer equipped with an Intel R© CoreTM i7-6700
CPU, 8.00 GB RAM, and an NVIDIA GeForce GTX
1060 6 GB GPU.

3 CNN PERFORMANCE AND DISCUSSION

To validate the developed CNN described in the pre-
vious section, a discussion on the performance of the
CNN-based method is presented in this section. The dis-
cussion includes the performance of training and test-
ing in Section 3.1, stability analysis in Section 3.2, com-
parative studies in Section 3.3, and an application of
the trained CNN to four highways in Shanxi, China in
Section 3.4.

3.1 Training and testing

To investigate the performance of the CNN and the
effects of dropout and the damping term, models
with dropout and the damping term, dropout but
no damping term, and no dropout or damping term
were developed separately using the training data set.
The results of the different models are presented in
Figure 7.

Figure 7 illustrates the root mean squared error for
the model using Equation (10) over 5,000 iterations dur-
ing the training. With dropout and the damping term,
the error fell rapidly to 0.0094 cm in the 2,330th itera-

tion and then to 0.0024 cm in the 5,000th iteration. In
the CNN with dropout but no damping term, the error
fell to 0.0100 cm in the 2,820th iteration and 0.0035 cm
in the 5,000th iteration. This is a slower improvement
than that of the model with a damping term. The speeds
of improvement of the two models reveal that the rate
of convergence can be improved by utilizing a damp-
ing term. However, the damping term exerted negligible
influence on the final accuracy of the MTD evaluation
based on a comparison of the final errors of these two
models. The reason for the positive effect on the rate
of convergence is that a damping term decreases the
amplitude variation of the parameters Wz , � j , and b j

in each iteration. Therefore, certain inappropriate pa-
rameter adjustments, which appear as error increases
during training, are reduced (see hollow red box in
Figure 7).

Without either dropout or a damping term, the er-
ror fell to 0.0097 cm in the 3,871st iteration and 0.0085
cm in the 5,000th iteration, revealing that the max-
pooling layer with dropout exerted a significant ef-
fect on both the rate of convergence and the accuracy
of the MTD evaluation by the CNN. Therefore, the
modified CNN in our research achieved higher perfor-
mance for both training and testing compared to con-
ventional CNNs. The reason for the positive effect of
dropout on both the rate of convergence and accuracy
of the MTD evaluation is that certain unnecessary sam-
ples from the 3D scanning data are removed by the
dropout operation. These unnecessary data are likely
to influence the training effectiveness or even result in
overfitting. The max-pooling layer with dropout over-
comes the disadvantage of conventional max-pooling,
which captures only the strongest feature parameters
and disregards all the other units within the pooling
region.

The speed of training the CNN with dropout and
damping was approximately 60 min per 100 iterations
using the GPU; however, the runtime for training using
the CPU was approximately 1–2 d per 100 iterations.
Evidently, using a GPU significantly improves the effi-
ciency of training.

Figure 8 presents features of receptive fields of the
convolutional layer in the CNN with dropout and damp-
ing in the 5,000th iteration. The figure contains a clear
area indicating that the network is properly trained.
This is a positive indication because a well-trained net-
work typically exhibits smooth and clear patterns (Cha
et al., 2017a). In Figure 8, the features of the 3rd, 10th,
13th, and 14th regions can be considered as MDPs,
whereas the other regions can be considered as planes
that are higher or lower than the MDPs. The rea-
son is that the average coordinates of the mapped re-
gions of the 3rd, 10th, 13th, and 14th were very close
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Fig. 8. Features of receptive fields of a well-trained CNN.

to the coordinates of the MDPs, whereas the average
coordinates of the other mapped regions were appar-
ently different from the coordinates of the MDPs, which
we calculated based on the results of the electric sand
patch tests. Therefore, the convolutional kernels in the
well-trained CNN have the capability to automatically
extract the features of the MDPs.

From the perspective of pavement surface texture de-
tection, all the CNNs achieved adequate performance
of MTD evaluation because the average errors between
the results of the sand patch test and the outputs of the
CNNs were 0.0024, 0.0035, and 0.0085 cm. For the sand
patch test, the required precision was 0.01 cm based on
guideline JTG H20-2007 of the Highway Performance
Assessment Standards of China (JTG H20-2007, 2007).
However, the average error could only reflect the aver-
age performance of the CNNs and has no significance
for evaluating the stability of the CNNs for different
pavement materials or different 3D scanning data with
different DPIs. For example, a well-trained CNN with
a reasonable average error rate is likely to achieve ad-
equate performance for SBS modified asphalt concrete
(AC-16C) albeit low performance for stone mastic as-
phalt (SMA-13). Therefore, an analysis based on the
test results must be performed to verify the stability of
our CNN.

3.2 Stability analysis

Stability analysis based on the test results was per-
formed to further verify the performance of our CNN.
The analysis consisted of two main parts: the stability of
different pavement materials and stability of different
DPIs.

3.2.1 Pavement materials. To verify the robustness of
the CNN to different pavement materials, the test re-
sults, specifically the errors between the results of the
sand patch tests and the outputs of the modified CNN
in the 5,000th iteration, were divided according to the
pavement materials. The texture characteristics of the
four pavements were different from those of the pave-
ments used for training, owing to the different service
times. Figure 9 illustrates the absolute error distribu-
tion of testing divided according to the different pave-
ment materials. As shown in the frequency distribu-
tion histograms, all the errors are between 0.013 and
0.034 cm regardless of the pavement type, which are
highly similar and close to the electric sand patch test re-
sults. Therefore, we can conclude that these four surface
materials exert negligible influence on the accuracy of
our CNN. Considering that SBS modified asphalt con-
crete (AC-16), asphalt concrete (AC-13 and AC-16),
and stone mastic asphalt (SMA-13) are the most com-
mon surface materials in China, it is reasonable to as-
sume that our CNN could be generally utilized to simu-
late sand patch testing in China.

The errors between the outputs of the CNN and the
results of the sand patch tests are likely to have been
caused by three factors: (1) the variations in the 3D
scans at the same location, (2) the variations in the sand
patch tests at the same location (ASTM E965-96, 1996;
JTG H20-2007, 2007), and (3) the errors of the predicted
MDPs of the CNN. The variations in the 3D scans at the
same location were smaller than the variations in the
sand patch tests at the same location (Prowell and Han-
son, 2005), particularly for open-grade pavement. The
variations in the sand patch tests at the same location
contributed more to the errors than the variations in the
3D scans at the same location. However, it is challeng-
ing to compare the effect of the variations in the sand
patch tests and the errors of the predicted MDPs based
only on the stability analysis of the pavement materials;
this is further discussed in Section 3.3 based on the re-
sults of comparative studies.

3.2.2 DPIs. The accuracy of our CNN is also influenced
by another important factor, namely, DPI; this is be-
cause DPI is likely to influence the quality of the in-
put data. Therefore, a stability analysis on DPI was per-
formed. As mentioned above, the DPI of the scans for
the training and testing data generation was 100. As
demonstrated in Section 3.1, the CNN achieved ade-
quate performance using 100 DPI scan files. Next, we
decreased the scanning DPI of the 3D scanner. Using
this method, testing data sets of 85, 50, 30, and 25 DPI
were generated. These data sets exhibit high compara-
bility with the testing data set of 100 DPI. The testing
data sets with 85, 50, 30, and 25 DPI were then imported



Convolutional neural network 11

0.0015 0.0020 0.0025 0.0030
0

5

10

15

20

25

30

35

C
ou

nt

Error/cm

SBS asphalt concrete (AC-16C)

0.0015 0.0020 0.0025 0.0030
0

5

10

15

20

25

30

C
ou

nt

Error (cm)

 Asphalt concrete (AC-16C)

0.0015 0.0020 0.0025 0.0030
0

5

10

15

20

25

30

35

C
ou

nt

Error/cm

 Asphalt concrete (AC-13)

0.0015 0.0020 0.0025 0.0030
0

5

10

15

20

25

30

35

40

C
ou

nt
Error/cm

 Stone mastic asphalt (SMA-13)

Fig. 9. Errors from different pavement materials.

Table 2
Errors of data sets with different DPIs

DPI 100 85 50 30 25
Error/cm 0.0024 0.0130 0.0156 0.0238 0.0257

into the well-trained CNN. The average errors of the
data sets with the different DPIs are listed in Table 2.
The average errors between the outputs of the data sets
with the different DPIs and the results of the sand patch
tests were calculated using Equation (9).

As presented in Table 2, the accuracy of the CNN
dropped rapidly with the decrease in DPI, particularly
from 100 to 85 DPI. Based on the results obtained from
the data sets with the different DPIs, we can conclude
that a decrease in DPI negatively affects the accuracy
of our CNN. Therefore, the DPI should be guaranteed
to be higher than 85 mm when using our CNN-based
method. The negative effect of the decrease in DPI on
the accuracy of the CNN is likely to be because as the
DPI reduces, an increasing amount of information re-
garding the pavement surface texture is lost, which re-
sults in 3D scan files that do not accurately reflect the
pavement roughness features, implying that the CNN
cannot accurately compute the surface texture MTDs
based on the 3D scan files.

3.3 Comparative studies

To compare the effectiveness of our CNN-based
method to those of available methods, 40 3D scan data
from the testing data set with various pavement ma-
terials were tested. The output errors of the CNN for
the 40 3D scans were selected from the largest errors
among the 1,000 total scan data to establish that the
CNN-based method is superior even in certain condi-
tions wherein the performance of the CNN is not opti-
mal. Two methods that have been traditionally utilized
in China for evaluating MTD were selected for com-
parison. The details of the two traditional methods are
available in Hu et al. (2016) and Zhou et al. (2014). It
is noteworthy that the profiles used in the traditional
method proposed in Zhou et al. (2014) can be acquired
from 3D scan data. In the method by Zhou et al., pro-
files from laser scanning technology were acquired to
calculate MPD. Then, a regression formula presented in
Zhou et al. (2014) was utilized to calculate MTD based
on MPD. Figure 10 illustrates the process of acquiring
profiles using 3D scan data. 3D scan technology is more
feasible than laser technology because it can gather de-
tails regarding pavement surfaces, rather than gather-
ing only profiles. In the method proposed in Hu et al.
(2016), MTD was calculated using the sum of the height
differences between each scan point and the plane aver-
age height.
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Table 3
Results of three methods

CNN-based method/cm
Method proposed in Hu et al.,

2016/cm
Method proposed in Zhou

et al., 2014/cm Sand patch test/cm

Results/cm Error/% Results/cm Error/% Results/cm Error/% Results/cm
SBS asphalt

concrete
(AC-16C)

0.092908 4.43 0.094908 2.37 0.084405 13.18 0.09721
0.106740 5.15 0.106941 5.35 0.093304 8.08 0.10151
0.104235 4.20 0.095837 4.20 0.110146 10.11 0.10004
0.104348 5.03 0.104348 5.03 0.108660 9.37 0.09935
0.093279 5.07 0.093279 5.07 0.092749 5.61 0.09826
0.095218 5.41 0.106110 5.41 0.111137 10.40 0.10066
0.093738 4.90 0.093738 4.90 0.083978 14.80 0.09857
0.092384 6.10 0.092384 6.10 0.082553 16.09 0.09839
0.095392 4.46 0.095392 4.46 0.093782 6.07 0.09984
0.103867 5.42 0.093178 5.42 0.108258 9.88 0.09852

Asphalt
concrete
(AC-16C)

0.095438 4.41 0.095438 4.41 0.117002 17.19 0.09984
0.102638 5.30 0.092305 5.30 0.091727 5.89 0.09747
0.092534 5.99 0.104328 5.99 0.104891 6.56 0.09843
0.108652 5.21 0.108652 5.21 0.113739 10.13 0.10328
0.094151 6.08 0.106340 6.08 0.104287 4.03 0.10025
0.098790 4.21 0.098790 4.21 0.095583 7.32 0.10313
0.106936 4.59 0.106936 4.59 0.109256 6.85 0.10225
0.095305 4.90 0.095305 4.90 0.091915 8.28 0.10021
0.101250 4.41 0.101250 4.41 0.102181 5.37 0.09698
0.091444 6.11 0.103348 6.11 0.110030 12.97 0.09740

Asphalt
concrete
(AC-13)

0.079008 6.38 0.076820 8.97 0.079430 5.88 0.08439
0.091222 6.05 0.077468 9.94 0.093614 8.83 0.08602
0.086934 5.47 0.089380 8.43 0.079046 4.10 0.08243
0.083976 5.30 0.098547 11.13 0.097193 9.60 0.08868
0.076471 7.13 0.074537 9.48 0.089653 8.88 0.08234
0.094356 6.06 0.097800 9.93 0.095131 6.93 0.08897
0.090573 6.60 0.091927 8.20 0.090062 6.00 0.08496
0.084118 4.79 0.092643 4.86 0.097378 10.22 0.08835
0.088269 5.48 0.090125 7.69 0.090299 7.90 0.08369
0.077219 5.34 0.076104 6.70 0.080743 1.02 0.08157

Stone mastic
asphalt
(SMA-13)

0.081372 5.67 0.083643 8.62 0.082115 6.64 0.07701
0.080145 5.78 0.083752 10.54 0.080405 6.13 0.07576
0.068811 8.13 0.079202 5.74 0.065459 12.61 0.07490
0.079965 5.89 0.083112 10.06 0.080104 6.08 0.07551
0.079915 8.19 0.079217 7.24 0.065565 11.24 0.07387
0.074623 5.50 0.071748 9.14 0.069510 11.97 0.07896
0.078686 7.96 0.080801 10.86 0.081992 12.49 0.07289
0.069550 5.89 0.082023 10.99 0.068925 6.73 0.07390
0.069477 7.69 0.081355 8.09 0.082331 9.39 0.07527
0.072178 6.48 0.084597 9.61 0.067740 12.23 0.07718

The MTD results based on these three methods are
presented in Table 3. Compared to the method pro-
posed in Hu et al. (2016), the CNN-based method
achieved remarkable performance on all the four types
of pavement materials, whereas the other two methods
achieved suboptimal performance for a few materials.
For example, the errors of the CNN-based method for
SMA pavements, which are gap-graded surfaces, are in

the range of 5.50–8.19%, whereas the errors of the other
two methods are in the ranges of 5.74–8.19% and 6.13–
12.49%. These results demonstrate that the CNN-based
method exhibited higher robustness to pavement mate-
rials. Additionally, the CNN-based method can handle
certain problematic surfaces, such as gap-graded sur-
faces. This is because the method proposed in Hu et al.
(2016) assumes that the MDPs represent the planes of
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Fig. 10. Profiles from 3D scan data.

Fig. 11. Profiles from 3D scan data.

average height; this is likely suitable for AC-16C pave-
ment, although not for SMA-13 pavement because the
MDP of SMA-13 is not equivalent to the plane aver-
age height, as shown in Figure 11. Therefore, the CNN-
based method exhibited higher robustness to the pave-
ment materials. The CNN-based method exhibits higher
stability because the 16 kernels extract different fea-
tures of the MDPs to adjust for the changes in the pave-
ment materials during the MTD evaluation, rather than
assuming the MDPs to be equivalent to the planes of av-
erage height. The property eliminated the effect of the
different MDPs to a certain degree. From this compara-
tive analysis, we can conclude that the major advantage
of using a CNN is that feature extraction techniques are
not required because our CNN learns features automat-
ically when it is trained using the modified backpropaga-
tion algorithm. This advantage can save significant time
compared to traditional methods that require human-
assisted feature extraction. For example, to evaluate
the MTD of a group of 3D scan data utilizing tradi-
tional methods, it is necessary to perform various tests
to determine the MDP or even assume that the MDP is
equivalent to the plane average height. Additionally, as

presented in Table 3, all the errors of the CNN-based
method are either + 0.005 or –0.005 cm with nothing in
between. It is close to the variation of the sand patch
tests (ASTM E965-96, 1996; JTG H20-2007, 2007). This
indicated that the errors of the predicted MDPs of the
CNN are smaller than the variation of the sand patch
tests.

A comparison of the errors between the CNN-based
method and the method proposed in Zhou et al. (2014)
reveals that the CNN-based method achieved higher ac-
curacy. The method proposed in Zhou et al. (2014) uti-
lized surface profiles to calculate MPD and then eval-
uated MTD based on the results of MPD. The sur-
face profiles included less information about the surface
texture compared to the 3D scan data. Additionally,
a few researchers have observed an unexpected rela-
tionship between MTD and MPD (Praticò and Vaiana,
2015; Miao et al., 2011). Therefore, the results provided
by the method proposed in Zhou et al. (2014) are not
reliable.

3.4 Application of the proposed method

To further verify the performance of the proposed
CNN, the scanning data from an actual pavement,
rather than only from cores, should be utilized as a
test data set. Therefore, the CNN-based method was
used to measure the MTD of an actual pavement fol-
lowing the processes described in Section 2 to establish
the transferability of this method to different highways.
Another four highways in Shanxi, China, which were
not the same ones used to test the CNN after training,
were observed. The scanning method must not dam-
age pavement. Therefore, we scanned the pavement di-
rectly rather than extract cores. Four position markers
were placed on the pavement and only the results within
the boundary of the four positions were retained from
scanning. The modified sand patch test introduced in
Section 2.1.1 was also performed within the scan range
to compare the results of the CNN outputs and sand
patch tests.
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Fig. 12. Part results of 3D scan.
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Fig. 13. Errors for different highways.

One thousand five hundred data samples were col-
lected and used for testing. A portion of the 3D scan-
ning results from the four highways is presented in
Figure 12. The results of the 3D scanning are not in-
fluenced by the scan target, regardless of whether it
is a core sample or pavement surface. Additionally,
the surfaces labeled TU and XA contain a crack and
hole, respectively, indicating that the 3D scanning data
can be used for various problematic surfaces contain-
ing pavement defects. Therefore, the MTD outputs of
our CNN are capable of considering surface damage.

After scanning, the 3D scan data were imported into
the well-trained CNN. The absolute errors between
the outputs and measurement results were calculated.
Figure 13 shows the distribution of the errors. From the
results obtained, the maximum errors for the applica-
tion were 0.006119, 0.006094, 0.0061151, and 0.006118
cm for the four highways. Although the maximum er-
rors of the application are higher than the maximum
errors from testing, they still satisfy the requirements
for highway engineering detection (JTG H20-2007,
2007). The errors of the surfaces labeled TU and XA,
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containing a crack and a hole pit, respectively, were
0.0060217 and 0.005891 cm, respectively. This indicated
that the CNN output errors of the problematic pave-
ments were less than 0.01 cm, which was acceptable
(JTG H20-2007, 2007). This demonstrates that the con-
figured CNN is capable of addressing more complex
problems, including certain conditions not included in
the training data set. However, comparing with the re-
sults shown in Figure 13, the errors of the problematic
pavements were larger than the errors of the pavements
with no defect. The maximum errors also reveal that the
pavement materials exert negligible impact on the accu-
racy of the CNN. All the results demonstrate that the
modified CNN can satisfy the requirements for MTD
evaluation on different highways.

Based on the results obtained from the modified
CNNs for MTD evaluation, several recommendations
can be made for highway surface detection. For exam-
ple, detection efficiency can be improved by saving time
by replacing the sand patch test with the CNN-based
method. Additionally, the CNN and 3D scan technol-
ogy can be utilized in certain conditions that are not
suitable for the sand patch test, such as ongoing pave-
ment construction. During pavement construction, the
pavement MTD should be evaluated in real time to
guarantee proper macrosurface texture, drainage per-
formance, and skid resistance. However, the sand patch
test, which requires significant time, cannot be per-
formed immediately following the pavement construc-
tion because of the pavement temperature. The CNN
and 3D scan technology can be utilized during paving,
immediately after fresh pavement, or with semirigid
bases without significant interference, and achieve re-
sults close to those of the sand patch test.

4 CONCLUSIONS

In this study, a modified CNN for pavement MTD anal-
ysis (in batches) using 3D scan data was applied. The
performance of the CNN-based method was discussed
in detail. The following conclusions can be drawn from
the presented results and discussion:

1. The modified CNN was designed to evaluate pave-
ment MTD based on 3D scan data. During train-
ing, the modified CNN learned features without
human assistance. During testing, the CNN simu-
lated the sand patch test with an average error of
0.0024 cm with remarkably high stability for differ-
ent pavement materials. It is reasonable to assume
that the CNN can be generally utilized to simulate
sand patch tests in China.

2. A damping term can improve the rates of conver-
gence albeit exerts negligible influence on the fi-
nal accuracies of the MTD evaluation for decreas-
ing the amplitude variations in the parameters Wz ,
� j , and b j in each iteration. Utilization of dropout
significantly affected both the rate of convergence
and accuracy of MTD evaluation because it re-
moves unnecessary samples from the 3D scanning
data. Additionally, a GPU can significantly im-
prove the efficiency of training.

3. The accuracy of the CNN dropped rapidly with a
decrease in DPI, particularly from 100 to 85 DPI.
Based on the results obtained from data sets with
different DPIs, we can conclude that a decrease in
DPI negatively affects the accuracy of the CNN. It
is necessary to guarantee that the DPI of a 3D scan
is greater than 50 DPI.

4. A comparison of the CNN-based method with
available methods reveals that the CNN-based
method achieved higher performance in terms of
robustness to pavement materials and the accuracy
of the final results.

5. The application of the proposed method demon-
strated that the CNN-based method could satisfy
the requirements for MTD evaluation in highway
engineering detection, although the maximum er-
ror of the application was larger than the maxi-
mum errors from testing. A few recommendations
regarding highway surface detection were made
based on the results obtained from the CNN.

5 FUTURE RESEARCH

Future research should focus on perfecting the method
to gather target data because the method proposed
in Section 2.1.2 for gathering target data was straight-
forwardly affected by the researchers’ operation. An
improved method that is not straightforwardly affected
by researchers’ operation should be developed.
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Büyüköztürk, O. (2017b), Autonomous structural visual
inspection using region-based deep learning for detecting
multiple damage types, Computer-Aided Civil and Infras-
tructure Engineering, https://doi.org/10.1111/mice.12334.

EN 13036-1 (2010), Road and Airfield Surface Character-
istics—Test Methods—Part 1: Measurement of Pavement
Surface Macrotexture Depth Using a Volumetric Patch
Technique, European Norm, England, English.

Fan, J., Xu, W., Wu, Y. & Gong, Y. (2010), Human tracking
using convolutional neural networks, IEEE Transactions
on Neural Networks, 21(10), 1610–23.

Fu, M., Xu, P., Li, X., Liu, Q., Ye, M. & Zhu, C. (2015), Fast
crowd density estimation with convolutional neural net-
works, Engineering Applications of Artificial Intelligence,
43, 81–88.

Garbowski, T. & Gajewski, T. (2017), Semi-automatic inspec-
tion tool of pavement condition from three-dimensional
profile scans, Procedia Engineering, 172, 310–18.

Gendy, A. E., Shalaby, A., Saleh, M. & Flintsch, G. W. (2011),
Stereo-vision applications to reconstruct the 3D texture
of pavement surface, International Journal of Pavement
Engineering, 12(3), 263–73.

Hu, L., Yun, D., Liu, Z., Du, S., Zhang, Z. & Bao, Y. (2016),
Effect of three-dimensional macrotexture characteristics
on dynamic frictional coefficient of asphalt pavement
surface, Construction and Building Materials, 126, 720–
29.

Ijjina, E. P. & Chalavadi, K. M. (2016), Human action recogni-
tion using genetic algorithms and convolutional neural net-
works, Pattern Recognition, 59, 199–212.

ISO 13473-1 (1997), Characterization of Pavement Texture by
Use of Surface Profiles, Part 1: Determination of Mean Pro-
file Depth, International Organization for Standardization,
England, English.

Jain, V., Murray, J. F., Roth, F., Turaga, S. C., Zhigulin, V.,
Briggman, K. L., Helmstaedter, M. N., Denk, W. & Seung,
H. S. (2007), Supervised learning of image restoration with

convolutional networks, in IEEE 11th International Confer-
ence on Computer Vision, 1–8.

Jain, V. & Seung, H. S. (2008), Natural image denoising with
convolutional networks, in Neural Information Processing
Systems, 769–76.

JTG H20-2007 (2007), Highway Performance Assessment
Standards, Ministry of Transport of the People’s Republic
of China, Beijing, China.

Kanafi, M. M., Kuosmanen, A., Pellinen, T. & Tuononen,
A. J. (2014), Macro- and micro-texture evolution of
road pavements and correlation with friction, Interna-
tional Journal of Pavement Engineering, 16(2), 168–
79.

Koziarski, M. & Cyganek, B. (2017), Image recognition with
deep neural networks in presence of noise—dealing with
and taking advantage of distortions, Integrated Computer-
Aided Engineering, 24(4), 337–50.

LeCun, Y. (1989), Generalization and network design strate-
gies, in R. Pfeifer, Z. Schreter, F. Fogelman, and L. Steels
(eds.), Connectionism in Perspective, Elsevier, Zurich,
Switzerland, pp. 143–55.

LeCun, Y. & Bengio, Y. (1995), Convolutional networks for
images, speech, and time series, in M. A. Arbib (ed.), The
Hand book of Brain Theory and Neural Networks, MIT
Press, p. 3361.

Leng, B., Guo, S., Zhang, X. & Xiong, Z. (2015), 3D object re-
trieval with stacked local convolutional autoencoder, Signal
Processing, 112, 119–28.

Leng, B. & Xiong, Z. (2011), Modelseek: an effective 3D
model retrieval system, Multimedia Tools and Applications,
51(3), 935–62.

Leng, B., Xiong, Z. & Fu, X. (2010), A 3D shape retrieval
framework for 3D smart cities, Frontiers of Computer Sci-
ence in China, 4(3), 394–404.

Li, Q., Jin, Z., Wang, C. & Zeng, D. D. (2016), Mining opin-
ion summarizations using convolutional neural networks in
Chinese microblogging systems, Knowledge-Based Systems,
107, 289–300.

Liao, T. Y. (2017), On-line vehicle routing problems for car-
bon emissions reduction, Computer-Aided Civil and Infras-
tructure Engineering, 32(12), 1047–63.

Lin, Y. Z., Nie, Z. H. & Ma, H. W. (2017), Structural dam-
age detection with automatic feature-extraction through
deep learning, Computer-Aided Civil and Infrastructure En-
gineering, 32(12), 1025–46.

Liu, Z., Zhang, J. & Liu, L. (2016), Upright orientation of
3D shapes with convolutional networks, Graphical Models,
85(5), 22–29.

Miao, Y., Cao, D. W. & Lin, Q. Q. (2011), Relation-
ship between surface macrotexture and skid resistance
of asphalt pavement, Journal of Beijing University of
Technology, 4(37), 547–53.

Mosa, A. M., Rahmat, R. A. O. K., Ismail, A. & Taha, M. R.
(2013), Expert system to control construction problems in
flexible pavement, Computer-Aided Civil and Infrastructure
Engineering, 28(4), 307–23.

Oijer, F. & Edlund, S. (2004), Identification of transient road
obstacle distributions and their impact on vehicle dura-
bility and driver comfort, Vehicle System Dynamic, 41,
744–53.

Ortega-Zamorano, F., Jerez, J. M., Gómez, I. & Franco, L.
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