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Abstract

Distress segmentation assigns each pixel of a pavement image to one distress class
or background, which provides a simplified representation for distress detection and
measurement. Even though remarkably benefiting from deep learning, distress seg-
mentation still faces the problems of poor calibration and multi-model fusion. This
study has proposed a deep neural network by combining the Dempster-Shafer theory
(DST) and transformer for pavement distress segmentation. The network, called the
evidential segmentation transformer, uses its transformer backbone to obtain pixel-
wise features from input images. The features are then converted into pixel-wise
mass functions by an DST-based evidence layer. The pixel-wise masses are utilized
for performing distress segmentation based on the pignistic criterion. The proposed
network is iteratively trained by a new learning strategy, which represents uncer-
tain information of ambiguous pixels by mass functions. In addition, an evidential
fusion strategy is proposed to fuse heterogeneous transformers with different dis-
tress classes. Experiments using three public datasets (Pavementscape, Crack500,
and CrackDataset) show that the proposed networks achieve state-of-the-art accuracy
and calibration on distress segmentation, which allows for measuring the distress
shapes more accurately and stably. The proposed fusion strategy combines trans-
formers on heterogeneous datasets while remaining a performance not less than those
of the individual networks on their own datasets, which makes it possible to use the
existing networks to build a more general and accurate one for distress segmentation.

KEYWORDS:
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1 INTRODUCTION

Visual pavement distress inspection benefits from digital imag-
ing technology Arabi, Haghighat, & Sharma (2020) and deep
learning Jeong, Jo, & Ditzler (2020). In recent years, many
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layer, NL; vision transformer, ViT; mass-fusion ES-transformer network, MFES
network; probability-to-mass fusion, PMF; Bayesian fusion, BF; probability feature-
combination, PFC; Evidential feature-combination, EFC.

deep neural networks have been proposed to perform distress
segmentation A. Zhang et al. (2017). Distress segmentation
Zhu et al. (2022) is defined as the process of assigning each
pixel in a digital pavement image to one of the possible distress
classes or “background”. The results of distress segmentation,
called distress masks, are the sets of pixels belonging to differ-
ent classes. The masks are regarded as a simple representation
of the original image, which has been used for distress recog-
nition Bang, Hong, & Kim (2021), detection Gao & Mosalam
(2018), and measurement Tong, Yuan, Gao, & Wang (2020).
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There are two main directions of deep neural networks for
distress segmentation: convolution- and attention-based net-
works. The former A. Zhang et al. (2019) used several stages
of convolution and pooling layers to extract feature maps from
its input and then unsampled the features into pixel-wise rep-
resentations. The representations were finally converted into
pixel-wise probabilities of different classes by a softmax layer
for distress segmentation. This study named such a network
as the probabilistic fully convolutional network (P-FCN). The
latter one Wang & Su (2022) used some attention-based lay-
ers to extract feature maps and unsampled the features into
pixel-wise representations by a mask transformer. Similarly,
pixel-wise representations were used to build pixel-wise prob-
abilities for decision-making Qu, Li, & Zhou (2022). The
network is called the probabilistic segmentation transformer
(PS-transformer) in the study. Until now, some studies Sun,
Xie, Jiang, Cao, & Liu (2022) reported that a PS-transformer
outperformed a P-FCN on the distress segmentation once
given enough learning images.

Even though the two types of deep neural networks have
achieved state-of-the-art performances on distress segmenta-
tion, they still face two problems: over-confidence and multi-
model fusion. Over-confidence, also known as poor calibra-
tion, means that the accuracy of a network cannot match its
confidence. For example, a transformer network has an average
pixel accuracy of 90% in a held-out testing set but always out-
puts the maximum probabilities higher than 95% in the testing
set. This indicates the network is highly confident in its predic-
tions but there is a gap of 5% between its testing accuracy and
confidence. This behavior is common in the probabilistic deep
neural networks owing to the disadvantage of the Bayesian
probability framework, which only captures the randomness
aspect of the data, but neither ambiguity nor incompleteness.
More details of this disadvantage can be found in Guo, Pleiss,
Sun, & Weinberger (2017). This disadvantage makes it difficult
for users to know when a deep neural network will fail to seg-
ment pavement distress. In addition, over-confident networks
maybe not be as accurate as users expect them to be.

Another problem is the multi-model fusion F.-C. Chen
& Jahanshahi (2017), in which the outputs from different
deep networks using the data from different sources are com-
bined into ones for decision-making Diaby, Germain, & Goïta
(2021). One challenge in pavement distress segmentation is
to utilize the existing networks trained from heterogeneous
datasets for obtaining a new one, which can improve the gen-
erality and accuracy of distress segmentation. For example, a
network can segment crack and pothole pixels from the pave-
ment background, while another can distinguish the repair and
crack areas from the pavement background. If the informa-
tion from the two networks can be fused, a new model can be

obtained, which has the capacity of segmenting cracks, pot-
holes, repair areas, and pavement background. Unfortunately,
the problem of data uncertainty in the Bayesian probability
framework, especially the partial and imperfect outputs of deep
neural networks, makes it difficult to fuse heterogeneous net-
works. Still take the two networks as an example. Given a pixel,
one network outputs probabilities of classes “crack”, “pot-
hole”, and “background”, while another outputs probabilities
of classes “repair area”, “crack”, and “background”. One prob-
ability distribution is partial and imperfect for another and the
probability information cannot be combined by Bayes’ rule.
Some feature-level fusion methods were proposed to solve
this problem, in which the features from different deep neu-
ral networks are concatenated for decision-making. However,
they required extra training and sometimes have lower perfor-
mance than those of the individual networks on their respective
distress class set.

Dempster-Shafer theory (DST) provides a potential way to
solve the two problems deriving from the probabilistic frame-
work. As a generalization of probability theory, DST Dempster
(1967), also referred to as evidence theory or theory of belief
functions, has been a well-established formalism for represent-
ing and combining a large variety of uncertain information for
decision-making Yager & Liu (2008). The framework of DST
uses the mass functions with the complete monotone to repre-
sent independent pieces of evidence and then combines them
into ones by a generic operator, such as Dempster’s rule Shafer
(1976).

DST has been increasingly applied to machine learning
with uncertain data, following two main directions: designing
evidential classifiers Denœux, Kanjanatarakul, & Sriboon-
chitta (2019) and combining multiple network models Minary,
Pichon, Mercier, Lefevre, & Droit (2019). An evidential clas-
sifier Denœux et al. (2019) regarded the elements of its input
vector as pieces of evidence and converts them into mass func-
tions. The masses were finally aggregated via Dempster’s rule
to represent uncertain information in the input vector. For
example, there existed ambiguous data in an input vector when
the values of two masses in an evidential classifier outputs were
very close. Data unreliability and imprecision were also repre-
sented by mass functions in the framework of DST Tong, Xu,
& Denœux (2021b). The mass-function representations gave a
potential way to solve the problem of over-confidence. In the
direction of multi-network combination, the mass functions
from different models were aggregated by Dempster’s rule or
any other rule Jiang, Wang, Gao, Gao, & Gao (2017). This
direction provided the possibility to process incomplete data
by extending heterogeneous imperfect outputs into a common
frame and combining them by Dempster’s rule Tong, Xu, &
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Denœux (2021c). The two practical directions gives the fol-
lowing three advantages of DST to solve distress segmentation
using deep neural networks.

Operationality: DST can easily be put into practice by break-
ing down a pixel-wise feature vector from an FCN on
a distress segmentation task into elementary pieces of
evidence, combining them by Dempsters rule Denœux
(2019). This indicates that DST is easier to combine with
FCNs for distress segmentation than other uncertainty
theories (e.g., imprecise probability and fuzzy sets).

Generality: DST can do much more than sets or probabilities
because it is based on the idea of combining sets and
probabilities Denoeux & Shenoy (2020). It can extend
both Bayesian probabilistic reasoning and propositional
logic, such as computing with sets and interval analysis.
This advantage makes it possible to calibrate the ran-
domness and uncertainty on distress segmentation tasks
and reduce the over-confidence in the neural network,
which Bayesian probabilistic reasoning cannot do.

Fusion: The mass functions of DST can be easily combined
by Dempsters rule, even though some only represent
partial and imperfect outputs of a deep neural network
Tong et al. (2021c). The advantage has the potential
to fuse different FCNs with heterogeneous class sets of
pavement distresses.

Motivated by the high expressivity of DST as an uncer-
tainty representation framework, the objective of this study
is to develop a new transformer network in the framework
of DST to solve the problems of over-confidence and multi-
network fusion in the task of pavement distress segmentation.
The basic idea is that a transformer network provides the
pixel-wise feature representations of pavement images and a
DST-based evidential classifier converts the representations
into pixel-wise mass functions for distress segmentation. The
contributions of the thesis can be summarized in the following
three points.

Evidential transformer network: A new transformer net-
work has been proposed to segment pavement dis-
tresses, called the evidential segmentation transformer
(ES-transformer). The proposed network achieves top-
performing accuracy and reasonable calibration on dis-
tress segmentation.

Evidential fusion of heterogeneous transformers: The
mass-function outputs of the ES-transformer make it
possible to combine heterogeneous deep networks. This
approach is flexible enough to combine different trans-
formers with inconsistent pavement distress categories
to obtain a more general network.

FIGURE 1 Paper framework.

Evidential learning strategy: An end-to-end learning strat-
egy has been proposed to update the parameters in an
ES-transformer network using a learning set, which rep-
resents uncertain and imprecise information represented
in the form of DST-based mass functions to improve the
accuracy and calibration of the transformer.

The rest of the paper is organized as Figure 1 . Section
2 begins with a brief recall of the segmentation transformer
network and DST, which are the previous studies used in the
proposed transformer network. Section 3 describes the details
of the proposed network for pavement distress segmentation,
which is the originality of the study. Sections 4 and 5 report
the numerical experiments of distress segmentation and multi-
network fusion, respectively, demonstrating the superiority of
the proposed network. Finally, Section 6 concludes the study.

2 BACKGROUND

This section gives the necessary background of the proposed
network, including the transformer network for semantic seg-
mentation in Section 2.1 and DST for uncertainty reasoning in
Section 2.2.

2.1 Segmentation transformer
In the two years, some attention-based networks Oktay et al.
(2018); Qin et al. (2020) have been proposed to perform
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semantic segmentation. Segmentation transformer Strudel,
Garcia, Laptev, & Schmid (2021) is a successful case of
attention-based networks, which will be combined with DST
in this study. A segmentation transformer mainly consists of
three parts: a transformer encoder for feature extraction and
a decoder for feature upsampling. The architectures of the
encoder and decoder are called the segmentation-transformer
backbone in this study.

Encoder
The encoder part, following the architecture of vision trans-
former Dosovitskiy et al. (2021), split an image𝑿 ∈ ℝ𝑊 ×𝐻×𝐶

into a sequence of patches {𝒙𝑖, 𝑖 = 1,…𝑁}, 𝒙𝑖 ∈ ℝ𝑆×𝑆×𝐶 ,
where𝑆×𝑆 is the patch size,𝑁 = 𝑊𝐻

𝑆2 is the number of patch,
and𝐶 is the number of channels in the input image. Each patch
is flattened into a single vector by concatenating its channels of
all elements and then linearly projected to a sequence of patch
embeddings 𝑿′ = {𝑬(𝒙1),… ,𝑬(𝒙𝑁 )} with 𝑬(𝒙𝑖) ∈ ℝ𝐷,
𝑖 = 1,… , 𝑁 , and 𝐷 = 𝐶 ⋅ 𝑆2. After the flattening operation,
the encoder part is agnostic to the position information about
these patch embeddings. Thus, learnable position embeddings
𝒑𝒐 = {𝒑𝒐𝑖, 𝑖 = 1,… , 𝑁} with 𝒑𝒐𝑖 ∈ ℝ𝐷 are linearly added
to each embedding as 𝒛0 = {𝑬(𝒙𝑖) + 𝒑𝒐𝑖, 𝑖 = 1,… , 𝑁}.

The tensor 𝒛𝟎 passes through 𝐿 stages in the encoder to
obtain a sequential set 𝒛𝐿 = {𝒛𝐿,𝑖, 𝑖 = 1,… , 𝑁} with 𝒛𝐿,𝑖 ∈
ℝ𝑑 , where 𝑑 is the dimension of each vector in the sequen-
tial set 𝒛𝐿. Each stage comprises multi-headed self-attention
layer (MSL) and a two-layer perceptron (TLP), followed by a
norm layer (NL). Thus, the procedure of the 𝑙-th stage can be
summarized as

𝒂𝑙−1 = MSL(NL(𝒛𝑙−1)) + 𝒛𝑙−1, (1a)

𝒛𝑙 = TLP(NL(𝒂𝑙−1)) + 𝒂𝑙−1, (1b)

with 𝑙 = 1,… , 𝐿. In the MSL of the 𝑙-th stage, following
the self-attention mechanism Vaswani et al. (2017), the tensor
NL(𝒛𝑙−1) is multiplied with three sets of weights to get its rep-
resentations, key 𝑲 ∈ ℝ𝑁×𝑑 , query 𝑸 ∈ ℝ𝑁×𝑑 , and value
𝑽 ∈ ℝ𝑁×𝑑 . The three representations are then converted into
one tensor as

MSL(𝑲 ,𝑸,𝑽 ) = softmax

(
𝑸𝑲𝑇√
𝑑

)
𝑽 . (2)

Therefore, the encoder part extracts a sequence of contextual-
ized encodings 𝒛𝐿 from the input image, which includes the
high-dimension semantic information.

Decoder
In the decode part, the sequence of contextualized encodings
𝒛𝐿 ∈ ℝ𝑁×𝐷 is upsampled to a tensor 𝑭 ∈ ℝ𝑊 ×𝐻×𝑃 , where
𝑃 is the channel number of the feature maps and 𝑭 is also
refereed to as the pixel-wise maps and features.

The decoder part consists of 𝐿′ MSLs. Let’s the sequence
𝒛𝑙′𝐿 be the inputs of the 𝑙′-th MSL, 𝑙′ = 1,… , 𝐿′. The 𝑙′-
th MSL initializes randomly 𝑃 learnable embeddings 𝒍𝒆 =
{𝑙𝑒1,… , 𝑙𝑒𝑃 } ∈ ℝ𝑃×𝐷 and performs the scalar product
between its inputs and the learnable embeddings as

PS(𝒛𝑙′𝐿, 𝒍𝒆) =
{

PS(𝒛𝑙′𝐿,𝑖, 𝒍𝒆), 𝑖 = 1,… , 𝑁
}
= 𝒛𝑙′𝐿 ⋅ 𝒍𝒆𝑇 , (3)

with 𝑙′ = 1,… , 𝐿′. Then, PS(𝒛𝑙′𝐿,𝑖, 𝒍𝒆) are reshaped into a 2D
tensor and bilinearly upsampled to a tensor𝐹𝑖 ∈ ℝ𝑊 ∕𝑆×𝐻∕𝑆×𝑃 ,
𝑖 = 1,… , 𝑁 . Then, the 𝑁 upsampled tensors are attached
into a feature map 𝑭 ∈ ℝ𝐻×𝑊 ×𝑃 . In a PS-transformer, the
pixel-wise feature map 𝑭 is regarded as the representations
of the input image and converted into pixel-wise probabilities
for semantic segmentation using a softmax layer. In Section
3, each vector with 𝑃 dimension from 𝑭 is considered as the
representations of the pixel location and will be converted into
mass functions for pixel-wise decision-making. Here, the pro-
cedure of the segmentation-transformer backbone (the encoder
and decoder parts) is simply notated as a function 𝝍(⋅) and
𝝍(𝑥) = (𝜓1(𝑥),… , 𝜓𝑃 (𝑥)) ∈ 𝑭 stands the feature vector of a
pixel 𝑥 ∈ 𝑿 with 𝜓𝑗(𝑥) ∈ ℝ, 𝑗 = 1,… , 𝑃 .

2.2 Evidential neural network
One main application of DST is to design an evidential classi-
fier, also known as evidential neural network (ENN) Denœux
(2019), which converts a feature vector to mass functions and
quantifies the uncertainty of the vector using mass functions.
Thus, ENNs establish a bridge between DST and transform-
ers at the feature level. The output mass functions of an ENN
are used for decision-making with uncertainty Tong, Xu, &
Denœux (2019). With the generality and operationality of
DST mass functions, an ENN gives more informative out-
puts than the probabilistic models that quantify prediction
uncertainty using a probability distribution. This section intro-
duces a particular ENN Denœux (2019) that is combined with
transformers in the study.

Let Ω = {𝜔1,… , 𝜔𝑀} be a class set and 𝝍(𝑥) =
(𝜓1(𝑥),… , 𝜓𝑃 (𝑥)) be a vector of 𝑃 features for a pixel 𝑥 ∈ 𝑿.
Each feature value𝜓𝑗(𝑥) is regarded as the evidence of the sup-
ports either to singleton set {𝜔𝑖} or to its complement {𝜔𝑖} in
the form as

𝜏𝑖𝑗 ∶= 𝛽𝑖𝑗𝜓𝑗(𝑥) + 𝛼𝑖𝑗 , (4)
where 𝛽𝑖𝑗 and 𝛼𝑖𝑗 are two parameters associated to evidence
𝜓𝑗(𝑥) and singleton {𝜔𝑖}, 𝑖 = 1,… ,𝑀 , 𝑗 = 1,… , 𝑃 . The
weights of evidence 𝜓𝑗(𝑥) for {𝜔𝑖} and {𝜔𝑖} are equal to
the positive and negative parts of 𝜏𝑗𝑘, notated as 𝜏+𝑖𝑗 and 𝜏−𝑖𝑗 ,
respectively. For each feature 𝜓𝑗(𝑥) and singleton set {𝜔𝑖},
two simple mass function can be defined as 𝑚+

𝑖𝑗 ∶= {𝜔𝑖}
𝑤+
𝑖𝑗

and 𝑚−
𝑖𝑗 ∶= {𝜔𝑖}

𝑤−
𝑖𝑗 , following the notations of the weights of

evidence in Shafer (1976).
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The two simple masses can be fused into ones by aggre-
gating the positive and negative weights of evidences w.r.t
singleton set {𝜔𝑖} using Dempster’s rule

⨁
as

𝑚+
𝑖 =

𝑃⨁
𝑗=1

𝑚+
𝑖𝑗 = {𝜔𝑖}𝑤

+
𝑖 (5a)

𝑚−
𝑖 =

𝑃⨁
𝑗=1

𝑚−
𝑖𝑗 = {𝜔𝑖}

𝑤+
𝑖 , (5b)

with

𝑤+
𝑖 ∶=

𝑃∑
𝑗=1

𝑤+
𝑖𝑗 and 𝑤−

𝑖 ∶=
𝑃∑
𝑗=1

𝑤−
𝑖𝑗 .

where
⨁

for two independent masses 𝑚1 and 𝑚2 is defined as

(𝑚1 ⊕𝑚2) (𝐴) =
1

1 − 𝜅
∑

𝐵∩𝐶=𝐴
𝑚1 (𝐵)𝑚2 (𝐶) (6)

for all 𝐴 ⊆ Ω, 𝐴 ≠ ∅, and (𝑚1 ⊕ 𝑚2)(∅) = 0. In (6), 𝜅 < 1 is
the degree of conflict between 𝑚1 and 𝑚2 as

𝜅 ∶=
∑

𝐵∩𝐶≠∅
𝑚1 (𝐵)𝑚2 (𝐶) . (7)

Therefore, once given a feature vector 𝝍(𝑥), the ENN out-
puts mass functions as

𝑚𝝍(𝑥) =
𝑀⨁
𝑖=1

(
{𝜔𝑖}𝑤

+
𝑖 ⊕ {𝜔𝑖}

𝑤−
𝑖
)
. (8)

Thus, the final outputs of the ENN is a mass-function vector
𝒎𝝍(𝑥) =

(
𝑚𝝍(𝑥)(𝐴), 𝐴 ⊆ Ω∖∅

)𝑇 .

3 METHODOLOGY

This section describes the proposed model, so-called the evi-
dential segmentation transformer (ES-transformer). Section
3.1 presents the overview of the proposed model which is
made up of a segmentation-transformer backbone for pixel-
wise feature representation, a DST-based evidence layer to
build mass functions, and a decision layer using mass func-
tions to perform pavement distress segmentation. A learning
strategy is exposed in Section 3.3, which qualities the uncer-
tainty in a learning set by introducing soft labels. Finally,
an approach for evidential fusion is proposed in Section 3.4,
in which heterogeneous transformers can be combined using
mass functions.

3.1 Overview
An ES-transformer hybridizes a segmentation transformer
described in Section 2.1 and an ENN introduced in Section
2.2 by “installing” an evidence layer behind the final MSL
in the decoder part of a segmentation-transformer backbone.
Figure 2 presents the overview of an ES-transformer. An ES-
transformer is able to perform pavement distress segmentation

and represent the confusing information about the class predic-
tion of each pixel in an image by mass function. To distinguish
the ES-transformer from the network in Section 2.1, this study
named the transformer that converts the pixel-wise features
from its backbone into probabilities using a softmax layer as
the probabilistic segmentation transformer (PS-transformer).
The processes of the ES-transformer can be summarized in
three steps as follows.

Step 1: A pavement image of size 𝑊 × 𝐻 × 𝐶 is imported
into the segmentation-transformer backbone to obtain
pixel-wise features of size 𝑊 × 𝐻 × 𝑃 , in which a
vector with 𝑃 -dimension is the features of a pixel loca-
tion. The procedure of this step has been introduced in
Section 2.1. This step obtains precise and reliable fea-
tures based on the input image, making the proposed
network yield comparable or more effective capacity of
distress segmentation than a PS-transformer using the
identical segmentation-transformer backbone.

Step 2: Each vector with 𝑃 -dimension in Step 1 is fed into the
ENN as introduced in Section 2.2. This part transforms
the feature vector into an (2𝑀 − 1)-dimensional mass
function vector as

𝒎 =
(
𝑚𝝍(𝑥)(𝐴), 𝐴 ⊆ Ω∖∅

)𝑇 (9)
= (𝑚(𝐴1),… , 𝑚(𝐴2𝑀−2), 𝑚(Ω))𝑇 . (10)

Therefore, when importing the feature maps of size𝑊 ×
𝐻 ×𝑃 in Step 1, this step generates a mass-function ten-
sor of size𝑊 ×𝐻×(2𝑀−1). The procedure of the ENN
in Step 2 can be summarized as neural-network layers,
called the evidence layer, whose details are shown in
Section 3.2. The mass function vector in (9) calibrates
the confusing and uncertain information about the pixel
location. In detail, 𝑚({𝜔𝑖}), 𝑖 = 1,… ,𝑀, character-
izes the degree of supports to the hypothesis that the
pixel 𝑥 belongs to 𝜔𝑖, while 𝑚(𝐴) with |𝐴| > 1 supports
to the hypothesis that the truth is one of the elements
in 𝐴 but the network cannot determine which one. The
mass functions of different singleton sets represent the
conflict of evidence since the ENN outputs a uniform
mass distribution, e.g., 𝑚({𝜔𝑖}) ≈ 𝑚({𝜔𝑗}), when dif-
ferent elements of a feature vector support to classes
𝜔𝑖 and 𝜔𝑗 . The value of 𝑚(𝐴) with |𝐴| > 1 quanti-
fies the ignorance of evidence since the ENN tends to
generate a large value if the feature vector contains lim-
ited information for decision-making. For example, the
ENN outputs 𝑚(Ω) ≈ 1 if the feature vector is from a
backbone without any training and it does not contain
any useful information of the segmentation task Tong
et al. (2019). The superiority of the uncertainty calibra-
tion will be demonstrated by the experiments of distress
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FIGURE 2 Architecture of the evidence layer.

segmentation in Section 4. Besides, the mass-function
outputs make it possible to combine various transform-
ers trained by heterogeneous learning sets with different
distress classes, as introduced in Section 3.4.

Step 3: The mass-function tensor in Step 2 is used for
decision-making. There are some criteria of decision-
making with mass functions in Denoeux (2019) and
their applications in deep learning Tong, Xu, & Denœux
(2021a). As the proposed framework aims to solve the
problem of over-confidence, rather than the effects of
different decision-making criteria, this step only uses the
pignistic criterion Smets (1990) as

𝐵𝑒𝑡𝑃𝒎(𝜔) =
∑

𝐴⊆Ω,𝜔∈𝐴

𝑚(𝐴)|𝐴| , ∀𝜔 ∈ Ω. (11)

The final prediction of the corresponding pixel is 𝜔̂ =
argmax𝜔∈Ω 𝐵𝑒𝑡𝑃𝒎(𝜔).

3.2 Evidence layer
Given a feature vector 𝝍(𝑥) ∈ ℝ𝑃 from a segmentation-
transformer backbone, the ENN architecture builds mass func-
tions that calibrate the ignorance and conflict in the vector
𝝍(𝑥) by mass functions reasoning on Ω = {𝜔1,… , 𝜔𝑀}.
The proposed network performs the processes of the ENN
architecture as neural-network layers shown in Figure 3 . The
neural-network layers are summarized as follows.

Layer 1: Each evidence 𝜓𝑗(𝑥) ∈ 𝝍(𝑥) is linearly transformed
into a sign 𝜏𝑖𝑗 as (4) and the positive and negative parts
of 𝜏𝑖𝑗 is then converted into 𝑚+

𝑖𝑗 ∶= {𝜔𝑖}
𝑤+
𝑖𝑗 and 𝑚−

𝑖𝑗 ∶=
{𝜔𝑖}

𝑤−
𝑖𝑗 . The two masses, 𝑚+

𝑖𝑗 and 𝑚−
𝑖𝑗 , are the degrees

of belief supporting to the hypothesis that the true class
of pixel 𝑥 are {𝜔𝑖} and {𝜔𝑖}, respectively, based on the
evidence 𝜓𝑗(𝑥). In the layer, 𝛼𝑖𝑗 ∈ [0, 1] and 𝛽𝑖𝑗 ∈ [0, 1]

in (4) are the parameters associated with evidence 𝜓𝑗(𝑥)
and class 𝜔𝑖.

Layer 2: The two mass functions in Layer 1 are separately
combined with respect to singleton set {𝜔𝑖} using
Dempster’s rule as (5). Masses 𝑚+

𝑖 and 𝑚−
𝑖 , 𝑖 =

1,… ,𝑀 , are the degrees of belief supporting to class
{𝜔𝑖} and the frame of discernment Ω, respectively,
based on all evidences in 𝝍(𝑥).

Layer 3: The mass functions supporting to different classes
and their individual complementary sets are combined
by Dempster’s rule as (8). In the multi-class seg-
mentation task, the output mass functions 𝒎𝝍(𝑥) =(
𝑚(𝐴), 𝐴 ⊆ Ω∖∅

)𝑇 has the following expression:

𝑚𝝍(𝑥)({𝜔𝑖}) =

𝑄 exp(−𝑤−
𝑖 )

{
exp(−𝑤+

𝑖 ) − 1 +
∏
𝑙≠𝑖

[1 − exp(−𝑤−
𝑙 )]

}
(12)

for 𝑖 = 1,… ,𝑀 , and

𝑚𝝍(𝑥)(𝐴) =

𝑄

{∏
𝜔𝑖∉𝐴

[1 − exp(−𝑤−
𝑖 )]

}{∏
𝜔𝑖∈𝐴

[exp(−𝑤−
𝑖 )]

}
,

(13)
for each 𝐴 ⊆ Ω such that |𝐴| > 1, and 𝑄 is a
proportionality constant as

𝑄 = 𝜂𝜂+𝜂−, (14)
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FIGURE 3 Architecture of the evidence layer.

where 𝜂 is a function w.r.t the degree of conflict (7)
between 𝑚− and 𝑚+ as

𝜂 = 1
1 − 𝜅

(15a)

= 1
1 −

∑𝑀
𝑖=1{𝜂+(exp(𝑤

+
𝑖 ) − 1)[1 − 𝜂− exp(−𝑤−

𝑖 )]}
,

(15b)

with 𝜂+ =
(∑𝑀

𝑖=1 exp(𝑤
+
𝑖 ) −𝑀 + 1

)−1
and 𝜂− =(

1 −
∏𝑀

𝑖=1
[
1 − exp(−𝑤−

𝑖 )
])−1

. The proof the output
mass functions can be found in Appendix A.

3.3 Learning
Most pavement image datasets annotate each pixel with a
single class, though the annotators sometimes do not have
full certainty about the true class. For example, in the Pave-
mentscapes dataset, the true classes of the pixels at pavement
distress borders may be uncertain but they are given pre-
cise labels. Additionally, annotators cannot reliably label some
small distress areas in an image, such as some thin cracks.
Arbitrarily giving labels with individual singleton classes may
introduce incorrect and conflicting information in a learning
set, harming the accuracy and reliability of a learning system
for pavement distress segmentation.

This study introduces the soft label Denœux et al. (2019);
Tong et al. (2021b) to deal with the issue. A soft label is defined
as a subset 𝐴∗ ∈ 2Ω∖∅ that may include the true class based
on the knowledge of an annotator. For instance, label 𝐴∗ =
{𝜔𝑖, 𝜔𝑗} indicate the fact that the ground truth should be either
𝜔𝑖 or𝜔𝑗 but one is not able to easily decide which one precisely.

A learning strategy has been put forward to update the
parameters of the ES-transformer with soft labels, which can
reduce the negative effect on annotation uncertainty in the
learning set. For a pixel with soft label 𝐴∗ ⊆ Ω∖∅, its labeling
mass function is logical as 𝑚𝑙(𝐴∗) = 1. The labeling pignistic
probabilities 𝐵𝑒𝑡𝑃𝑚𝑙 (𝜔) can be computed using (11). Then the
predicted pignistic probabilities𝐵𝑒𝑡𝑃𝑚(𝜔) can be computed by
the ES-transformer network, where𝑚 is the mass-function out-
put in the evidential layer. The loss (𝑚,𝑚𝑙) is defined as the
regularized cross-entropy between the pignistic probabilities
w.r.t. 𝑚𝑙 and 𝑚 as

(𝑚,𝑚𝑙) = −

( 𝑀∑
𝑖=1

𝐵𝑒𝑡𝑃𝑚𝑙 (𝜔𝑖) log𝐵𝑒𝑡𝑃𝑚𝑙+

𝑀∑
𝑖=1

𝐵𝑒𝑡𝑃𝑚𝑙 (𝜔𝑖) log𝐵𝑒𝑡𝑃𝑚(𝜔𝑖)

)
+ 𝜆

𝑀∑
𝑖′=1

𝑤2
𝑖′ (16)

where 𝜆 is the regularization hyperparameter to decrease
the effect of weights of evidence 𝑤𝑖′ to obtain less infor-
mative mass functions. The loss (𝑚,𝑚𝑙) is minimized for
𝐵𝑒𝑡𝑃𝑚𝑙 (𝜔𝑖) = 𝐵𝑒𝑡𝑃𝑚(𝜔𝑖), ∀𝑖 = 1,… ,𝑀 . When a learning
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set only has precise labels, the loss boils down to the common
cross-entropy loss. Error propagation and parameter update
in the evidence layer and segmentation-transformer backbone
can be automatically performed in TensorFlow.

3.4 Evidential multi-network fusion
One challenge in pavement distress segmentation is to com-
bine the existing models trained from heterogeneous datasets
for obtaining a more general one and achieving better results.
However, the problem of data uncertainty, especially the par-
tial and imperfect outputs of deep neural networks, makes it
difficult to fuse heterogeneous networks. The proposed net-
work provides an approach to solving the problem.

An evidential strategy for multi-transformer fusion has been
proposed for pavement distress segmentation. In the approach,
several pre-trained ES-transformer networks are combined by
adding an information-fusion module at the mass-function out-
puts of these evidential transformers, as shown in Figure 4 .
The architecture, called the “mass-fusion ES-transformer net-
work (MFES-network)”, can be described as the following
steps:

Step 1: A pavement image is fed into 𝑉 ES-transformer net-
works, as described in Section 3.1. For the 𝑣-th ES-
transformer network, 𝑣 = 1,… , 𝑉 , a segmentation-
transformer backbone generates pixel-wise feature maps
based on the image and an evidence layer then con-
verts the maps into pixel-wise mass functions, where
𝒎𝑣 = (𝑚𝑣(𝐴1),… , 𝑚𝑣(𝐴2𝑀(𝑣)−2), 𝑚𝑣(Ω))𝑇 is the mass-
functions tensor of a pixel location and 𝑀(𝑣) is the
number of classes in the 𝑣-th ES-transformer network.
Therefore, this step outputs 𝑉 mass-functions tensors for
each pixel location in the pavement image.

Step 2: The 𝑉 mass-functions tensors at the same pixel loca-
tion are aggregated by a mass-function fusion module
using Dempster’s rule. The 𝑉 ES-transformer networks
may have different sets of classes since they are trained
by different learning sets. However, their frames of dis-
cernment are still compatible because the “background”
or “pavement” classes allow them to have a common
refinement, such as the example shown in Figure 5 . The
“background” or “pavement” classes have the semantics
of “anything else” except for special classes of pave-
ment distresses. Let Ω0 be a common refinement of the
𝑉 compatible frames Ω1,… ,Ω𝑉 . Each frame Ω𝑣 can be
refined to the common one Ω0 as

∙ {𝜌({𝜔}), 𝜔 ∈ Ω𝑣} ⊆ 2Ω0 , (17a)

∙ ∀𝐵 ⊆ Ω0, 𝜌(𝐵) =
⋃
𝜔∈𝐵

𝜌({𝜔}). (17b)

for 𝑣 = 1,… , 𝑉 . The frame Ω0 is called a refinement
of Ω𝑣. The mass 𝑚Ω𝑣 in Ω𝑣 can be converted into the
vacuous extension 𝑚Ω𝑣↑Ω0 on Ω0 as

𝑚Ω𝑣↑Ω0(𝐴) =

{
𝑚Ω𝑣(𝐵) if ∃𝐵 ⊆ Ω𝑣, 𝐴 = 𝜌(𝐵),
0 otherwise,

(18)
for all 𝐴 ⊆ Ω0. Thus, the final outputs of the belief-
function fusion module at one pixel location are the mass
functions reasoning on Ω0 as

𝑚𝑣↑0 =
𝑉⨁
𝑣=1

𝑚Ω𝑣↑Ω0 ,

representing the total belief of a pixel class according to
the feature maps of the 𝑉 ES-transformer networks.

Step 3: One of the evidence-theoretic rules Denoeux (2019)
is selected to make a decision using the aggregated𝑚𝑣↑0.
In this work, the pignistic criterion (11) has been used
for the segmentation decision-making. Thus, a pixel of
the input image is classified to 𝜔̂, such that

𝜔̂ = arg max
𝜔𝑖∈Ω0

𝐵𝑒𝑡𝑃𝑚𝑣↑0(𝜔𝑖).

4 EXPERIMENTS OF DISTRESS
SEGMENTATION

This section presents the numerical experiments, indicating the
superiority of the ES-transformer network on pavement dis-
tress segmentation. The datasets are first described in Section
4.1, followed by the metrics and implementation details in
Sections 4.2 and 4.3, respectively. The results of distress seg-
mentation are reported in Section 4.4.

4.1 Datasets
Three public pavement image datasets were used in the exper-
iment: Pavementscapes Tong, Ma, Huyan, & Zhang (2022),
Crack500 Yang et al. (2019), and CrackDataset Huyan, Li,
Tighe, Xu, & Zhai (2020). The datasets were used to train and
test the ES-transformers as well as other deep neural networks
for comparison.

The Pavementscapes dataset contains six pavement distress
classes in 4k images with a resolution of 1024×2048, in which
the pixel-wise annotations indicate the classes of all pixels,
including one of the six distress categories or “background”.
In the dataset, the training, validation, and testing sets con-
sist of 2500, 500, and 1000 pavement images. The Crack500
and CrackDataset datasets are similar to the Pavementscapes
dataset but only have the “crack” class, respectively, in 500
images with a resolution of 2000 × 1024 and 3k images with
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FIGURE 4 Evidential strategy in Dempster-Shafer theory for multi-transformer fusion.

FIGURE 5 A refinement example. The notations Ω1, Ω2 and Ω3 stands for the frames of discernment on the Pavementscape,
Crack500, and CrackDataset, and Ω0 is the common refinement of Ω1, Ω2 and Ω3.

a resolution of 1280 × 960. The split protocol of the Crack500
dataset is that the 500 images are divided into 250 training
images, 50 validation images, and 500 testing images. The
CrackDataset dataset consists of 2000 training images and
1000 validation images. In this experiment, the validation set
of the CrackDataset dataset has been separated into 500 images
as the validation set and 500 images as the testing set. The
effectiveness of the proposed network on distress segmentation
is evaluated by the three individual held-out testing datasets.

The three datasets do not pre-define soft labels. Thus, this
study defines the border pixels of each distress object as soft
labels with two or more classes, such as the example in Figure
6 .

4.2 Metrics
This experiment uses three metrics to measure the capac-
ity of the ES-transformer network for distress segmentation:
pixel accuracy (PA), mean intersection over union (mIoU), and
expected calibration error (ECE).

Pixel accuracy.
Let Ω = {𝜔1,… , 𝜔𝑀} be the set of pavement distress classes.
Given an image 𝑿, the pixel accuracy is defined as

𝑃𝐴 = 1|𝑿| ∑𝑥∈𝑿 1𝐴∗(𝑥)
(
𝜔̂(𝑥)

)
, (19)

where |𝑿| are the number of pixels in 𝑿; 𝐴∗(𝑥) and 𝜔̂(𝑥) are
the soft label and predicted class of pixel 𝑥 ∈ 𝑿, respectively;
1 is the indicator function, returning one if 𝜔̂(𝑥) ∈ 𝐴∗(𝑥),
otherwise zero. Note that the pixels belonging to the “back-
ground” or “pavement” labels do not consider in the metric, as
do in many benchmark datasets Cordts et al. (2016); Lin et al.
(2014). Without considering soft labels, PA in this study is the
same as its original definition Cordts et al. (2016).

Mean intersection over union.
This metric measures overlap between labeled and predicted
areas of distress objects as

𝑚𝐼𝑜𝑈 = 1
2|Ω| − 1

∑
𝐴∗⊆Ω

|𝑮(𝐴∗) ∩ 𝑷 (𝐴∗)||𝑮(𝐴∗) ∪ 𝑷 (𝐴∗)| , (20)
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FIGURE 6 Examples of soft labels. The first and second rows are the annotations from the Pavementscapes and CrackDataset
datasets. Different colors stands different soft labels.

where 𝑮(𝐴∗) is the ground truth areas with label 𝐴∗; 𝑷 (𝐴∗)
is the predicted areas whose each pixel is assigned into one
of the classes in 𝐴∗. The experiments do not consider the
IoUs of the “background” and “pavement” labels, as do in
many benchmark datasets Cordts et al. (2016); Everingham
et al. (2015). Using a dataset without soft labels, mIoU is the
same as its original definition for semantic segmentation Long,
Shelhamer, & Darrell (2015).

Expected calibration error.
For a learning system, a network needs not only to make cor-
rect predictions but also to show the probability that it may
fail. Confidence in a network is widely used to represent a mass
of beliefs supporting the hypothesis that the prediction of a
network is correct. Therefore, a desirable transformer network
should be measurably-confident and well-calibrated, in which
its confidence is close to its accuracy to indicate when the net-
work may fail to predict the pixel classes. The experiments
utilize the expected calibration error (ECE) Guo et al. (2017)
to measure the confidence and calibration performance of a
network. First, the prediction confidence of pixel 𝑥 with label
𝐴∗(𝑥) is defined as

𝑝𝑐(𝑥) =
∑

𝜔∈𝐴∗(𝑥)
𝐵𝑒𝑡𝑃𝒎(𝜔). (21)

where 𝐵𝑒𝑡𝑃𝒎(𝜔) is the predicted pignistic probability of class
𝜔 using 11. Let 𝑏𝑘 be the bin of pixels with prediction confi-
dences falling into interval ( 𝑘−1

𝐾
, 𝑘
𝐾
], 𝑘 = 1,… , 𝐾 . The accu-

racy and confidence of bin 𝑏𝑘 are then computed, respectively,
as

𝑎𝑐(𝑏𝑘) =
1|𝑏𝑘| ∑𝑥∈𝑏𝑘 1𝐴∗(𝑥)

(
𝜔̂(𝑥)

)
, (22a)

𝑐𝑜(𝑏𝑘) =
1|𝑏𝑘| ∑𝑥∈𝑏𝑘 𝑝𝑐(𝑥). (22b)

A network is well calibrated with 𝑎𝑐(𝑏𝑘) ≈ 𝑐𝑜(𝑏𝑘) for all bins,
and the ECE is defined as

𝐸𝐶𝐸 =
∑𝐾
𝑘=1 |𝑏𝑘| × |𝑐𝑜(𝑏𝑘) − 𝑎𝑐(𝑏𝑘)|∑𝐾

𝑘′=1 |𝑏′𝑘| . (23)

The ECE in the experiments does not consider the “back-
ground” and “pavement” pixels.

4.3 Implementation details
Hyper-parameters
In the segmentation-transformer backbone, the experiments
use the vision transformer (ViT) Dosovitskiy et al. (2021) to
design different encoders, as shown in Table 1 . The head
size of a multi-head self-attention block is fixed to 64 in the
encoders, while the number of heads is the ratio of the token
size over the multiplication of the head size and the hidden size
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TABLE 1 Implementation details of segmentation trans-
former backbones.

Backbone Encoder Patch size Layers Token size Heads Params
Seg-T/16 ViT-Ti 16 12 192 3 6M
Seg-S/32 ViT-S 32 12 384 6 22M
Seg-S/16 ViT-S 16 12 384 6 22M
Seg-B/32 ViT-B 32 12 768 12 86M
Seg-B/16 ViT-B 16 12 768 12 86M
Seg-B/8 ViT-B 8 12 768 12 86M
Seg-L/16 ViT-L 16 24 1024 16 307M

in the multi-layer perceptron. The experiments also consider
different patch sizes 8×8, 16×16, and 32×32. For the decoder
part, the point-wise linear layers and mask transformer upsam-
ple the outputs of the encoder part to generate the pixel-wise
features.

In the evidence layer, the dimensions of the input fea-
ture vectors are 52, 15, and 20, respectively, for the Pave-
mentscapes, Crack500, and CrackDataset datasets. A convolu-
tional layer with 1×1 kernels is plugged between the backbone
and evidential layer to adjust the dimensions of the features
vectors.

Training setting.
Before training, the weights of each ViT encoder in the
segmentation-transformer backbone are initialized by the Ima-
geNet pre-trained weights in Dosovitskiy et al. (2021), while
all parameters in the decoder part and evidential layer are
initialized randomly using normal distributions.

During training, as done in many segmentation tasks, data
augmentation is adopted in the three datasets, including mean
subtraction, random reshaping with a proportion from 0.5 to
2.0, and so on. For the three distress segmentation tasks, the
proposed networks are fine-tuned with the batch size of 4
and the“poly” learning rate 𝛾 = 𝛾0(1 − 𝑁𝑖

𝑁
), where 𝛾0 is the

base learning rate; 𝑁𝑖 and 𝑁 are the current epoch number
and the total epoch number. The values of 𝛾0 for all three
datasets equal 10−3, while the total epoch number are 600, 100,
and 150, receptively, for the Pavementscape, Crack500, and
CrackDataset datasets.

4.4 Results of distress segmentation
Pavementscapes
Table 2 shows the results of the proposed networks and other
comparison networks in the testing set of the Pavementscapes
dataset. Adding the evidence layer, an ES-transformer net-
work exceeds the PS-transformers with the same backbone
in terms of PA and mIoU, demonstrating the evidence layer
can slightly improve the distress segmentation performance

by improving the depth of a network. In addition, the ES-
transformer network with the Seg-L/16 backbone achieves the
best performance, outperforming the convolution-based deep
neural networks. Also, compared to the evidential networks in
Tong et al. (2021b), the proposed ones have the superiority in
the terms of PA and mIoU owing to the use of an advanced
evidential neural network that does not measure the distance
between each prototype and the feature vector. All in all, the
ES-transformers have superiority in segmentation accuracy.

Table 2 also indicates that the proposed networks are more
cautious than the probabilistic ones with the same backbone
because the proposed networks have lower ECE values than
the probabilistic ones. This demonstrates that the accuracy of
an ES-transformer network matches its confidence but the PS-
transformer network cannot. Figure 7 provides an example
to explain the behavior. The accuracies of the PS-transformer
network in different bins are significantly lower than its confi-
dences, while the ES-transformer network is cautious to make
a decision. This behavior mainly benefits from the uncer-
tainty calibration by the evidence layer. When the features
from the segmentation-transformer backbone have some con-
fusing and conflicting information, an evidence layer tends
to output the uniform values of some single mass functions,
such as 𝑚({𝜔𝑖}) ≈ 𝑚({𝜔𝑗}) and a large values of 𝑚(𝐴) with|𝐴| > 1, indicating the true class may fall in set 𝐴. Figure
8 presents an example where the ES-transformer network
cannot confidently determine the pixel belonging to lateral or
longitudinal cracks. When the two lateral cracks in Figure 8
rotate 45°, the proposed network has 𝑚({𝜔1}) ≈ 𝑚({𝜔2})
and 𝑚({𝜔1, 𝜔2}) ≈ 0.21 in the green box, indicating the
features from the segmentation-transformer backbone are con-
fusing and the network cannot determine the pixel classes
between “lateral crack” and “longitudinal crack”. Appendix
A proves why the evidence layer has the capacity. Thus, the
cautious mass-function outputs make the proposed networks
well-calibrated. Unfortunately, the PS-transformer networks
in the probability framework cannot calibrate the uncertainty
information well since they always arbitrarily assign a large
probability to one and only one possible class.

Table 2 indicates that, given the same backbone, an ES-
transformer network trained by the learning set with soft labels
has higher PAs, mIoUs, and ECEs than the ones without soft
labels. Thus, the proposed learning approach also increases the
calibration of the proposed network. This is mainly because
the soft labels in the mass-function form allow a network to
adapt some confusing and conflicting information, rather than
arbitrarily learning. In addition, the results demonstrate that
the hard but imprecise labels in the Pavementscape dataset
have negative effects on a learning system. Here, “hard” means
labeling a sample as one and only one class, while “imprecise”
means making “hard” labels with uncertainty.
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TABLE 2 State-of-the-art comparison in the Pavementscapes testing set. The notation “-sl” means the network is trained by
the learning set with soft labels. GFLOPs stand for 109 (Giga) floating point operations. The best and second results in the three
metrics (PA, mIoU, and ECE) are in bold and italics. The first part of the table is the convolution-based methods and the rest
are the attention-based ones.

Method Backbone PA mIoU ECE GFLOPs
FCN-8s Long et al. (2015) VGG16 67.32 52.98 22.30 136.2
U-net Ronneberger, Fischer, & Brox (2015) VGG16 69.56 54.71 22.14 72.4
DeepLabv3+ L.-C. Chen, Papandreou, Kokkinos, Murphy, & Yuille (2017) VGG16 71.90 57.51 21.81 457.6
Self-Attention net Vaswani et al. (2017) - 73.07 58.74 21.32 38.5
CC-Attention net Huang et al. (2019) - 73.15 58.52 21.14 508.4
Double-Attention net Y. Chen, Kalantidis, Li, Yan, & Feng (2018) - 74.01 59.23 21.10 21.4
PS-Transformer Strudel et al. (2021) Seg-T/16 73.82 59.12 21.09 18.9
PS-Transformer Seg-S/32 73.65 58.93 20.98 -
PS-Transformer Seg-S/16 74.23 59.42 20.79 23.8
PS-Transformer Seg-B/32 74.10 59.24 20.84 -
PS-Transformer Seg-B/16 73.51 58.82 20.63 85.8
PS-Transformer Seg-B/8 73.69 58.84 21.05 -
PS-Transformer Seg-L/16 74.50 59.74 20.95 306.8
E-Transformer Tong et al. (2021b) Seg-L/16 72.14 56.32 18.43 307.1
ES-Transformer (Proposed) Seg-T/16 73.9 59.23 17.42 19.1
ES-Transformer Seg-S/32 73.77 58.71 17.26 -
ES-Transformer Seg-S/16 74.18 59.82 17.32 24.1
ES-Transformer Seg-B/32 73.98 59.46 17.60 -
ES-Transformer Seg-B/16 73.65 58.71 17.72 86.2
ES-Transformer Seg-B/8 73.83 58.33 17.34 -
ES-Transformer Seg-L/16 75.64 60.32 17.27 307.0
E-Transformer-sl Tong et al. (2021b) Seg-L/16 72.18 57.14 18.23 307.1
ES-Transformer-sl (Proposed) Seg-T/16 73.93 59.29 17.21 19.1
ES-Transformer-sl Seg-S/32 73.79 58.73 17.12 -
ES-Transformer-sl Seg-S/16 74.14 59.85 17.09 24.1
ES-Transformer-sl Seg-B/32 7387 59.49 17.49 -
ES-Transformer-sl Seg-B/16 73.72 58.74 17.61 86.2
ES-Transformer-sl Seg-B/8 73.89 58.39 17.24 -
ES-Transformer-sl Seg-L/16 75.67 60.34 17.04 307.0

Figure 9 shows the mIoU results of the ES-Transformer-sl
model with the Seg-L/16 backbone under various real-world
conditions, as well as the results of some previous networks.
The proposed network has stable performance on different
weather and pavement surface materials, exceeding the other
probabilistic deep networks. This demonstrates that the pro-
posed networks are stable under various real-world conditions.

Floating point operations (FLOPs) are used to measure how
many operations are required to run a single instance in a
deep neural network. A lower value of FLOPs always means
that an algorithm processes a new instance with fewer com-
putation costs. Table 2 shows that the use of an evidential
layer does not introduce significant computation costs but
increases the accuracy and calibration for the distress seg-
mentation task using the same backbone. For example, the

ES-transformer with the Seg-L/16 backbone has higher mIoU
but similar FLOPs than the PS-transformer network with the
same backbone.

Crack500 and CrackDataset
Tables 3 and 4 present the testing results on the Crack500
and CrackDataset datasets, respectively. The ES-transformer
network with the Seg-L/16 backbone has the optimal PA,
mIoU, and ECE, followed by the other transformers. Even
though the probabilistic transformers have similar PAs and
mIoUs as the evidence ones with the same backbone, they have
larger ECEs, indicating that the probabilistic models are over-
confident. Therefore, the use of an evidence layer at the end
of the segmentation-transformer backbone can improve the
accuracy and calibration of the transformer networks. As the
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FIGURE 7 Prediction confidences (top) and pixel accuracies (bottom) in different bins of pixels for PS-transformer (left),
ES-transformer (mid), and ES-transformer-sl (right) on the Pavementscapes dataset.

three used datasets (Pavementscapes, CrackTree, and Crack-
Dataset) were generated from different image color schemes,
resolutions, types of image collection methods, and so on, the
proposed method with high performances is stable in real-
world conditions. In addition, the proposed method does not
introduce significant computation costs for the distress seg-
mentation tasks.

5 EXPERIMENT OF MULTI-NETWORK
FUSION

The experiment of multi-network fusion is presented in the
section, including the implementation details in Section 5.1
and the main findings in Section 5.2.

5.1 Implementation details
Dataset.
The three datasets in Section 4.1 are merged into one for the
experiment. The merged dataset includes the training set of
4000 images, the validation set of 1050 images, and the testing
set of 2000 images. The semantics of the distress classes in the
three datasets are shown in Figure 5 . After merging the three

datasets, the three different frames are refined into a common
one Ω0 using 17.

Metrics.
After merging, some labels in the three datasets become soft
labels. For example, a “crack” label from the Crack500 dataset
is a soft label in the refined frame Ω0 since it indicates the
corresponding pixel belongs to one type of crack but one can-
not determine which one. In such a case, Eq. (19) is used to
evaluate the average accuracy of the proposed approach after
network fusion in the testing set.

Implementation details
The three well-trained ES-transformers with the best perfor-
mance in Tables 2 -4 are fused using the proposed evidential
fusion framework in Section 3.4. This study compares the pro-
posed fusion framework with the other four methods using the
same transformers.

Probability-to-mass fusion (PMF) Diaby et al. (2021) use
the feature vector of a pixel location and a softmax
layer to compute the Bayesian probabilities reasoning
on Ω𝑣, 𝑣 = 1,… , 𝑉 . The Bayesian probabilities are
extended into the Bayesian mass functions on the com-
mon frame Ω0 and aggregated by Dempster’s rule.
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FIGURE 8 Example of uncertainty calibration using mass functions. The green and orange boxes present two lateral cracks.
With the rotation of the two boxes, the mass functions 𝑚({𝜔1}), 𝑚({𝜔2}), and 𝑚({𝜔1, 𝜔2}) change, where 𝜔1 and 𝜔2 stand for
lateral and longitudinal cracks, respectively. The values of 𝑚({𝜔1}), 𝑚({𝜔2}), and 𝑚({𝜔1, 𝜔2}) are the averaged mass functions
of the pixels belonging the lateral cracks.

Bayesian-fusion (BF) Xu, Davoine, Bordes, Zhao, &
Denœux (2016) converts the feature vector of a pixel
location into a Bayesian probabilities distribution on
the common frame Ω0, where the probability of a multi-
class set is equally assigned to the elements of the set.
The Bayesian probabilities distributions from different
networks are then aggregated by Bayes’ theorem.

Probabilistic feature-combination (PFC) L. D. Nguyen,
Lin, Lin, & Cao (2018) concatenates the three feature
vectors of a same pixel location, which are generated
from three different networks, to build a new vector of
dimension 1024 × 3. The concatenated vector is then
used to compute the probability distribution of the class
membership on the common frame by a softmax layer.

Evidential feature-combination (EFC) also concatenates
the three vectors into one, but the concatenated vec-
tor is imported into an evidence layer to compute a
mass-function distribution on the common frame.

5.2 Results of multi-model fusion
Table 5 presents the pixel accuracies of the ES- and PS-
transformer networks trained by one of the three datasets,
along with the results of the four information fusion
approaches.

The proposed MFES strategy increases the average pixel
accuracy on the Crack500 and CrackDataset datasets after
fusion, as shown in Table 5 . This is because an ES-
transformer network trained by the Pavementscapes dataset
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FIGURE 9 Stability analysis using the Pavementscapes dataset under different (a) service years, (b) weathers, and (c) pavement
materials.

can provide useful and detailed information for the crack seg-
mentation on the other two datasets. For example, crack pixels
are misclassified into the “background” class when only using
a CrackData ES-transformer network, as shown in the two
examples in Figures 10 a and 10 b. After fusing the informa-
tion from the Pavementscapes and Crack500 networks, the two
misclassifications are corrected.

Table 5 also shows that there is a small increase in the
pixel accuracies in the Pavementscapes testing set. The rea-
son for the increase in the Pavementscapes dataset is a little
different from the ones for the other two datasets. The mass
functions from the Crack500 and CrackDataset networks can
provide a little useful information for the Pavementscapes net-
work, such as the examples in Figures 10 c and 10 d. The
two pixels are misclassified into the “longitudinal crack” class
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TABLE 3 State-of-the-art comparison on the Crack500 testing set. The notation “-sl” means the network is trained by the
learning set with the soft labels. GFLOPs stand for 109 (Giga) floating point operations. The best and second results in the three
metrics (PA, mIoU, and ECE) are in bold and italics. The first and second parts are the convolution- and attention-based methods.

Method Backbone PA mIoU ECE GFLOPs
FCN-8s Long et al. (2015) VGG16 67.82 50.31 25.30 194.76
FCN Yang et al. (2019) FPHBN 70.81 54.51 23.56 207.32
Unet N. T. H. Nguyen, Le, Perry, & Nguyen (2018) VGG16 69.01 52.61 25.17 103.53
Unet Lau, Chong, Yang, & Wang (2020) ResNeSt-50 73.77 57.82 18.24 125.76
Split-attention network H. Zhang et al. (2022) ResNeSt 72.97 57.42 19.36 309.42
Pyramid-attention network Wang & Su (2020) DenseNet121 79.85 62.35 17.62 206.31
PS-transformer Strudel et al. (2021) Seg-L/16 82.45 65.82 16.35 438.72
E-transformer Tong et al. (2021b) Seg-L/16 82.16 65.14 17.30 439.15
ES-transformer (Proposed) Seg-L/16 82.78 65.98 12.38 439.01
ES-transformer-sl (Proposed) Seg-L/16 82.84 65.79 11.24 439.01

TABLE 4 State-of-the-art comparison on the CrackDataset testing set. The notation “-sl” means the network is trained by the
learning set with the soft labels. GFLOPs stand for 109 (Giga) floating point operations. The best and second results in the three
metrics (PA, mIoU, and ECE) are in bold and italics. The first and second parts are the convolution- and attention-based methods.

Method Backbone PA mIoU ECE GFLOPs
FCN-8s Long et al. (2015) VGG16 71.19 60.24 14.32 68.1
U-net N. T. H. Nguyen et al. (2018) VGG16 79.87 65.32 10.63 36.2
CrackU-net Huyan et al. (2020) VGG16 98.14 83.43 5.89 36.2
PS-transformer Strudel et al. (2021) Seg-L/16 99.24 86.32 5.53 153.4
E-transformer Tong et al. (2021b) Seg-L/16 96.31 83.26 6.17 153.5
ES-transformer (Proposed) Seg-L/16 99.29 86.51 2.97 153.3
ES-transformer (Proposed) Seg-L/16 99.32 86.47 2.64 153.3

when the truth is “repair area”. The Crack500 and Crack-
Dataset networks highly believe that the two pixels belong to
the “crack” class. After aggregating the three mass functions,
the two pixels are classified correctly. Therefore, the Crack500
and CrackDataset networks can provide useful information on
the crack super-class for the Pavementscapes network. How-
ever, the mass functions from the Crack500 and CrackDataset
networks do not help when pixels are misclassified into other

distress classes by the Pavementscapes network, such as the
instance in Figure 10 e. All in all, these observations show that
the MFES strategy allows combining the transformers trained
by different datasets with different class sets to generate a more
general and accurate one, without introducing negative effects
on the accuracy of the individual networks, and sometimes
may increase results for some classes. Besides, this strategy
does not require extra training costs.

TABLE 5 Test average accuracy of different fusion strategies. The best and second results in the each column are in bold and
italics.

Method Pavementscapes Crack500 CrackDataset

Before fusion ES-transformer 75.67 82.84 99.32
PS-transformer 74.50 82.45 99.24

After fusion

MEFS 75.79 84.06 99.62
PMF 74.60 82.74 99.41
BF 74.58 82.85 99.36
PFC 74.21 82.23 99.00
EFC 71.06 78.32 94.26
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(a)

(b)

(c)

(d)

(e)

FIGURE 10 Mass-function fusion instances using MFES approach. The notations in the figure are the same as the ones in
Figure 5 . Only some mass functions of the red pixels are shown for lack of space.

Table 5 indicates that the PMF and BF approaches also
improve the performance of the PS-transformer networks after
fusion, though they are not as good as the proposed one.
The relatively low accuracies of the EFC and PFC strategies

demonstrate that the simple feature-concatenation methods are
less effective and have more training costs than the proposed
ones. In summary, the proposed evidential fusion strategy
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exceeds the other methods of multi-network fusion for distress
segmentation.

6 CONCLUSIONS

This study has proposed a new transformer network in the
framework of DST for pavement distress segmentation. The
following conclusions can be drawn from the presented results.

• The main finding of this study is that the ES-transformer
network increases the accuracy and calibration of trans-
formers by representing uncertainty in the form of DST
mass functions.

• The state-of-the-art performance of the proposed net-
work shows a new way to increase the performance of
the segmentation transformer on distress segmentation
by cautious DST-based decision-making.

• A learning approach has been proposed to train the
ES-transformer network, which handles the ambiguous
pixels with soft labels. This approach provides a way to
solve the problem of over-confidence in a transformer
by representing the knowledge of label uncertainty in a
learning set.

• The mass-functions outputs of the proposed network
allow to fuse of heterogeneous transformers with dif-
ferent distress categories, without introducing negative
effects on the accuracy of the individual networks, and
sometimes may increase results for some classes. The
approach does not require extra training.

• The ES-transformer network faces the problem of
an unbalanced learning set, especially on the Pave-
mentscapes dataset, in which the numbers of different
distress classes are very different. This phenomenon
harms a learning system and some advanced loss func-
tions should be considered to reduce the effect. In
addition, more large public datasets should be used to
demonstrate the advantages of the proposed network.
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APPENDIX

A PROOF OF OUTPUT MASS FUNCTIONS
IN THE EVIDENCE LAYER

The Layers 2 and 3 in Sexton 3.2 combine two or more simple
mass functions by combining their weights of evidence fol-
lowing the definition of simple mass function in Denœux et
al. (2019). Let’s begin with the mass 𝑚+. Each 𝑚+

𝑖 is the sim-
ple mass functions with two focal set {𝜔𝑖} and Ω. Thus, the
positive mass 𝑚+ is computed as

𝑚+({𝜔𝑖}) ∝ [1 − exp(−𝑤+
𝑖 )]

∏
𝑙≠𝑖

exp(−𝑤+
𝑙 )

=
∏
𝑙≠𝑖

exp(−𝑤+
𝑙 ) −

𝑀∏
𝑙=1

exp(−𝑤+
𝑙 )

= [exp(𝑤+
𝑖 ) − 1] exp(−

𝑀∑
𝑙=1

𝑤+
𝑙 ) (A1a)

with

𝑚+(Ω) ∝ exp(−
𝑀∑
𝑙=1

𝑤+
𝑖 ). (A1b)

https://github.com/tongzheng1992/Pavementscapes
https://github.com/tongzheng1992/Pavementscapes
https://github.com/fyangneil/pavement-crack-detection
https://github.com/fyangneil/pavement-crack-detection
https://github.com/juhuyan/CrackDataset_DL_HY
https://github.com/juhuyan/CrackDataset_DL_HY
https://github.com/tongzheng1992?tab=repositories
https://github.com/tongzheng1992?tab=repositories
https://github.com/tongzheng1992/E-FCN
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Therefore, we can get
𝑀∑
𝑖=1

𝑚+({𝜔𝑖}) + 𝑚+(Ω) ∝

exp(−
𝑀∑
𝑙=1

𝑤+
𝑙 )

[ 𝑀∑
𝑖=1

exp(𝑤+
𝑙 ) −𝑀 + 1

]
. (A2)

Then the positive masses can be normalized as

𝑚+({𝜔𝑖}) =
exp(𝑤+

𝑖 ) − 1∑𝑀
𝑙=1 exp(𝑤

+
𝑙 ) −𝑀 + 1

for 𝑖 = 1,… ,𝑀

(A3a)

𝑚+(Ω) = 1∑𝑀
𝑙=1 exp(𝑤

+
𝑙 ) −𝑀 + 1

. (A3b)

The mass function 𝑚+(Ω) is a decreasing function that is
close to one with𝑤+

𝑖 ≈ 0, 𝑖 = 1,… ,𝑀 . This indicates that the
evidence layer tends to generate a value of 𝑚+(Ω) close to 1 if
any evidence 𝜓𝑗(𝑥) ∈ 𝝍(𝒙) cannot provide any support for the
true class. This is the ignorance that the evidence vector does
not contain any useful information. In addition, the evidence
layer tends to generate an uniform mass-function distribution
among 𝑚+({𝜔𝑖}), 𝑖 = 1,… ,𝑀 , when different evidences has
similar weights. This is the confusion that the evidence vector
contains much conflict information.

Similarly, following (5b), the negative mass function of each
𝐴 ⊂ Ω is computed as

𝑚−(𝐴) =

{∏
𝜔𝑖∉𝐴

[1 − exp(𝑤−
𝑖 )]

}{∏
𝜔𝑖∈𝐴

exp(−𝑤−
𝑖 )
}

1 − 𝜅−
(A4a)

𝑚−(Ω) =
exp

(
−
∑𝑀
𝑖=1𝑤

−
𝑖

)
1 − 𝜅

, (A4b)

where the degree of conflict 𝜅− is computed using (7) as

𝜅− =
𝑀∏
𝑖=1

[
1 − exp(−𝑤−

𝑖 )
]
. (A4c)

After getting 𝑚+ and 𝑚− in (A3) and (A4), respectively,
the evidence layers combine them into one. Following (7), the
degree of conflict between 𝑚+ and 𝑚− is

𝜅 =
𝑀∑
𝑖=1

{
𝑚+({𝜔𝑖})

∑
𝜔∉𝐴

𝑚−(𝐴)

}

=
𝑀∑
𝑖=1

{
𝑚+({𝜔𝑖})

(
1 −

exp(−𝑤−
𝑖 )

1 −
∏𝑀

𝑖′=1[1 − exp(−𝑤−
𝑖′ )]

)}
.

(A5)

With 𝜂+ =
(∑𝑀

𝑖′=1 exp(𝑤
+
𝑖′ ) −𝑀 + 1

)−1
and 𝜂− =(

1 −
∏𝑀

𝑖′=1[1 − exp(−𝑤−
𝑖′ )]

)−1
, Eq. (A5) can be simplified as

𝜅 =
𝑀∑
𝑖=1

{
𝜂+(exp(𝑤+

𝑖 ) − 1)[1 − 𝜂− exp(−𝑤−
𝑖 )]

}
. (A6)

Using Dempster’s rule, the mass of each singleton set is com-
puted as

𝑚({𝜔𝑖}) =
𝑚+({𝜔𝑖})

[∑
𝜔𝑖∉𝐴

𝑚−(𝐴)
]
+ 𝑚−({𝜔𝑖})𝑚+(Ω)

1 − 𝜅
(A7)

Using (A3) and (A4), Eq. (A7) can be re-written as

𝑚({𝜔𝑖}) (A8)

= 𝜂𝜂−𝜂+ exp(−𝑤−
𝑖 )

{
exp(𝑤+

𝑖 ) − 1 +
∏
𝑙≠𝑖

[1 − exp(−𝑤−
𝑙 )]

}
,

(A9)

with 𝜂 = (1 − 𝜅)−1. Using (A4a) and (A3b), the mass for each
multi-element set |𝐴| ⊆ Ω is computed as

𝑚(𝐴) = 𝜂𝑚−(𝐴)𝑚+(Ω) (A10)

= 𝜂𝜂−𝜂+
{∏

𝜔𝑖∉𝐴
[1 − exp(−𝑤−

𝑖 )]

}{∏
𝜔𝑖∈𝐴

exp(−𝑤−
𝑖 )

}
.

(A11)
Finally, Eqs. A8 and A10 are the output mass functions of the
evidence neural-network layers.
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