
Université de technologie de Compiègne
Heudiasyc, UMR CNRS 7253

Doctoral Thesis

Submitted in fulfillment of the requirements for the degree of
Doctor of Philosophy in Information Technologies and Systems

Present by:
Zheng TONG

Evidential deep neural network in the
framework of Dempster-Shafer theory

JURY

Thierry DENŒUX
Frédéric PICHON
Sylvie LE HEGARAT
Philippe XU
Véronique CHERFAOUI
Emmanuel RAMASSO

Professor, UTC
Professor, Artois University
Professor, Paris-Sud University
Associate professor, UTC
Professor, UTC
Associate professor, ENSMM School

Supervisor
Reviewer
Reviewer
Examiner
Examiner
Examiner

May 15, 2022

iii

Abstract
Deep neural networks (DNNs) have achieved remarkable success on many real-

world applications (e.g., pattern recognition and semantic segmentation) but still face
the problem of managing uncertainty. Dempster-Shafer theory (DST) provides a well-
founded and elegant framework to represent and reason with uncertain information.
In this thesis, we have proposed a new framework using DST and DNNs to solve the
problems of uncertainty.

In the proposed framework, we first hybridize DST and DNNs by plugging a DST-
based neural-network layer followed by a utility layer at the output of a convolutional
neural network for set-valued classification. We also extend the idea to semantic
segmentation by combining fully convolutional networks and DST. The proposed ap-
proach enhances the performance of DNN models by assigning ambiguous patterns
with high uncertainty, as well as outliers, to multi-class sets. The learning strat-
egy using soft labels further improves the performance of the DNNs by converting
imprecise and unreliable label data into belief functions.

We have also proposed a modular fusion strategy using this proposed framework,
in which a fusion module aggregates the belief-function outputs of evidential DNNs by
Dempster’s rule. We use this strategy to combine DNNs trained from heterogeneous
datasets with different sets of classes while keeping at least as good performance as
those of the individual networks on their respective datasets. Further, we apply the
strategy to combine several shallow networks and achieve a similar performance of an
advanced DNN for a complicated task.

Keywords: Dempster-Shafter theory, belief function, deep neural network, deep
learning, pattern classification, semantic segmentation

v

Acknowledgements
Firstly, I would like to express my sincere gratitude to my supervisors Prof. Thierry
Denœux and Ass. Prof. Philippe Xu for the continuous support of my Ph.D study
and related research, for his patience, motivation, and immense knowledge. Their
guidance helped me in all the time of research and writing of this thesis.

Besides my supervisors, I would like to thank the members of the jury Prof.
Frédéric Pichon, Prof. Sylvie Le Hégarat, Prof. Véronique Cherfaoui, and Ass. Prof.
Emmanuel Ramsso, for their insightful comments and encouragement, but also for
the hard questions which incented me to widen my research from various perspectives.

I thank my colleagues from Heudiasyc in Compiègne with whom I spent a huge
amount of time during office hours and beyond. Thanks to all of you for the moments
we shared.

I wish to thank the unconditional support of my parents and girl friend Miss
Yao QIU despite the long distance. Without your support, nothing would have been
possible.

I would like to gratefully acknowledge the support provided for this work under
the framework of the Labex MS2T. Last but not least, I would also like to thank the
Chinese Scholarship Council for supporting my study in France.

vii

List of Publications

International journals

• Z. Tong, Ph. Xu, T. Denœux. An evidential classifier based on Dempster-Shafer
theory and deep learning. Neurocomputing, August 2021, 450, 275–293.

• Z. Tong, Ph. Xu, T. Denœux. Evidential fully convolutional network for se-
mantic segmentation. Applied Intelligence, April 2021, 51, 6376–6399.

International conferences

• Z. Tong, Ph. Xu, T. Denœux. ConvNet and Dempster-Shafer Theory for Object
Recognition. In: International Conference on Scalable Uncertainty Management
(SUM 2019) , pp. 368-381. Springer, Cham, France, 2019.

• Z. Tong, Ph. Xu, T. Denœux. Fusion of evidential CNN classifiers for image
classification. In: International Conference on International Conference on
Belief Functions (BELIEF 2021) . Springer, Shanghai, China, 2021. (Best
paper award)

Available codes

Evidential deep-learning classifier: The python code using open-source software
library TensorFlow can be downloaded at https://github.com/tongzheng1992/
E-CNN-classifier.

Evidential fully convolutional network: The python code using open-source
software library TensorFlow can be downloaded at https://github.com/tongzheng1992/
E-FCN.

https://github.com/tongzheng1992/E-CNN-classifier
https://github.com/tongzheng1992/E-CNN-classifier
https://github.com/tongzheng1992/E-FCN
https://github.com/tongzheng1992/E-FCN

ix

Contents

Abstract iii

Acknowledgements v

List of Publications vii

List of Figures xv

List of Tables xviii

Acronyms & notations xix

Introduction 1

I Background 5

1 Dempster-Shafer theory 7
1.1 Information representation . 7

1.1.1 Mass function . 7
1.1.2 Discounting . 8

1.2 Operations of belief functions . 9
1.2.1 Dempster’s rule . 9
1.2.2 Change of frame of discernment 9

1.3 Decision-making with belief functions 11
1.3.1 Precise decision with belief functions 11
1.3.2 Imprecise decision with belief functions 12

1.4 Evidential neural network based on Dempster-Shafer theory 15
1.5 Conclusion . 17

2 Deep neural networks 19
2.1 Convolution neural network . 20

2.1.1 Convolution operation and its motivation 20
2.1.2 Pooling operation . 22
2.1.3 Data types . 23
2.1.4 Efficient modern variants of convolutional neural networks . . . 23

2.2 Fully convolutional networks . 28

x

2.2.1 Overall architecture of fully convolutional network 28
2.2.2 Upsampling operations . 30
2.2.3 Variants of fully convolution networks 32

2.3 Conclusion . 36

II Evidential deep neural networks 37

3 Evidential convolutional neural network classifier 39
3.1 Evidential CNN classifier . 39

3.1.1 Network architecture . 40
3.1.2 Learning . 41
3.1.3 Act selection . 43

3.2 Experimental evaluation . 44
3.2.1 Evaluation metrics . 45
3.2.2 Image classification experiment 45
3.2.3 Signal classification experiment 54
3.2.4 Semantic-relationship classification experiment 56

3.3 Conclusion . 64

4 Evidential fully convolutional network 65
4.1 Evidential FCN model . 65

4.1.1 Network architecture . 66
4.1.2 Learning with soft labels . 67

4.2 Experimental evaluation . 68
4.2.1 Datasets . 68
4.2.2 Evaluation metrics . 70
4.2.3 Precise segmentation results . 72
4.2.4 Imprecise segmentation results 76
4.2.5 Novelty detection results . 81

4.3 Conclusion . 86

5 Evidential fusion of heterogeneous deep neural networks 87
5.1 Introduction . 88
5.2 Fusion approach . 89

5.2.1 Evidential fusion approach . 89
5.2.2 Learning with soft labels . 92

5.3 Experiments on multi-model fusion . 93
5.3.1 Image-classification experiment #1 93
5.3.2 Image-classification experiment #2 98
5.3.3 Semantic-segmentation experiment #1 99
5.3.4 Semantic-segmentation experiment #2 103

xi

5.4 Experiments on training shallow networks for complex tasks 105
5.4.1 Experiment on the Tiny ImageNet dataset 106
5.4.2 Experiment on the Cityscapes dataset 109

5.5 Conclusion . 109

Conclusions and perspectives 111

A Appendix: gradient calculation in evidential neural network 115

Bibliography 119

xiii

List of Figures

1.1 Evidential neural network classifier [20]. 16

2.1 An example of the convolution operation. 21
2.2 Examples of pooling operations. 23
2.3 Comparison of traditional convolution layer and NIN convolutional

layer [74]. 24
2.4 Depth and width comparison of teacher and student CNN stages in

knowledge distillation. 26
2.5 Example of skip connection . 26
2.6 Architecture of a ViT [27]. 28
2.7 Transforming fully connected layers into convolution layers to output

a heatmap [77]. 29
2.8 An illustration of the encoder-decoder architecture. 30
2.9 Upsampling examples. 31
2.10 An instance of transposed convolution operation. 32
2.11 Illustration of the FCN-32s, FCN-16s, and FCN-8s architectures . . . 33
2.12 Illustration of a U-net architecture [107]. 34
2.13 Illustration of the SegNet architecture 35
2.14 Illustration of a conditional random field. 35

3.1 Architecture of an evidential CNN classifier. 40
3.2 Architecture of the utility layer. 41
3.3 An example of act selection. 44
3.4 Rejection-error curves on the CIFAR-10 testing set 48
3.5 Illustration of the 5-fold cross validation for determining λ0 with . . . 48
3.6 Average utility vs. ν for the evidential CNN classifiers on the CIFAR-

10 dataset. 50
3.7 Average utility (a) and average cardinality (b) vs. γ for the evidential

and probabilistic CNN classifiers on the CIFAR-10 dataset. 52
3.8 Dendrograms for the CIFAR-10 dataset. 53
3.9 Rate of fΩ vs. γ for novelty detection in the image-classification ex-

periment. 55
3.10 Rejection-error curves on the UrbanSound 8K testing set 57

xiv

3.11 Average utility vs. ν for the evidential CNN classifiers on the Urban-
Sound 8K dataset. 58

3.12 Average utility (a) and average cardinality (b) vs. γ for the proposed
classifiers and the probabilistic CNN classifiers on the UrbanSound 8K
dataset. 58

3.13 Rate of fΩ vs. γ for novelty detection in the signal-classification ex-
periment. 59

3.14 Dendrograms for the UrbanSound 8K dataset. 59
3.15 Rejection-error curves on the SemEval-2010 Task 8 testing set 61
3.16 Curves in ν-utility for the evidential CNN classifiers on the SemEval-

2010 Task 8 dataset. 62
3.17 Average utility (a) and average cardinality (b) vs. γ for the proposed

classifiers and the probabilistic CNN classifiers on the SemEval-2010
Task 8 dataset. 62

3.18 Rate of fΩ vs. γ for novelty detection in the semantic-relationship-
classification experiment. 63

3.19 Dendrograms for the SemEval-2010 Task 8 dataset. 63

4.1 Architecture of an evidential fully convolutional network. 66
4.2 Segmentation masks with soft labels. 70
4.3 Pixel confidence distributions (top) and pixel utility histograms (bot-

tom) for P-FCN-8s (left) and E-FCN-8s (right) on the Pascal VOC
dataset. 74

4.4 Pixel confidence distributions (top) and pixel utility histograms (bot-
tom) for P-FCN-SegNet (left) and E-FCN-SegNet (right) on the MIT-
scene Parsing dataset. 75

4.5 Pixel confidence distributions (top) and pixel utility histograms (bot-
tom) for P-FCN-CRF (left) and E-FCN-CRF (right) on the SIFT Flow
dataset. 75

4.6 Testing PU and UIoU vs. γ on the Pascal VOC dataset. 77
4.7 Pixel confidence distributions for the P-FCN-8s (left) and E-FCN-8s

(right) models on the Pascal VOC dataset without (top)/with (bottom)
soft labels. 77

4.8 Testing PU and UIoU vs. γ on the MIT-scene Parsing dataset. 78
4.9 Pixel rate histograms for the P-FCN-SegNet (left) and E-FCN-SegNet

(right) models on the MIT-scene Parsing dataset without (top)/with
(bottom) soft labels. 78

4.10 Testing PU and UIoU vs. γ on the SIFT Flow dataset. 79
4.11 Pixel rate histograms for the P-FCN-CRF (left) and E-FCN-CRF (right)

models on the SIFT Flow dataset without (top)/with (bottom) soft la-
bels. 79

xv

4.12 Segmentation examples from the Pascal VOC dataset. 80
4.13 Average utility histograms for P-FCN-8s (left) and E-FCN-8s (right)

with γ = 0.8 on the Pascal VOC dataset without (top)/with (bottom)
soft labels. 81

4.14 Average utility histograms for P-FCN-SegNet (left) and E-FCN-SegNet
(right) with γ = 0.8 on the MIT-scene Parsing dataset without (top)/with
(bottom) soft labels. 82

4.15 Average utility histograms for P-FCN-CRF (left) and E-FCN-CRF
(right) with γ = 0.8 on the SIFT Flow dataset without (top)/with
(bottom) soft labels. 82

4.16 Proportion of pixels assigned to Ω as a function of γ for novelty detec-
tion on the combination of MIT-scene Parsing and SIFT Flow datasets
(top) and the testing set from the Pascal VOC dataset (bottom) when
the learning set is from the Pascal VOC dataset without (left)/with
(right) soft labels. 83

4.17 Proportion of pixels assigned to Ω as a function of γ for novelty de-
tection on the combination of Pascal VOC and SIFT Flow (top) and
the testing set of the MIT-scene Parsing dataset (bottom) when the
learning set is from the MIT-scene Parsing dataset without (left)/with
(right) soft labels. 83

4.18 Proportion of pixels assigned to Ω as a function of γ for novelty detec-
tion on the combination of Pascal VOC and MIT-scene Parsing (top)
and the testing set of the SIFT Flow dataset (bottom) when the learn-
ing set is from the SIFT Flow dataset without (left)/with (right) soft
labels. 84

4.19 Examples of novelty detention from the MIT-scene Parsing dataset. . 85

5.1 Architecture of the evidential information-fusion approach 90
5.2 Semantic relationship of the classes in the Tiny ImageNet, Flower-102

and CIFAR-10 datasets. 94
5.3 Semantic relationship of the classes on the CIFAR-10, CUB and Pet

datasets. 99
5.4 Segmentation examples from the Cityscapes dataset before and after

fusion. 103
5.5 Architecture of a shallow CNN with 91k parameters. 107
5.6 Results of CNN combination experiment on the Tiny ImageNet dataset.108
5.7 Results of FCN combination experiment on the Cityscapes dataset. . . 110

xvii

List of Tables

1.1 Utility matrix extended by an OWA operator (γ = 0.8). 14

2.1 Examples of different formats of data in CNNs [37]. 24
2.2 Performance-Efficiency FitNet architectures [106]. 26
2.3 Performance-Efficiency ResNet backbones [48]. 27

3.1 Examples of DS layer outputs . 42
3.2 Example of utilities and losses . 42
3.3 Three CNN backbones used on CIFAR-10 dataset. 46
3.4 Test average utilities in precise classification on CIFAR-10 dataset. . . 46
3.5 Test average utilities for precise classification of the CIFAR-100 data

set after transfer learning. 47
3.6 Prediction distribution for the evidential CNN classifier with the NIN

backbone on the CIFAR-10 dataset. 49
3.7 Label classification/utilities with different γ. 51
3.8 Set-valued assignment rates using the selected and 2Ω acts (unit:%). . 53
3.9 Proportions of samples correctly assigned to acts in 2Ω and incorrectly

assigned to selected acts, for different values of γ. 53
3.10 Three baseline CNN backbones used on UrbanSound 8K. 56
3.11 Test average utilities in precise classification on UrbanSound 8K. . . . 56
3.12 Three baseline CNN backbones used on SemEval-2010 Task 8. 60
3.13 Test average utilities in precise classification on SemEval-2010 Task 8. 60

4.1 Lists of classes for the Pascal VOC, MIT-scene Parsing and SIFT Flow
datasets in the semantic segmentation experiments. 69

4.2 Utility matrix considering soft labels with γ = 0.8. 71
4.3 Performance evaluation of precise segmentation. 73
4.4 Percentage of pixels from some unknown classes in the MIT-scene Pars-

ing and SIFT Flow datasets. 85

5.1 Numbers of prototypes in Dempster-Shafer layers. 95
5.2 Average test error rates (in percent) of different classifiers on the clas-

sification experiment #1. 96
5.3 Test error rates (in percent) before and after information fusion on

CIFAR-10 using the FitNit-4 architecture. 97

xviii

5.4 Examples of probability mass functions on the Tiny ImageNet dataset
before and after fusion by the MFE strategy. 97

5.5 Error rates (in percent) of some classes on the Tiny ImageNet dataset
before and after fusion. 98

5.6 Lists of classes in the CIFAR-10, CUB, Oxford-IIIT Pet datasets. The
notations ω2

0 and ω3
0 stand for the “anything else” class added to the

frames of the CUB and Oxford datasets. 99
5.7 Average test error rates (in percent) of different classifiers on the clas-

sification experiment #2. 100
5.8 Examples of mass functions on the CIFAR-10 and Oxford-IIT pet

datasetS before and after fusion by the MFE strategy. 101
5.9 Lists of classes for the Pascal VOC, Cityscapes, and Stanford back-

ground datasets in the semantic segmentation experiments #1. 101
5.10 Numbers of output units in the encoder-decoder architectures. 102
5.11 Mean intersection over union of different FCN models on the segmen-

tation experiment #1. 104
5.12 Test IoU before and after information fusion on the Cityscapes dataset

using the FCN-CRF architecture. 104
5.13 Mean intersection over union of different FCN models on the segmen-

tation experiment #2. 105

xix

Acronyms & notations

Acronyms

DNN Deep Neural Network
CNN Convolutional Neural Network
E- and P-CNN Evidential and Probabilistic Convolutional Neural Network
FCN Fully Convolutional Network
E- and P-FCN Evidential and Probabilistic Fully Convolutional Network
DST Dempster-Shafer Theory
ENN Evidential Neural Network
OWA Ordered Weighted Average
DM Decision-Maker
RBF Radial Basis Function
ReLU Rectified Linear Unit
NIN Network In Network
ViT Vision Transformer
MLP Multi-Layer Perceptron
CRF Conditional Random Field
HAC Hierarchical Agglomerative Clustering
CHI Calinski-Harabasz Index
AA Average Accuracy
AU Average Utility
PU Pixel Utility
IoU Intersection over Union
UIoU Utility of Intersection over Union
ECE Expected Calibration Error
CUB Caltech-UCSD Birds-200-2011
GPU Graphics Processor Unit
FLOPs FLating point OPerations

Symbols

Ω frame of discernment
m mass function

xx

αm discounted mass function
mΩ↑Θ vacuous extension of mass m on Ω to frame Θ

Bel and Pl belief and plausibility functions
pl contour function
BetP Pignistic probability
κ degree of conflict
F set of acts
U utility matrix
Em, Em, Em,ν , Em,p lower, upper, Hurwicz, and pignisitic expected utilities associated to m

ν pessimism index
γ imprecision tolerance degree
X = {x1, . . . ,xN} a learning set of N examples
{p1, . . . ,pn} n prototypes in an ENN classifier or Dempster-Shafer layer
si distance-based support between x and prototype pi

di Euclidean distance between x and prototype pi

τ i, ηi, and ξi parameters associated with prototype pi

hij degree of membership of prototype pi to class ωj

z = (z1, . . . , zD) input data consisting of D tensors
H ×W size of tensor zi

w and b weight and bias of a convolution kernel
c output tensor after a convolution operation
r stride with which a kernel slides over an input tensor
S size of non-overlapping window in a pooling operation
co prediction confidence
au average utility
Iq set of samples with prediction confidence in interval (q−1

Q , q
Q]

pm1⊕...⊕mV and pV aggregated probability mass functions with V mass functions m1 . . .mV

ω∗ precise class label
A∗ soft label
1A(ω̂) indicator function

1

Introduction

Machine learning is widely used in different applications, such as advanced learning
driver assistance systems [13, 29, 134, 146], human-machine interaction [110, 151],
medical imaging [34, 83], etc. In recent years, one approach to machine learning,
deep learning [70], has achieved state-of-the-art results in these applications. For ex-
ample, convolutional neural networks (CNNs) [113] and fully convolutional networks
(FCNs) [77] are powerful techniques for pattern recognition [61, 123] and semantic
segmentation [104, 126], respectively. Such achievements mainly benefit from the
robust and reliable feature representation of deep neural networks (DNNs) with mul-
tiple layers, which progressively extract higher-level features from raw data and then
convert them into class probabilities [18]. In this thesis, we call such DNNs in the
framework of probability theory “probabilistic DNNs”. However, despite the power
and flexibility of probabilistic DNNs, they still face the problem of data uncertainty
in many real-world applications, mainly including ambiguous, unreliable, imprecise,
and incomplete data.

One problem of data uncertainty is the ambiguity in raw data or their represen-
tations, with which a machine-learning algorithm cannot make a reliable prediction.
For instance, in many applications of DNNs, we may not be able to reliably classify a
sample into a single class; multiple classes have similar probabilities because the fea-
ture representations of the sample are ambiguous and close to the ones of the learning
samples in two or more similar, but different, classes. In such a case, probabilistic
DNNs often arbitrarily assign the sample to one of the possible classes, which may
result in misclassification, even though some of them try to make imprecise decisions
using precise probability [10, 89].

Sometimes, uncertainty arises from imprecise and unreliable data. For instance,
in the majority of the learning sets for DNNs, such as CIFAR-10 [63] and Pascal VOC
2012 [30], all samples are precisely labeled with one and only one class, called the
precise labels, even if the true labels are actually uncertain. This is the case, for ex-
ample, for the pixels at object borders and small objects in a semantic-segmentation
learning set. Samples with precise but incorrect labels are unreliable and may have
negative effects on learning systems [3, 90]. However, common probabilistic DNNs
typically ignore such uncertainty since probability theory cannot capture the impre-
cision aspect of such label data, even though they sometimes use label smoothing to
represent such uncertainty [60, 79], which allows one class to have the largest proba-
bility and the rests have very small and equal probabilities when labeling a sample.

2 Introduction

Unfortunately, such labels still cannot represent the uncertainty well because not all
labels are unreliable and not all classes in a smoothed label have the same probability
for an object.

In addition, data may be inherently incomplete, which causes two problems. The
first one concerns the capacity of novelty and outlier detection [21]. An ideal algorithm
should detect “unknown” objects belonging to classes that are not represented in the
learning set. However, not all classes are labeled in many learning sets and a trained
probabilistic DNNs usually randomly assigns the “unknown” objects to one of the
known classes. In probability theory, there are two main directions to solve the
problem: assigning to an extra class or designing an additional outlier detector. The
former tends to assign some outliers to an extra class, such as “background” in some
semantic-segmentation tasks [13, 30], which requires a learning set to provide outlier
examples. The latter requires an extra outlier detector before the probabilistic DNNs
perform their task [36, 97].

Another problem arising from incomplete data is the partial and imperfect out-
puts of probabilistic DNNs, which make it difficult to combine heterogeneous DNNs.
In the past ten years, hundreds of deep networks have been developed using available
data sets with different sets of classes and different granularities. To utilize the most
of existing techniques, one tries to combine networks trained from such heterogeneous
datasets to obtain a general one. However, these existing DNNs output different prob-
abilistic information that may be uncertain but also partial. For example, given a new
image, a network outputs class probabilities for the CIFAR-10 dataset [63], including
the probability of class “bird”. However, compared to the probabilistic outputs of a
network trained by the Caltech-UCSD Birds 200 dataset with 200 species of birds
[141], the output information of the CIFAR-10 network is partial and imperfect. Un-
fortunately, Bayesian probability theory is not flexible enough to fuse such partial
and imperfect outputs when combining heterogeneous networks [146].

These uncertainty problems mainly derive from the fact that most DNNs work
within the probabilistic framework. Probability theory only captures the randomness
aspect of the data, but neither ambiguity nor incompleteness, which are inherent
in uncertain data. Therefore, during the last decade, many theories have been com-
bined with DNNs to solve these uncertainty problems, such as Dempster-Shafer theory
(DST) [16, 114], fuzzy sets [152], random sets [91], and imprecise probability [138].
This thesis aims at combining DST and DNNs to solve these problems. As a gener-
alization of probability theory, Dempster-Shafer theory [16, 114], also referred to as
evidence theory or theory of belief functions, is a well-established formalism for rep-
resenting and combining a large variety of uncertain information for decision-making
[149]. It is based on representing independent pieces of evidence by completely mono-
tone capacities and combining them using a generic operator called Dempster’s rule
[114].

Introduction 3

DST has been increasingly applied to machine learning with uncertain data, fol-
lowing two main directions: designing evidential classifiers [20, 25] and combining
information from multiple models [49, 68, 86, 87, 135]. Typically, an evidential clas-
sifier breaks down the evidence of each input vector into elementary mass functions
and combines them by Dempster’s rule. These mass functions represent the uncer-
tainty in the input features. For example, there exists ambiguous data in an input
vector when the values of two masses in an evidential classifier outputs are very close
[25]. Data unreliability and imprecision can also be represented by mass functions in
the framework of DST [59, 58, 99, 131]. In the direction of multi-model combination,
classifier outputs are expressed as belief functions and combined by Dempster’s rule
or any other rule [2, 57, 102]. This direction provides the possibility to process in-
complete data by extending heterogeneous imperfect outputs into a common frame
and combining them by Dempster’s rule [146].

Motivated by the high expressivity of DST as an uncertainty representation frame-
work, the goal of our study in this thesis is to 1) develop new DNNs in the framework
of DST with the capacity to deal with data uncertainty introduced above, and 2)
demonstrate the advantages of the new DNNs by applying them to pattern classifica-
tion, semantic segmentation, and multi-network fusion. The basic idea of our study
is to combine the frameworks of DST and DNN, where a DNN provides the feature
representations of input samples and a DST-based evidential classifier converts the
representations into mass functions for decision-making with data uncertainty. The
contributions of the thesis can be summarized by the following two points:

1. Evidential DNNs: We propose a new DNN in the DST framework, called ev-
idential DNN. An evidential DNN handles confusing and ambiguous samples,
as well as outliers, by making set-valued and cautious decisions. An evidential
DNN can also update its parameters using a learning set with uncertain and
imprecise labels represented in the form of DST-based mass functions. These
advantages of the evidential DNNs have been demonstrated in pattern classifi-
cation and semantic segmentation applications.

2. Evidential fusion of heterogeneous DNNs: The proposed combined framework
of DST and DNNs provides an evidential-fusion approach to combine heteroge-
neous DNNs. This approach is flexible enough to combine different pre-trained
DNNs with different sets of classes at any stage to obtain a more general net-
work. In addition, the approach provides a new way to combine simple and
shallow networks for a complicated task, which has the potential to make train-
ing easier and avoid the use of very deep networks. These advantages of the
evidential DNNs have also been verified in pattern classification and semantic
segmentation tasks.

This thesis contains five chapters organized in two parts:

4 Introduction

Part I introduces the theoretical background that supports the thesis. Chapter
1 recalls some notions of DST useful for machine learning with uncertain data. We
describe how information is represented and combined in the framework of DST. Some
useful operations and decision rules with belief functions are presented. This chapter
also recalls the evidential neural network classifier based on DST introduced in [20].
Chapter 2 focuses on the modern practices of DNNs. We introduce the fundamental
neural network layers and the state-of-the-art DNNs used in the study.

Part II is devoted to our own contributions. In Chapter 3, we describe an eviden-
tial CNN classifier that hybridizes DST and DNN by “plugging” an evidential neural
network classifier at the backbone output of a CNN. The idea of hybridizing DST
and DNN is then extended to FCNs with the applications of semantic segmentation
in Chapter 4. Finally, Chapter 5 describes the proposed approach of evidential fu-
sion to combine heterogeneous DNNs. This approach aggregates the belief functions
computed by deep neural networks expressed in different frames of discernment using
Dempster’s rule.

5

Part I

Background

7

Chapter 1

Dempster-Shafer theory

Machine learning-based tasks, such as pattern recognition and semantic segmenta-
tion, require powerful tools to represent and combine different types of uncertain
information. The Dempster-Shafer theory (DST) of belief functions [16, 114], also
referred to as evidence theory, offers a well-founded and workable framework for the
problem. It represents independent pieces of evidence by completely monotone ca-
pacities and combines them using a generic operator called Dempster’s rule [114]. It
is a well-established formalism for reasoning and making decisions with uncertainty
[19, 24, 67, 149]. It is also a generalization of possibility theory and is closely linked
to other theories including fuzzy sets [26, 152], random sets [26, 91] and imprecise
probability [138].

This chapter first recalls how information can be represented in the framework of
belief functions in Section 1.1. In Section 1.2, we describe some operations of belief
functions, followed by the issue of decision-making using belief functions in Section
1.3. Finally, in Section 1.4, we recall the distance-based evidential neural network
(ENN) classifier based on DST introduced in [20], which will be used in this study.

1.1 Information representation

1.1.1 Mass function

Let Ω = {ω1, . . . , ωM} be a set of state of nature, called the frame of discernment. A
mass function on Ω is a mapping m from 2Ω to [0,1] such that m(∅) = 0 and∑

A⊆Ω

m(A) = 1. (1.1)

For any A ⊆ Ω, each mass m(A) is interpreted as a share of a unit mass of belief
allocated to the hypothesis that the truth is in A, and which cannot be allocated to
any strict subset of A based on the available evidence. Set A is called a focal set
of m if m(A) > 0. A mass function is Bayesian if its focal sets are singletons; it is
then equivalent to a probability distribution. Thus, a probability distribution is a
particular kind of mass function that encodes precise information. A mass function

8 Chapter 1. Dempster-Shafer theory

is said to be logical if it has only one focal set, i.e., if it is such that m(A) = 1 for
some A ⊆ Ω.

Given a mass function m, belief and plausibility functions are defined, respectively,
as:

Bel(A) =
∑
B⊆A

m(B), ∀A ⊆ Ω, (1.2)

Pl(A) =
∑

B∩A ̸=∅

m(B), ∀A ⊆ Ω. (1.3)

For A ⊆ Ω, Bel(A) measures the degree of support of A, while Pl(A) = 1 − Bel(A)

measures the lack of support of the complement of A. The contour function pl:
Ω → [0, 1] is the restriction of the plausibility function Pl to singletons; it is defined
as

pl(ω) = Pl({ω}), ∀ω ∈ Ω. (1.4)

A mass function can be transformed into a probability distribution BetP by the
pignistic transformation [117] defined as

BetP (ω) =
∑

A⊆Ω,ω∈A

m(A)

|A|
, ∀ω ∈ Ω. (1.5)

The mass assigned to a set A is simply equally distributed to its elements.

1.1.2 Discounting

In the theory of belief functions, knowledge about the reliability of a source of infor-
mation can be handled by a discounting factor [25]. A discounting factor is used to
weaken a mass function by transferring some masses to the ignorance state.

For a factor α ∈ [0, 1], the discounted mass function αm is defined as

αm(A) = (1− α)m(A) ∀A ⊆ Ω (1.6a)
αm(Ω) = (1− α)m(Ω) + α. (1.6b)

If α = 0, the information is considered reliable and is kept as is. On the other hand,
if α = 1, the information is totally unreliable and leads to the vacuous mass function.
Smets [118] showed that the discounting equation (1.6) can be derived by interpreting
1− α as the degree of belief that the information is reliable.

1.2. Operations of belief functions 9

1.2 Operations of belief functions

1.2.1 Dempster’s rule

Two mass functions m1 and m2 on the same frame Ω representing independent items
of evidence can be combined conjunctively by Dempster’s rule [114] defined as follows:

(m1 ⊕m2) (A) =
1

1− κ

∑
B∩C=A

m1 (B)m2 (C) (1.7)

for all A ⊆ Ω, A ̸= ∅, and (m1 ⊕ m2)(∅) = 0. In (1.7), κ is the degree of conflict
between the two mass functions, defined as

κ :=
∑

B∩C ̸=∅

m1 (B)m2 (C) (1.8)

Mass functions m1 and m2 can be combined if and only if κ < 1. The mass function
m1⊕m2 is called the orthogonal sum of m1 and m2. The operator ⊕ is commutative
and associative, and the vacuous mass function is its only neutral element. The
contour function pl1 ⊕ pl2 associated to m1 ⊕m2 can be computed as

pl1 ⊕ pl2(ω) =
pl1(ω)pl2(ω)

1− κ
. (1.9)

Denœux [23] remarks that it is sometimes useful to approximate a mass function
of DST m by a probability mass function pm : Ω → [0, 1]. One such approximation
with good properties is obtained by normalizing the contour function [11, 137], such
that

pm(ωi) :=
pl(ωi)∑M
j=1 pl(ωj)

i = 1, . . . ,M, (1.10)

where M is the number of classes on Ω. As a consequence of (1.9), the so-called
plausibility transformation (1.10) has the following interesting property in relation
with Dempster’s rule:

pm1⊕m2(ωi) ∝ pm1(ωi)pm2(ωi), i = 1, . . . ,M, (1.11)

i.e., the probability distribution associated to m1 ⊕ m2 can be computed in O(M)

arithmetical operations by multiplying the probability distributions pm1 and pm2

element-wise, and re-normalizing. This probability can be used to simplify the pro-
cesses of orthogonal sum of m1 and m2 using Dempster’s rule.

1.2.2 Change of frame of discernment

Refinement. Because mass functions are directly defined over sets of classes, re-
finement and imprecise information can be easily handled. A refining from frame Ω

10 Chapter 1. Dempster-Shafer theory

to frame Θ, as defined in [114], is a mapping ρ : 2Ω → 2Θ such that:

• {ρ({ω}), ω ∈ Ω} ⊆ 2Θ is a partition of Θ, (1.12a)

• ∀A ⊆ Ω, ρ(A) =
⋃
ω∈A

ρ({ω}). (1.12b)

The frame Θ is then called a refinement of Ω.
Given a mass function mΩ on Ω, its vacuous extension mΩ↑Θ in Θ is the mass

function defined on frame Θ as

mΩ↑Θ(B) =

mΩ(A) if ∃A ⊆ Ω, B = ρ(A),

0 otherwise,
(1.13)

for all B ⊆ Θ. Two frames of discernment are said to be compatible if they have a
common refinement. Given two mass functions mΩ1 and mΩ2 on compatible frames
Ω1 and Ω2, their orthogonal sum mΩ1 ⊕mΩ2 is defined as the orthogonal sum of their
vacuous extensions in their common refinement Θ: mΩ1 ⊕ mΩ2 = mΩ1↑Θ ⊕ mΩ2↑Θ.
Also, the orthogonal sum of mΩ1↑Θ and mΩ2↑Θ can be simplified by the plausibility
transformation (1.10) and (1.11) when only considering singleton focal sets.

Coarsening. The opposite operation to refining is called coarsening. If a frame
of discernment Θ is a refinement of Ω, then Ω is a coarsening of Θ. By definition,
the cardinality of a refinement Θ is greater than that of the original frame Ω. This
implies that a refining ρ : 2Ω → 2Θ cannot be bijective, thus not invertible. The inner
reduction φ : 2Θ → 2Ω and outer reduction φ : 2Θ → 2Ω associated to a refining ρ

are defined, respectively, as

φ(B) = {ω ∈ Ω|ρ({ω}) ⊆ B}, ∀B ⊆ Θ, (1.14)

φ(B) = {ω ∈ Ω|ρ({ω}) ∩B ̸= ∅}, ∀B ⊆ Θ. (1.15)

The inner and outer reduction of a mass function mΘ in Ω are defined, respectively,
as

mΩ(A) =
∑

B⊆Θ,φ(B)=A

mΘ(B), ∀A ⊆ Ω, (1.16)

mΩ(A) =
∑

B⊆Θ,φ(B)=A

mΘ(B), ∀A ⊆ Ω. (1.17)

The inner reduction mΩ in (1.16) is not normalized, i.e., we may have mΩ(∅) > 0.
However, the outer reduction mΩ in (1.17) is always a normalized mass function.

1.3. Decision-making with belief functions 11

Given a mass function mΘ defined on Θ and its outer reduction mΩ on Ω, the
following propositions hold [145]:

Bel
Ω
(A) = BelΘ(ρ(A)), ∀A ⊆ Ω, (1.18)

Pl
Ω
(A) = PlΘ(ρ(A)), ∀A ⊆ Ω. (1.19)

In practice, the outer reduction is often preferred as it is consistent with respect to
the belief and plausibility functions.

1.3 Decision-making with belief functions

There are several strategies for decision-making with belief functions [22]. This section
introduces the strategies that will be used in the rest of this thesis, including precise
and imprecise decision with belief functions addressed in Sections 1.3.1 and 1.3.2,
respectively.

1.3.1 Precise decision with belief functions

A machine-learning algorithm should predict the class of each new sample based on
a learning set of labeled instances. The most common decision is precise decision, in
which a sample is assigned into one and only one possible class. Let Ω = {ω1, . . . , ωM}
be the set of classes. For a problem with only precise decisions, two simple strategies
consist in choosing the class with maximum belief or plausibility, called the pes-
simistic and optimistic strategies, respectively [22]. The optimistic strategy amount
to choosing the class with maximum contour function since the contour function is
the restriction of the plausibility function to singletons (1.4). This strategy will be
used for decision-making in Chapter 5 because it can reduce the computation com-
plexity when using mass functions on different compatible frames for decision-making
[23]. Another widely used strategy is to use the pignistic probability transformation
(1.5) and select the singleton with the maximum probability.

Denœux and Ma [22, 82] propose a general framework of decision-making with
belief functions. For a problem with only precise decisions, an act is defined as the
assignment of an example to one and only one of the M classes. The set of acts is
F = {fω1 , . . . , fωM }, where fωi denotes assignment to class ωi. To make a decision,
they define a utility matrix UM×M , whose general term uij ∈ [0, 1] is the utility of
assigning an example to class ωi when the true class is ωj . Here, UM×M is called
the original utility matrix. For decision-making with belief functions, each act fωi

induces expected utilities, such as the lower and upper expected utilities:

Em(fωi) =
∑
B⊆Ω

m(B) min
ωj∈B

uij , (1.20a)

12 Chapter 1. Dempster-Shafer theory

Em(fωi) =
∑
B⊆Ω

m(B) max
ωj∈B

uij . (1.20b)

A pessimistic decision maker (DM) typically selects the act with the largest lower
expected utility, while an optimistic DM maximizes the upper expected utility. The
generalized Hurwicz decision criterion [22, 55, 56, 120] models the DM’s attitude to
ambiguity by a pessimism index ν and defines the expected utility of act fωi as the
weighted sum

Em,ν(fωi) = νEm(fωi) + (1− ν)Em(fωi). (1.21)

It is clear that the pessimistic and optimistic attitudes correspond, respectively, to
ν = 1 and ν = 0. Besides, we can also compute the pignistic expected utility of each
act fωi as

Em,p(fωi) =

M∑
j=1

uijBetPm({ωj}), (1.22)

where BetPm is the pignistic probability defined by Eq. (1.5).

1.3.2 Imprecise decision with belief functions

A hard and precise decision often leads to an error in case of high uncertainty. For
example, ambiguity occurs when a feature vector does not contain sufficient informa-
tion to identify a precise class, and multiple classes have similar probabilities. Also,
a classifier with only precise-decision options may fail to identify outliers belonging
to a class that is not represented in the learning set. Imprecise decision is a potential
way to solve this problem. In the thesis, it is defined as the assignment of a new
observation to a non-empty subset of the class set when the uncertainty is too high
to make a precise decision. We focus on two types of imprecise decisions: precise
decision with a rejection option and set-valued decision.

Precise decision with a rejection option is defined as assigning a sample into one
possible class or rejection. The semantics of rejection is that a classifier rejects to make
a precise decision using the given information with too high uncertainty. Denœux [21]
proposed three strategies for precise decision with a rejection option. The set of acts
is F = {fω0 , fω1 , . . . , fωM }, where fω0 is a rejection act. Assuming the cost of a
correct act to be 0, the cost of an incorrect act to be 1 and the cost of rejection to
be λ0 ∈ (0, 1), the three strategies for rejection can be expressed as

Maximum credibility: maxj=1,··· ,M Bel({ωj}) < 1− λ0

Maximum plausibility: maxj=1,··· ,M Pl({ωj}) < 1− λ0

Maximum pignistic probability: maxj=1,··· ,M BetP (ωj) < 1− λ0.

Otherwise, the pattern is assigned to class ωj with j = argmaxk=1,··· ,M m({ωk}) if
the focal sets of mass functions consist of the singletons and Ω. For the maximum
plausibility and maximum pignistic probability rules, rejection is possible if and only

1.3. Decision-making with belief functions 13

if 0 ≤ λ0 ≤ 1−1/M , whereas a rejection action for the maximum credibility rule only
requires 0 ≤ λ0 ≤ 1.

Set-valued decision [45, 82, 89] is defined as the assignment of a new observation
to a non-empty subset of classes when the uncertainty is too high to make a precise
classification. For instance, given a class set Ω = {ω1, ω2, ω3}, we may not be able to
reliably classify a sample x into a single class, but it may be almost sure that it does
not belong to ω3. In this case, it is more cautious to assign x to the set {ω1, ω2}.
Ma and Denœux [82] propose an approach to conduct set-valued assignment under
uncertainty by generalizing the set of acts as partially assigning a sample to a non-
empty subset A of Ω. Thus, the set of acts becomes F = {fA, A ∈ 2Ω\∅}, in which
2Ω is the power set of Ω and fA denotes the assignment to a subset A. In the thesis,
subset A is defined as a multi-class set if |A| ≥ 2. Precise decision with a reject option
in [8, 130] can be regarded as a special case of set-valued classification, rejection being
equivalent to assigning a sample to the entire set of possible classes.

For decision-making with F , the original utility matrix UM×M is extended to
U(2Ω−1)×M , where each element ûA,j denotes the utility of assigning a sample to
set A of classes when the true label is ωj . When the true class is ωj , the utility
of assigning a sample to set A is defined as an Ordered Weighted Average (OWA)
aggregation [148] of the utilities of each precise assignment in A as

ûA,j =

|A|∑
k=1

gk · uA(k)j , (1.23)

where uA(k)j is the k-th largest element in the set {uAij , ωi ∈ A} made up of the ele-
ments in the original utility matrix UM×M , and weights g = (g1, . . . , g|A|) represent
the preference to choose uA(k)j when a DM has to make a precise decision among a
set of possible choices. The elements in weight vector g represent the DM’s toler-
ance to imprecision. For example, full tolerance to imprecision is achieved when the
assignment act fA has utility 1 once set A contains the true label, no matter how
imprecise A is. In the case, only the maximum utility of elements in set {uAij , ωi ∈ A}
is considered: (g1, g2, . . . , g|A|) = (1, 0, . . . , 0). At the other extreme, a DM attaching
no value to imprecision would consider the act fA as equivalent to selecting one class
uniformly at random from A: this is achieved when

(g1, g2, . . . , g|A|) =

(
1

|A|
,
1

|A|
, . . . ,

1

|A|

)
.

Following [82], we can also determine the weight vector g of the OWA operators by
adapting O’Hagan’s method [96]. The imprecision tolerance degree can be defined as

TDI(g) =

|A|∑
k=1

|A| − k

|A| − 1
gk = γ, (1.24)

14 Chapter 1. Dempster-Shafer theory

Table 1.1: Utility matrix extended by an OWA operator (γ = 0.8).

Classes
ω1 ω2 ω3

f{ω1} 1 0 0
f{ω2} 0 1 0
f{ω3} 0 0 1

f{ω1,ω2} 0.8 0.8 0
f{ω1,ω3} 0.8 0 0.8
f{ω2,ω3} 0 0.8 0.8
f{Ω} 0.682 0.682 0.682

which equals 1 for the maximum, 0 for the minimum, and 0.5 for the average. In
practice, we only need to consider values of γ between 0.5 and 1 as a precise assignment
is preferable to an imprecise one when γ < 0.5 [82]. Given a value of γ, we can compute
the weights of the OWA operator by maximizing the entropy

ENT (g) = −
|A|∑
k=1

gk log gk (1.25)

subject to the constraints TDI(g) = γ,
∑|A|

k=1 gk = 1, and gk ≥ 0.

Example 1.1 Table 1.1 shows an example of the extended utility matrix generated
by an OWA operator with γ = 0.8 for a classification problem. The first three rows
constitute the original utility matrix, indicating that the utility equals 1 when assigning
a sample to its true class, otherwise it equals 0. The remaining rows are the matrix of
the aggregated utilities. For example, we get a utility of 0.8 when assigning a sample
to set {ω1, ω2} if the true label is ω1.

Based on an extended utility matrix U(2Ω−1)×M and a mass function m, we can com-
pute the expected utility of an act assigning a sample to set A using the generalized
Hurwicz criterion (1.21) as

Em,ν(fA) = νEm(fA) + (1− ν)Em(fA), (1.26a)

where Em(fA) and Em(fA) are, respectively, the lower and upper expected utilities

Em(fA) =
∑
B⊆Ω

m(B) min
ωj∈B

ûA,j , (1.26b)

Em(fA) =
∑
B⊆Ω

m(B) max
ωj∈B

ûA,j , (1.26c)

and ν is the pessimism index that should be considered as a hyperparameter when
the generalized Hurwicz criterion is used in a classifier. We can also compute the

1.4. Evidential neural network based on Dempster-Shafer theory 15

pignistic expected utility of assigning that sample to set A as

Em,p(fA) =
M∑
j=1

ûA,jBetPm({ωj}), (1.27)

where BetPm is the pignistic probability defined by Eq. (1.5). The sample is finally
assigned to set A such that

A = arg max
∅̸=B⊆Ω

Em(fB). (1.28)

1.4 Evidential neural network based on Dempster-Shafer
theory

An evidential classifier quantifies prediction uncertainty using mass functions, see
[20, 25, 73, 122]. The output mass functions can then be used for decision-making [7,
40], as introduced in Section 1.3. Thanks to the generality and expressiveness of the
DST formalism, the outputs of an evidential classifier provide more information than
those of conventional classifiers (e.g., a neural network with a softmax layer), which
quantify prediction uncertainty using probability distribution. Over the years, two
main principles for designing an evidential classifier have been proposed: the model-
based and distance-based approaches. The former uses estimated class-conditional
distributions [118], while the latter constructs mass functions based on distances to
prototypes [20, 25]. This section introduces a particular evidential classifier that will
be combined with deep neural networks in the study.

Based on the DST, Denœux [20] proposed a distance-based neural-network layer
for constructing mass functions, also known as the evidential neural network (ENN)
classifier. In the ENN classifier, the proximity of an input vector to prototypes is
considered as evidence about its class. This evidence is converted into mass functions
and combined using Dempster’s rule.

We consider a learning set X = {x1, . . . ,xN} ⊂ RP of N examples represented
with P -dimensional feature vectors, and an ENN classifier composed of n prototypes
{p1, . . . ,pn} in RP . For a test sample x, the ENN classifier constructs mass functions
that quantify the uncertainty about its class in Ω = {ω1, . . . , ωM}, using a three-step
procedure. This procedure can be implemented in a complex neural-network layer
composed of three simple layers L1, L2, and L3, as shown in Figure 1.1a. The “DS
layer” will be plugged into deep neural networks in Chapters 3-5. The three-step
procedure is defined as follows.

Step 1: The distance-based support between x and each reference pattern pi is
computed as

si = τ i exp(−
(
ηidi

)2
) i = 1, . . . , n, (1.29)

16 Chapter 1. Dempster-Shafer theory

(a) Architecture of an evidential neural network (b) Connection between layers L2 and L3

Figure 1.1: Evidential neural network classifier [20].

where di =
∥∥x− pi

∥∥ is the Euclidean distance between x and prototype pi,
and τ i ∈ (0, 1) and ηi ∈ R are parameters associated with prototype pi. A
new parameter ξi ∈ R is introduced as τ i = (1 + exp(−ξi))−1 subject to the
constraint τ i ∈ (0, 1). Prototype vectors p1, . . . ,pn can be considered as vectors
of connection weights between the input layer and a hidden layer of n radial
basis function (RBF) units.

Step 2: The mass function mi associated to reference pattern pi is computed as

mi({ωj}) = hijs
i, j = 1, . . . ,M (1.30a)

mi(Ω) = 1− si, (1.30b)

where hij is the degree of membership of prototype pi to class ωj with
∑M

j=1 h
i
j =

1. We denote the vector of masses induced by prototype pi as

mi = (mi({ω1}), . . . ,mi({ωM}),mi(Ω))T .

Eq. (1.30) can be regarded as computing the activation of units in a second
hidden layer of the ENN classifier, composed of n modules of M +1 units each.
The result of module i corresponds to the belief masses assigned by mi.

Step 3: The n mass functions mi, i = 1, . . . , n, are aggregated by Dempster’s
rule (1.7), as shown in Figure 1.1b. The combined mass function is computed
iteratively as µ1 = m1 and µi = µi−1 ∩ mi for i = 2, . . . , n, where ∩ denotes
Dempster’s rule without normalization. We have

µi({ωj}) = µi−1({ωj})mi({ωj}) + µi−1({ωj})mi({Ω}) + µi−1(Ω)mi({ωj})
(1.31a)

1.5. Conclusion 17

for i = 2, . . . , n and j = 1, . . . ,M , and

µi(Ω) = µi−1(Ω)mi(Ω) i = 2, . . . , n. (1.31b)

The vector of outputs from the ENN classifier m = (m({ω1}), . . . ,m({ωM}),m(Ω))T

is finally obtained as

m({ωj}) =
µn({ωj})∑M

j′=1 µ
n({ωj′}) + µn(Ω)

and
m(Ω) =

µn(Ω)∑M
j′=1 µ

n({ωj′}) + µn(Ω)
.

The original work [20] presents the gradient calculation of the ENN when its
output masses are used to define a loss function. Appendix A provides the gradient
calculation of the ENN as a neural-network layer that receives the gradients w.r.t
masses from another layer.

1.5 Conclusion

DST is a powerful tool to represent and combine different uncertain information by
belief functions, including imperfect, imprecise, and incomplete data. In the thesis,
Dempster’s rule is used to combine information coming from different sources. The
fusion of heterogeneous classifiers with different degrees of granularity is easily per-
formed using the vacuous extension operation. DST also provides a flexible framework
to make precise and imprecise decisions. In addition, the DST-based ENN classifier
provides a way to convert features into mass functions, which will be used in the next
three chapters to build evidential deep neural networks.

19

Chapter 2

Deep neural networks

Deep learning [70], as a subset of machine learning, provides a very powerful frame-
work for feature representations. By adding more layers and more units within a layer,
a deep neural network (DNN) can represent information of increasing complexity.
Most perception tasks that consist of extracting high-level information from raw data
as feature representations, even those considered to be difficult for humans, can be
accomplished via DNNs, given sufficiently large models and sufficiently large datasets
of labeled learning examples. In the framework of DNN, several models have been
developed for feature representation, such as convolutional neural networks (CNNs)
[48, 113], recurrent neural networks [84, 85], fully convolutional network (FCN) [5,
35, 77], graph neural networks [111, 112], and deep autoencoders [53, 78].

Even though DNNs have the powerful and flexible capacity of feature represen-
tations, they still face the problem of data uncertainty. The problems mainly derive
from the fact that DNNs work within the probabilistic framework. To overcome
this limitation, the goal of our study in this thesis is to combine the frameworks of
Dempster-Shafer theory (DST) and DNNs to better deal with data uncertainty. In
detail, we use the feature representations from the backbone of a DNN as the in-
puts of the DST-based evidential neural network classifier recalled in Section 1.4 for
decision-making with uncertainty. The term backbone refers to the part of the feature
extractor in a deep neural network. Considering several categories of deep neural net-
works have been developed in the last decade, we demonstrate the feasibility of the
proposed idea by combining DST with two widely-used categories: CNN and FCN.

This chapter introduces the basic information of CNNs and FCNs. We begin by
describing CNNs that are used for feature representations in Section 2.1, including
convolution and pooling operations, input data types of CNNs, and the recent variants
of CNNs. In Section 2.2, we present the techniques of fully convolutional networks
(FCN) for pixel-wise feature representations, consisting of the overall architecture of
a common FCN, upsample operations, and some variants of FCN.

20 Chapter 2. Deep neural networks

2.1 Convolution neural network

Convolutional neural networks [37, 71], also known as convolutional networks, are
neural networks that use convolution in place of general matrix multiplication in at
least one of their layers. Convolution is a specialized kind of mathematical linear
operation. In Section 2.1.1, we first describe what convolution is and explain the
motivation behind the use of convolution in a network. In Section 2.1.2, we intro-
duce an operation called pooling, which almost all convolutional networks employ.
The most common CNNs consist of layers with convolution and pooling operations,
called convolutional and pooling layers, respectively. A combination of stacked con-
volutional and pooling layers is defined as a stage that converts its input data into an
intermediate representation, working as a feature extractor. In general, the backbone
of a CNN is composed of several stacked stages that process raw data and repeatedly
convert them into higher-level feature tensors, which will be considered as feature
representations and converted into mass function in Chapters 3-5. In Section 2.1.3,
we also show how convolution may be applied to many kinds of data, with differ-
ent numbers of dimensions. Finally, we introduce several efficient and widely-used
modern variants of CNNs in Section 2.1.4.

2.1.1 Convolution operation and its motivation

Let z = (z1, . . . , zD) be an input consisting of D input tensors or input channels zi

(i = 1, . . . , D) with size H × W . A convolutional layer consists of several convolu-
tion kernels that perform convolution operations to extract feature maps from z. A
convolution kernel is a small matrix used to apply a convolution operation to each
input tensor by sliding over the tensor, performing an element-wise multiplication
with the part of the input tensor where the kernel is currently on, summing up the
multiplied results into a single value, and then adding the bias of the kernel to the
summed value. Figure 2.1 presents an example of convolution operation. Thus, the
processes in a convolutional layer, consisting of e convolution kernels with size a× b,
are expressed as

cj = f(bj +
∑
i

wi,j ∗ zi), (2.1)

where wi,j is the convolution kernel between the i-th input tensor and the j-th output
tensor; bj is the bias of kernel wi,j ; ∗ denotes the convolution operation; zi is the i-th
input tensor with size H × W , i = 1, . . . , D; cj is the j-th output tensor, with size
H−a+1

r × W−b+1
r , j = 1, . . . , e; r is the stride with which the kernel slides over input

tensor zi; f(x) is the activation function, such as the rectified linear unit ReLU(x) =
max(0, x) [65].

The main motivation of the convolution operation in a CNN is to provide a means

2.1. Convolution neural network 21

Figure 2.1: An example of two-dimensional convolution operation
with stride=1. The red box on the input tensor indicates the part
of the tensor where the kernel is currently on. The black box slides
over the input tensor from upper-left to bottom-right with a one-step
stride. We restrict the output to only positions where the kernel lies
entirely within in the input tensor, called “valid” convolution. The
black arrows indicate how the upper-left element of the output tensor
is formed by applying the kernel to the corresponding upper-left region
of the input tensor. Here, ⊗ is element-wise multiplication.

for working with inputs of variable size. In general, convolution leverages three in-
teresting properties that can help improve a machine learning system: sparse in-
teractions, parameter sharing, and equivariant representations. Details of the three
properties can be found in [37].

Sparse interaction, also referring to sparse connectivity or sparse weights, means
that a neural-network layer does not need to connect every output unit with every
input unit. In a traditional neural network layer, we use matrix multiplication by a
matrix of parameters to describe the interaction between each input unit and each
output unit. However, in a convolutional layer, sparse interaction is accomplished by
using kernels smaller than the input. For instance, given m inputs and n outputs, a
matrix multiplication requires m× n parameters with O(m× n) arithmetical opera-
tions per example. However, a convolution kernel with k ≪ m weights only requires
k × n parameters with O(k × n) arithmetical operations. Thus, the kernel-based
sparse interaction needs to store fewer parameters, which both reduces the memory
requirements of a neural network and improves its statistical efficiency.

Parameter sharing means using the same parameter for more than one function
in a neural network. In a traditional neural-network layer, each element of a weight
matrix is used exactly once when computing the outputs. However, in a convolutional
layer, each weight in a kernel is used at every position of an input tensor, where the
kernel is currently on. This makes it possible to only train one set, rather than a
separate set of parameters for every location of an input tensor.

The particular form of parameter sharing allows a convolution operation to have
a property, called equivariance to translation. A function is equivariant means that if
the input changes, the output changes in the same way. For example, a function f(x)

is equivariant to a function g(x) if f(g(x)) = g(f(x)). In the case of convolution,

22 Chapter 2. Deep neural networks

let g be any function that translates the input, i.e., shifting, then the convolution
function is equivariant to g. For instance, I is a function giving brightness at integer
coordinates (x, y), and g is a function that shifts every pixel of I one unit to the
right, such that g(x, y) = I(x−1, y). If we apply this translation to I, then perform a
convolution operation, the result is the same as the condition where we first perform
the convolution operation to I ′ = g(I) and then apply the translation g to the output.
This property improves the robustness of the object representation from a convolution
operation.

2.1.2 Pooling operation

A typical convolution stage in a CNN consists of two parts. One is composed of
convolutional layers that perform convolution operations in parallel to produce a
set of linear activations. The other part is a pooling layer that furthers modifies the
outputs of a convolutional layer in the stage by an operation called pooling. A pooling
operation sub-samples each feature tensor cj from a convolutional layer by computing
some statistics of feature values within non-overlapping S×S windows of the tensor.
We describe three types of pooling operations that will be used in the rest of the
thesis: max-, mean-, and stochastic-pooling.

In the case of max-pooling, the statistic is the maximum and the outputs of the
pooling layer is composed of the feature maps sub-sampled by factor S. For example,
a feature tensor cj with size h−a+1

r × w−b+1
r in (2.1) is downsized to h−a+1

2r × w−b+1
2r

by a max-pooling operation with a 2× 2 non-overlapping window. Figure 2.2 shows
an example of the max-pooling operation applied to the output tensor in Figure 2.1.

The case of mean-pooling is similar to max-pooling except that the statistic is the
mean. Figure 2.2 shows an example of mean-pooling operation to the output tensor
in Figure 2.1. With a mean-pooling operation with a 2× 2 non-overlapping window,
feature tensor cj with size h−a+1

r × w−b+1
r is also downsized to h−a+1

2r × w−b+1
2r .

A stochastic-pooling operation randomly picks the activation within each pooling
region according to a multinomial distribution, given by the activities within the
pooling region [153]. In Figure 2.2, we perform the stochastic-pooling operation, in
which the activities in each region are normalized by their sum to generate a pseudo-
probability distribution for randomly picking.

After a pooling operation, a stage converts its input data into feature tensors
that are an intermediate representation. The backbone of a CNN model composed
of several stacked stages outputs high-dimensional and structured feature tensors.
Typically, the tensors from the final stage, called feature maps, are used for predicting
a class label for a classification task. Therefore, the final output of the stacked stages
in a CNN can be considered as a feature representation of the raw data. In the rest
of the thesis, these high-level features are used as inputs to a DS layer capable of
set-valued classification as will be described in Chapter 3.

2.1. Convolution neural network 23

Figure 2.2: Examples of two-dimensional pooling with a 2 × 2
non-overlapping window: max-pooling (a) , mean-pooling (b), and
stochastic-pooling (c). The solid-line arrows indicate how the upper-
left element of the output tensor is formed by applying one of the
pooling operations to the corresponding upper-left region of the input
tensor. The dotted-line arrows are the processes to generate a pseudo-
probability distribution and randomly pick activities according to the
distribution. The number in brackets is the pseudo-probability distri-
bution.

2.1.3 Data types

The input data of a CNN model usually consists of several channels, each channel
being the observation of a different quantity at some point in space or time. Table 2.1
summarizes the majority of types of input data with different dimensionalities and
number of channels.

2.1.4 Efficient modern variants of convolutional neural networks

In the last years, more and more ambitious and advanced approaches of CNNs have
been proposed to solve classification problems. This section briefly recalls several
advanced and widely-used modern variants of CNNs, which will be used in the rest
of the thesis.

Network in network (NIN) [74]. The main idea of a NIN is to replace linear
convolution kernels and a nonlinear activation function in each convolution layer with
a micro neural network for nonlinear feature extraction. A common convolution layer
uses the combination of linear convolution kernels and a nonlinear activation function
to extract features from the input tensors, as described in Section 2.1.1 and shown
in Figure 2.3a. In each convolutional layer of a NIN, micro networks, e.g., multilayer
perceptrons, are built to perform an operation similar to convolution, where the
output feature tensors are obtained by sliding the micro networks over the inputs.
The micro neural networks can be considered as a neural-network layer, called NIN
layer. Figure 2.3b compares the structures of NIN and convolutional layers.

24 Chapter 2. Deep neural networks

Table 2.1: Examples of different formats of data that can be used
with convolutional networks [37].

Types Single channel Multi-channel
1D Audio waveform: The axis we con-

volve over corresponds to time.
We discretize time and measure
the amplitude of the waveform
once per time step.

Skeleton animation data: Ani-
mations of 3D computer-rendered
characters are generated by alter-
ing

2D Audio data that has been prepro-
cessed with a Fourier transform:
We can transform the audio wave-
form into a 2D tensor with dif-
ferent rows corresponding to dif-
ferent frequencies and different
columns corresponding to differ-
ent points in time. Using convolu-
tion in the time makes the model
equivariant to shifts in time. Us-
ing convolution across the fre-
quency axis makes the model
equivariant to frequency, so that
the same melody played in a dif-
ferent octave produces the same
representation but at a different
height in the network’s output.

Color image data: One channel
contains the red pixels, one the
green pixels, and one the blue pix-
els. The convolution kernel moves
over both the horizontal and ver-
tical axes of the image, conferring
translation equivariance in both
directions.

3D Volumetric data: A common
source of this kind of data is med-
ical imaging technology, such as
CT scans.

Color video data: One axis corre-
sponds to time, one to the height
of the video frame, and one to the
width of the video frame.

(a) (b)

Figure 2.3: Comparison of traditional convolution layer (a) and NIN
layer (b) [74].

2.1. Convolution neural network 25

Another interesting operation in the NIN is Global Average Pooling (GAP). For
classification, a common CNN vectorizes the feature maps of the last convolutional
stage and feeds them into fully connected layers followed by a softmax layer for
decision-making. This structure bridges the convolutional stages with traditional
neural networks. Unfortunately, the fully connected layers are prone to overfitting
because of their matrix-multiplication connection between the inputs and outputs.
To solve the problem, a GAP operation takes the average of each feature map, and
the resulting vector is fed directly into a softmax layer. A GAP operation does not
introduce any parameters, which avoids overfitting and reduces the required memory.
Besides, the relationship between feature maps and category confidences is easier
to be interpreted since the operation directly enforces the correspondences between
feature maps and categories.

FitNet [106]. In practice, depth tends to improve network performances since
deeper networks are more non-linear. To achieve better performance than a ready-
trained network in a classification task, the study of FitNet takes advantage of depth
using a knowledge distillation approach. In this approach, the ready-trained network
is called the “teacher” network and its weights are learned from the learning set of
the task. The approach aims to train a deeper but thinner network with higher
performance, called the “student” network, using the teacher one and learning set.
“Deep” and “thin” mean a network has more layers but each layer has fewer kernels
or units. In the approach, given a sample from the learning set, the student network
is trained to imitate the intermediate and final feature representations of the teacher
network using a gradient descent method. Generally, each stage in the student net-
work introduces more hidden layers and reduces the units in each layer to imitate
and predict the feature outputs of the corresponding stage in the teacher network, as
shown in Figure 2.4. This allows one to train deeper students that can generalize and
interfere better. Table 2.2 displays several thin deep CNNs trained by the approach
of knowledge-distillation and achieving very good performances in image and speech
recognition [106].

ResNet [48]. ResNet, short for Residual Networks, is a neural network with skip
connections used as a backbone for feature extraction. Skip connections explicitly
copy features from earlier layers into later layers in forward propagation and allow
gradients to flow easily from later layer to earlier layer in back-propagation, even
connecting the lowest layer and the top layer. Figure 2.5 is an instance of skip
connection. This prevents neural networks from the problem of vanishing gradients
and helps users to build really very deep networks from the very start, rather than
at the beginning of another already-trained network, like FitNet [106]. Table 2.3
describes the widely-used ResNet-34, -50, and -101.

26 Chapter 2. Deep neural networks

Figure 2.4: Depth and width comparison of teacher and student CNN
stages in knowledge distillation. The width of the pink boxes indicates
the number of kernels in each convolutional layer. The student stage
is thinner than the teacher one since the former has fewer kernels than
the latter. However, the student stage consists of more convolution
layers than the teacher one, i.e., the student network is deeper than
the teacher one.

Table 2.2: Performance-Efficiency FitNet architectures [106].

FitNet-1 FitNet-2 FitNet-3 FitNet-4
3× 3 Conv. 16 ReLU 3× 3 Conv. 16 ReLU 3× 3 Conv. 32 ReLU 3× 3 Conv. 32 ReLU
3× 3 Conv. 16 ReLU 3× 3 Conv. 32 ReLU 3× 3 Conv. 48 ReLU 3× 3 Conv. 32 ReLU
3× 3 Conv. 16 ReLU 3× 3 Conv. 32 ReLU 3× 3 Conv. 64 ReLU 3× 3 Conv. 32 ReLU

2× 2 max-pool 2× 2 max-pool 3× 3 Conv. 64 ReLU 3× 3 Conv. 48 ReLU
2× 2 max-pool 3× 3 Conv. 48 ReLU

2× 2 max-pool
3× 3 Conv. 32 ReLU 3× 3 Conv. 48 ReLU 3× 3 Conv. 80 ReLU 3× 3 Conv. 80 ReLU
3× 3 Conv. 32 ReLU 3× 3 Conv. 64 ReLU 3× 3 Conv. 80 ReLU 3× 3 Conv. 80 ReLU
3× 3 Conv. 32 ReLU 3× 3 Conv. 80 ReLU 3× 3 Conv. 80 ReLU 3× 3 Conv. 80 ReLU

2× 2 max-pool 2× 2 max-pool 3× 3 Conv. 80 ReLU 3× 3 Conv. 80 ReLU
2× 2 max-pool 3× 3 Conv. 80 ReLU

2× 2 max-pool
3× 3 Conv. 48 ReLU 3× 3 Conv. 96 ReLU 3× 3 Conv. 128 ReLU 3× 3 Conv. 128 ReLU
3× 3 Conv. 48 ReLU 3× 3 Conv. 96 ReLU 3× 3 Conv. 128 ReLU 3× 3 Conv. 128 ReLU
3× 3 Conv. 64 ReLU 3× 3 Conv. 128 ReLU 3× 3 Conv. 128 ReLU 3× 3 Conv. 128 ReLU

8× 8 max-pool 8× 8 max-pool 8× 8 max-pool 3× 3 Conv. 128 ReLU
3× 3 Conv. 128 ReLU

8× 8 max-pool

Figure 2.5: Example of skip connections [48]. A copied feature x
from a earlier layer is concatenated with the outputs of the “weight
layer” as a new feature representation, while the gradient w.r.t x can
be directly back-propagated to the earlier layer.

2.1. Convolution neural network 27

Table 2.3: Performance-Efficiency ResNet backbones [48].

Layer name ResNet-34 ResNet-50 ResNet-101

Stage 1 7× 7× 64, stride 2
3× 3 max-pooling, stride 2

Stage 2
[
3× 3 64
3× 3 64

]
×3

1× 1 64
3× 3 64
1× 1 256

×3

1× 1 64
3× 3 64
1× 1 256

×3

Stage 3
[
3× 3 64
3× 3 64

]
×4

1× 1 128
3× 3 128
1× 1 512

×4

1× 1 128
3× 3 128
1× 1 512

×4

Stage 4
[
3× 3 64
3× 3 64

]
×6

1× 1 256
3× 3 256
1× 1 1024

×6

1× 1 256
3× 3 256
1× 1 1024

×23

Stage 5
[
3× 3 64
3× 3 64

]
×3

1× 1 512
3× 3 512
1× 1 2048

×3

1× 1 512
3× 3 512
1× 1 2048

×3

Vision transformer (ViT) [27]. Figure 2.6a presents the architecture of an ViT.
Compared to a traditional CNN directly using a full sample for classification, a ViT
first divides an input sample into a grid of square patches. Each patch is flattened
into a single vector by concatenating its channels of all elements and then linearly
projected to the desired input dimension. As an alternative to flattening the patches,
called CNN-based ViT, these patches can be imported into stacked CNN stages to
form feature vectors. After dividing the sample, the ViT is agnostic to the posi-
tion information about these patch vectors. Thus, learnable position embeddings are
linearly added to each vector, which allows a ViT to learn about the relative or ab-
solute positions of the patches. These embedded patch vectors are then sequentially
imported into a module with stacked transformer encoders, such as L transformer
encoders in Figure 2.6b. Each encoder consists of alternating layers of self-attention
and multi-layer perceptron (MLP). Self-attention of an embedded patch vector is
defined as its relationship to every other vector. Feeding the embedded patch vec-
tors sequentially, a self-attention layer computes their self-attentions as introduced
in [136]. These self-attentions are then fed into a multi-layer perceptron layer to
handle their dimension. In addition, LayerNorm [144] is applied before every layer,
and skip connection [48] after every layer, as shown in Figure 2.6b. A LayerNorm
layer normalizes the outputs of its previous layer for each given sample in a batch in-
dependently. The two techniques can improve the training and overall performance.
The self-attention outputs of the final transformer encoder are concatenated, and
the concatenated vector can be considered as the feature representation of the input
sample for classification.

28 Chapter 2. Deep neural networks

(a) (b)

Figure 2.6: Architecture of a ViT [27]: overview (a) and transformer
encoder module (b).

2.2 Fully convolutional networks

CNNs have very good performances in classification tasks thanks to their vectorized
and high-dimensional feature representations. The natural next step in the progres-
sion from coarse to fine inference is to predict at every element of the input data.
The prediction at every pixel of an input image, known as semantic segmentation and
pixel-wise classification, is defined as the process of partitioning a digital image into
multiple sets of pixels. The result of image segmentation is a set of segments that col-
lectively cover the entire image, called the segmentation mask. The mask constitutes
a simplified representation, more meaningful and easier to analyze than the original
image. Semantic segmentation has been widely applied to advanced driver assistance
systems [31, 75], human-machine interaction [66, 124], medical imaging [125, 150],
and so on.

Many deep learning-based approaches have been proposed for semantic segmen-
tation [33, 32, 44, 47, 77, 94, 101], in which each pixel is predicted with the class
of its enclosing object or region. One of the most successful approaches is fully con-
volutional networks (FCNs). This section first recalls the original architecture of an
FCN model in Section 2.2.1, followed by the introduction of upsample operations in
Section 2.2.2. Finally, we describe several efficient variants of FCNs in Section 2.2.3
that is used in the rest of the thesis.

2.2.1 Overall architecture of fully convolutional network

The main idea of FCN [77] comes from the architecture of CNN. In a CNN classifier,
as described in Section 2.1, several fully connected layers are used to handle the
number of channels in feature maps before probability predictions in a softmax layer,
such as from 4096 to 1000 in the top example of Figure 2.7. Thus, a CNN classifier
has to output feature maps with a fixed size and then vectorize them since its fully

2.2. Fully convolutional networks 29

Figure 2.7: Transforming fully connected layers into convolution lay-
ers to output a heatmap [77].

connected layers have fixed neurons and require the inputs with a fixed dimension.
The vectorizing operation throws away spatial coordinates of feature maps that are
important for semantic segmentation. In [77], these fully connected layers are replaced
by convolutional layers with 1 × 1 kernels. A 1 × 1 kernel only has a single weight
for each channel in its inputs and performs the convolution operations over the input
tensors pixel by pixel. Thus, the inputs and outputs of a 1 × 1 convolutional layer
have the same size but different numbers of channels. Such transformation allows to
handle the number of channels and retains the spatial information in feature maps
without vectorizing operations, as illustrated in the bottom example of Figure 2.7.
After that, feature maps are converted into a heatmap with the same size as the input
image. A heatmap attempts to determine all the important regions in an image that
the neural network pays attention to while performing semantic segmentation, such
as the cat in Figure 2.7. Therefore, the heatmap can be considered as the pixel-wise
feature representation of the image. The process of converting feature maps into a
heatmap refers to upsampling.

Following the idea, Long et al. [77] propose the architecture of FCNs that owe their
name to their architecture with only locally connected layers, such as convolution,
pooling, and upsampling layers. No dense layer is used in this kind of architecture.
Generally, an FCN consists of two main parts: an encoder-decoder architecture for
pixel-wise object representation and a softmax layer for pixel-wise classification. In
the encoder-decoder architecture, an input image is encoded by several stacked con-
volutional and pooling layers and then decoded by one or more upsampling layers,
where the encoder part also refers to as the backbone of the FCN. The softmax layer
then classifies each pixel in the input image to one of the classes based on the out-
puts of the encoder-decoder architecture. Therefore, the outputs of encoder-decoder
architecture, called the pixel-wise feature maps or heatmaps, are considered as the
feature representations of the input image. In the thesis, these feature maps are used

30 Chapter 2. Deep neural networks

Figure 2.8: An illustration of the encoder-decoder architecture. An
encoder downsizes its input by convolution and pooling operations.
The outputs of the encoder, as the sparse feature maps, are imported
into a decoder. A decoder upsamples and densifies its inputs by per-
forming the reverse operation of convolution and pooling. The final
decoder outputs are the pixel-wise feature maps.

as input to a DS layer allowing for set-valued semantic segmentation in Chapter 4.
To understand the feature representation of FCNs, we consider the encoder-

decoder architecture illustrated in Figure 2.8. Each convolutional layer in the encoder
part performs convolutions in its input to produce a set of feature maps, as mentioned
in Section 2.1.1. A pooling layer follows the convolutional layer to sub-sample feature
maps by computing some statistics of feature values within non-overlapping S × S

windows (see Section 2.1.2). In the rest of this thesis, max-pooling is used and the
statistic is the maximum. Although the convolution and pooling operations in the
encoder part help feature representation by retaining only robust activations, spatial
information within a receptive field is lost, which may be critical for image semantic
segmentation. To address the issue, a decoder part made up of one or more up-
sampling layers is added at the encoder output, and each upsampling layer performs
an upsampling operation to its input. The widely-used types of upsampling opera-
tions will be introduced in Section 2.2.2. The final upsampling layer outputs feature
maps with the same size as the input images, as the output of an encoder-decoder
architecture.

2.2.2 Upsampling operations

One of the key operations in an FCN is upsampling, which maps the spatial features
from the backbone of the FCN into dense pixel-wise feature maps. This section
describes five widely-used types of upsampling operations.

2.2. Fully convolutional networks 31

(a) (b) (c)

(d)

Figure 2.9: Examples of interpolation upsampling (a), nearest neigh-
bors upsampling (b), bed of nails upsampling (c), and Max-unpooling
(d).

Interpolation upsampling. Interpolation is the simplest way to connect coarse
features from a convolutional layer to dense heatmaps. For instance, simple bilinear
interpolation computes each output from the four nearest inputs by a linear map
that depends only on the relative positions of the input and output cells, such as the
example in Figure 2.9a.

Nearest neighbors upsampling. As the name suggests, we take each input value
and copy it to the K-nearest neighbors where K depends on the expected output,
like k = 2 in Figure 2.9b.

Bed-of-nails upsampling. In bed-of-nails upsampling, we copy the value of each
input at the corresponding position in the output image and filling zeros in the re-
maining positions, such as the one in Figure 2.9c.

Max-unpooling. Max-pooling in a CNN encoder takes the maximum among all
the values in the kernel. To perform max-unpooling, first, the index of the maximum
value is saved for every max-pooling layer during the encoding step. The saved index
is then used during the decoding step where the input pixel is mapped to the saved
index, filling zeros everywhere else. An instance is shown in Figure 2.9d.

Transposed convolution [95]. A transposed convolution operation densifies its
inputs of sparse feature maps through a convolution-like operation with a learned ker-
nel. Contrary to the convolution operation, which connects multiple inputs within a

32 Chapter 2. Deep neural networks

Figure 2.10: An instance of transposed convolution operation.

kernel to a single activation, a transposed convolution operation associates a single in-
put in a feature map to multiple outputs. Figure 2.10 is an example of the transposed
convolution operation. Thus, the outputs of a transposed convolution operation are
enlarged and dense feature maps. The processes of a transposed convolution operation
can also be summarized as Eq. (2.1).

2.2.3 Variants of fully convolution networks

In recent years, many FCN-based models have been proposed to solve the problems
of semantic segmentation. This section describes several widely-used models, which
will be used in the rest of this thesis.

FCN-32s, -16s, -8s [77]. In an FCN-32s model, as shown in Figure 2.11, several
stacked CNN stages extract feature maps from an input image, followed by one or
more 1×1 convolution layers as described in Section 2.2.1. An upsampling layer then
bilinearly upsample the maps to pixel-dense heatmaps that are used for decision-
making in a softmax layer. Compared to the FCN-32s model, the FCN-16s and
FCN-8s models combine sparse and high-layer information with dense and low-layer
information during upsampling. We take the FCN-16s model in Figure 2.11 as an
example. Its upsampling layer first doubles the density of the feature maps from
the Pool 4 layer using bilinear interpolation upsampling, and then the upsampled
maps are added to the maps from Pool 3 that also provide useful information for seg-
mentation. The added maps are then bilinearly upsampled to pixel-dense heatmaps
for segmentation. Compared to the FCN-16s model, the FCN-8s acquires additional
feature maps from Pool 2 to provide further precision.

U-net [35, 107]. U-net was first developed for biomedical image segmentation. Its
architecture looks like a ‘U’ that justifies its name, as shown in Figure 2.12. This

2.2. Fully convolutional networks 33

Figure 2.11: Illustration of the FCN-32s, FCN-16s, and FCN-8s ar-
chitectures. Pooling layers are represented as grids that show rela-
tively sparse information. Intermediate convolution layers are omit-
ted. Black arrow: the upsampling layer in FCN-32s directly upsamples
the outputs of Pool 4 to pixel-wise feature maps; orange arrows: the
upsampling layer in FCN-16s combines outputs from Pool 3 and 4, lets
the net predict finer details, while retaining high-level semantic infor-
mation; green arrows: the deconvolutional layer in FCN-8s acquire
additional feature maps from Pool 2 to provide further precision.

architecture consists of three parts: encoder, bottom, and decoder. The encoder part
is made up of several convolutional stages for feature extraction. The bottom part
then handles the number of the feature channels from the encoder using three 1× 1

convolutional layers. The decoder part upsamples the features from the bottom part.
The decoder has several stages and each stage consists of two convolutional layers
followed by a transposed convolution layer. In addition, each stage in the decoder
corresponds to one stage in the encoder, such as the pairs indicated by the gray
arrows in Figure 2.12. A decoder stage concatenates its inputs with the outputs of
its corresponding encoder stage, such as the gray arrows shown in Figure 2.12. This
operation provides more useful information for segmentation. After that, the outputs
of the final decoder stage are considered as the pixel-wise feature representations for
decision-making in a softmax layer.

SegNet [1]. Figure 2.13 illustrates the overall architecture of a SegNet model. The
SegNet architecture has several upsampling layers to upsample the sparse feature
maps from the end of the encoder part. The upsampling operations can be bilinear
interpolation or transposed convolution. Similar to U-net, the upsampling layers in
a SegNet model are symmetric to the convolution stages, such as the four shown
in Figure 2.13. The outputs of each upsampling layer are added to the outputs of

34 Chapter 2. Deep neural networks

Figure 2.12: Illustration of a U-net architecture [107]. Each blue box
corresponds to feature maps. The number of channels in the feature
maps is denoted at the top of the box. The width and height are pro-
vided at the lower-left edge of the box. White boxes represent copied
feature maps, and gray arrows indicate the transmitting direction of
the copied feature maps between the pairs of upsampling layers and
convolution stages.

2.2. Fully convolutional networks 35

Figure 2.13: Illustration of the SegNet architecture. The architecture
uses four deconvolutional layers to upsample the sparse feature maps
from the end of the encoder part, as well as the feature maps from the
corresponding pooling layers based on pooling indices (purple arrows).

Figure 2.14: Illustration of a conditional random field.

the corresponding convolution stages, which can improve the accuracy of pixel-wise
representations.

FCN-CRF (DeepLab v2) [5]. A common FCN-based model predicts the class
of a pixel using its corresponding vector from the pixel-wise feature maps without
considering “neighboring” pixels. However, the classes of the “neighboring” pixels
are important factors to determine the class of a pixel. A conditional random field
(CRF) can take context into account. In an FCN-CRF model, a CRF is added at
the end of the last upsampling layer to generate an energy matrix of the pixel-wise
feature maps, as illustrated in Figure 2.14. The value of each element in the matrix
is computed using the corresponding vector in the pixel-wise feature maps and the
vertical and horizontal factors w.r.t the “neighboring” vectors. The details of how to
generate an energy matrix using a CRF can be found in [5, 6]. The energy matrix
with “neighboring” information, instead of the pixel-wise feature maps, is used for
pixel-wise segmentation, which further improves the segmentation performance.

36 Chapter 2. Deep neural networks

2.3 Conclusion

Deep learning provides a powerful framework for feature representations in super-
vised learning. By adding more layers and more units within a layer, a DNN can
represent information of increasing complexity. CNN and FCN are two successful
cases of DNNs for feature representation in the field of pattern classification and se-
mantic segmentation, respectively. CNNs use convolutions in place of general matrix
multiplication in at least one of their layers. They are driving advances in classifica-
tion tasks thanks to their vectorized and high-dimensional feature maps from CNN
backbones. FCNs, which are built only from locally connected layers, provides an
efficient way to generate pixel-wise feature representation for semantic segmentation.

37

Part II

Evidential deep neural networks

39

Chapter 3

Evidential convolutional neural
network classifier

In this chapter, to deal with the data uncertainty in classification problems, we pro-
pose a new classifier based on DST and a convolutional neural network (CNN) allow-
ing for set-valued classification. In this classifier, called the evidential CNN classifier
[129], a backbone with convolutional and pooling layers first extracts high-dimensional
features from input data. The features are then converted into mass functions and
aggregated by Dempster’s rule in a Dempster-Shafer (DS) layer. Finally, a utility
layer performs set-valued classification based on mass functions. We propose an end-
to-end learning strategy for jointly updating the network parameters. Additionally,
an approach for selecting partial multi-class acts is proposed. Experiments on image
recognition, signal processing, and semantic-relationship classification tasks demon-
strate that the proposed combination of CNN, DS layer, and utility layer makes it
possible to improve classification accuracy and to make cautious decisions by assign-
ing confusing and ambiguous patterns to multi-class sets. In addition, the proposed
classifier can reject outliers together with ambiguous patterns.

This chapter is organized as follows. The proposed classifier is introduced in
Section 3.1. Section 3.2 then reports numerical experiments, which demonstrate the
advantages of the proposed classifier. Finally, we conclude the chapter in Section 3.3.

3.1 Evidential CNN classifier

In this section, we describe the proposed classifier. Section 3.1.1 presents the overall
architecture composed of a CNN backbone with several stacked stages for feature
representation, a DS layer to construct mass functions, and a utility layer for decision-
making. The learning strategy for the proposed classifier is exposed in Section 3.1.2.
Finally, an approach for selecting partial multi-class acts is introduced in Section
3.1.3.

40 Chapter 3. Evidential convolutional neural network classifier

Figure 3.1: Architecture of an evidential CNN classifier.

3.1.1 Network architecture

The main idea of this work is to hybridize the ENN classifier presented in Section 1.4
and the CNN architecture recalled in Section 2.1 by “plugging” a DS layer followed
by a utility layer at the output of a CNN backbone. The architecture of the proposed
method, called the evidential CNN classifier, is illustrated in Figure 3.1. An evidential
CNN classifier has the ability to perform set-valued classification and quantify the
uncertainty about the class of the sample on Ω = {ω1, . . . , ωM} by a belief function.
To distinguish the proposed classifier that converts features into belief functions, we
named the common CNN classifier that transforms features into probabilities using a
softmax layer as the probabilistic CNN classifier. Propagation of information through
this evidential network can be described by the following three-step procedure:

Step 1: An input sample is propagated into a CNN backbone to extract latent
features relevant for classification as introduced in Section 2.1. Thanks to this
part, the evidential CNN classifier yields similar or even better performance for
precise classification than does a probabilistic classifier with the same stages.
This superiority will be demonstrated by performance comparisons between
the evidential and probabilistic CNN classifiers in precise classification tasks
(Section 3.2).

Step 2: The feature vector computed in Step 1 is fed into the DS layer, in which it
is converted into mass functions aggregated by Dempster’s rule, as explained in
Section 1.4. The output of the DS layer is an (M + 1) mass vector

m = (m({ω1}), . . . ,m({ωM}),m(Ω))T ,

which characterizes the classifier’s belief about the probability of the sample
class and quantifies the uncertainty in the feature representation. The mass
m({ωi}) is a degree of belief that the sample belongs to class ωi. The DS layer
tends to allocate masses uniformly across classes when the feature represen-
tation contains confusing and ambiguous information. The additional degree
of freedom m(Ω) makes it possible to quantify the lack of evidence and ver-
ify whether the model is well trained [130]. The advantages of the DS layer

3.1. Evidential CNN classifier 41

Figure 3.2: Architecture of the utility layer.

will be verified in the performance evaluation of set-valued classification using
evidential CNN classifiers reported in Section 3.2.

Step 3: The output mass vector m is used to compute the expected utilities of acts
for performing set-valued classification, as introduced in Section 1.3.2. Thus,
the output of the step is an expected-utility vector of size at most equal to 2M−1

if all of the possible acts are considered. Similar to the DS layer, the procedure
of assigning a sample to a set in F using utility theory can be summarized as
a layer of the neural network, called a utility layer, as shown in Figure 3.2. In
this layer, the inputs and outputs are, respectively, the mass vector m from the
preceding DS layer and the expected utilities of all acts in F . The connection
weight between unit j of the DS layer and output unit A ⊆ Ω corresponding
to the assignment to set A is the utility value ûA,j . As coefficient γ (1.24)
describing the imprecision tolerance degree is fixed, the connection weights of
the utility layer do not need to be updated during training. The capacity of
a utility layer will be demonstrated by the performance comparison between
the evidential and probabilistic CNN classifiers in set-valued classification and
novelty detection tasks reported in Section 3.2.

3.1.2 Learning

The evidential CNN classifier can be trained by a stochastic gradient descent algo-
rithm. Given a sample x with class label ω∗, using the generalized Hurwicz criterion
(1.21)1, we define the prediction loss as

L (Em,ν , ω∗) =−
M∑
k=1

yk logEm,ν(fωk
) + (1− yk) log(1− Em,ν(fωk

)) (3.1a)

1The pignistic criterion (1.27) can also be used for set-valued prediction and will be exposed in
Chapter 4.

42 Chapter 3. Evidential convolutional neural network classifier

Table 3.1: Examples of DS layer outputs

Examples Outputs of a DS layer
m({ω1}) m({ω2}) m({ω3}) m(Ω)

#1 0.70 0.10 0.10 0.10
#2 0.97 0.01 0.01 0.01
#3 0.50 0.50 0 0
#4 0.40 0.40 0 0.2

Table 3.2: Example of utilities and losses

Examples Expected utility Loss (ω∗ = ω1)Em,1({ω1}) Em,1({ω2}) Em,1({ω3})
#1 0.70 0.10 0.10 0.303
#2 0.97 0.01 0.01 0.026
#3 0.50 0.50 0 0.602
#4 0.40 0.40 0 0.796

with

yk =

{
1 if ωk = ω∗

0 if ωk ̸= ω∗
. (3.1b)

The loss L (Em,ν , ω∗) is minimized when Em,ν(fωk
) = 1 for ωk = ω∗ and Em,ν(fωl

) = 0

for ωl ̸= ω∗. The computation procedure of the loss is illustrated by Example 3.1.

Example 3.1 Table 3.1 shows several examples, whose utilities of single-valued as-
signments and losses are shown in Table 3.2. The extended utility matrix is shown in
Table 1.1, and ν equals 1. We assume that Ω = {ω1, ω2, ω3} and ω∗ = ω1. Eq. (3.1)
yields different losses given a set of DS layer outputs.

The derivatives of L (Eν , ω∗) of the error w.r.t m in the utility layer are

∂L (Em,ν , ω∗)

∂m({ωk})
= − yk

Em,ν(fωk
)

[
û{ωk},k + (1− ν) max

i=1,...,M
û{ωk},i

]
, (3.2a)

∂L (Em,ν , ω∗)

∂m(Ω)
=−

M∑
k=1

yk
Em,ν({fωk

})
(1− ν) max

i=1,...,M
û{ωk},i. (3.2b)

The derivatives calculations of L (Em,ν , ω∗) w.r.t the parameters in a DS layer are
shown in Appendix A. In the proposed classifier, the DS layer is connected to the
pooling layer of the last convolutional stage, as shown in Figure 3.1. Thus, we can
compute the derivatives of the error w.r.t. pok as

∂L (Em,ν , ω∗)

∂pok
= −2

∂L (Em,ν , ω∗)

∂si
(ηi)2si

n∑
i=1

(xk − pik), k = 1, . . . , P, (3.3)

where pok is the k-th output map in the final pooling layer, which is a 1× 1 tensor.
Error propagation in the remaining stages is performed as in a probabilistic CNN.

3.1. Evidential CNN classifier 43

3.1.3 Act selection

As explained in Section 1.3.2, the set of acts when considering multi-class assignment
is F = {fA, A ∈ 2Ω\∅}, as instances can be assigned to any non-empty subset A of
Ω. However, the cardinality of F increases exponentially with the number of classes,
which could preclude the application of this approach when the number M of classes
is large.

In [130], we showed that a neural network with convolutional layers and a DS
layer tends to assign samples to multi-class sets when candidate classes are similar,
such as, e.g., “cat” and “dog”, or “horse” and “deer”. Thus, it may be advantageous
to only consider partial multi-class acts assigning samples to subsets containing two
or more similar classes.

We propose a strategy to determine similar classes in the frame of discernment
and select partial multi-class acts from F based on class similarity. Using the selected
partial multi-class acts, rather than all acts in F , we can reduce the compute cost in
set-valued assignments. This strategy can be described as follows.

Step 1: A confusion matrix with only precise assignments is generated by a trained
evidential CNN classifier using the training set. In the confusion matrix, each
column represents the predicted sample distribution in one class, such as the
example in Figure 3.3a.

Step 2: Each column in the confusion matrix is normalized using its total number.
Each normalized column is regarded as the feature of its corresponding class.
Figure 3.3b displays the normalized confusion matrix of the example in Figure
3.3a.

Step 3: The Euclidean distance between every two features is computed, and a
dendrogram is generated by a hierarchical agglomerative clustering (HAC) al-
gorithm [15, 115]. The distance between every two features represents the
similarity of the two classes. The distance is close to 0 if two classes are similar.
We draw the dendrogram of Example 3.2 in Figure 3.3c.

Step 4: The distance can be drawn versus the number of clusters based on the
dendrogram, as shown in Figure 3.3d. A point of inflection in the curve can
then be used to determine the threshold for cutting the dendrogram. We used
the Calinski-Harabasz index (CHI) [4] to determine this point. The point of
inflection is the one in the curve with the maximum CHI, as illustrated in Figure
3.3d of Example 3.2. The right of the point has a small number of highly similar
classes. This can be explained by the nature of the HAC algorithm [15]. Very
similar classes are consolidated first as the algorithm proceeds. Toward the end
of the HAC run, we reach a stage where dissimilar classes are left to be merged
but the distance between them is large; these classes are not similar and do not
need to be clustered in the act-selection strategy.

44 Chapter 3. Evidential convolutional neural network classifier

Step 5: The distance corresponding to the inflection point is used as the threshold
to cut the dendrogram. Similar patterns are the classes in the clustered groups
with the distance lower than the threshold. Finally, we select the multi-class
acts corresponding to similar classes.

Example 3.2 Figure 3.3 shows an example of act selection, in which a HAC algo-
rithm with Ward linkage is used to generate a dendrogram. Figure 3.3d display a point
of inflection whose CHI is 1.91 and corresponding distance is 0.927 . The distance is
used as the threshold of the Euclidean distance to cut the dendrogram. There are two
pairs of similar patterns: {ω1, ω2} and {ω3, ω4}. Thus, the selected partial multi-class
acts are f{ω1,ω2} and f{ω3,ω4}.

Labels
ω1 ω2 ω3 ω4

Acts

fω1 557 115 24 13
fω2 107 679 32 14
fω3 13 16 663 128
fω4 25 32 145 627

(a)

Labels
ω1 ω2 ω3 ω4

Acts

fω1 0.793 0.136 0.027 0.017
fω2 0.152 0.806 0.037 0.018
fω3 0.018 0.019 0.767 0.167
fω4 0.035 0.038 0.168 0.802

(b)

(c) (d)

Figure 3.3: An example of act selection: confusion matrix (a), nor-
malized confusion matrix (b), dendrogram (c), and a curve of distance
vs. cluster number (d).

3.2 Experimental evaluation

In this section, we present numerical experiments demonstrating the advantages of
the proposed classifier. In section 3.2.1, we provide two metrics for performance eval-
uation. Experimental results on image recognition, signal processing and semantic-
relationship classification tasks are then reported and discussed, respectively, in Sec-
tions 3.2.2, 3.2.3 and 3.2.4.

3.2. Experimental evaluation 45

3.2.1 Evaluation metrics

In the applications of evidential CNN classifiers, we use the extended utility matrix
U(2Ω−1)×M for performance evaluation. For a dataset T , the classification perfor-
mance is evaluated by the averaged utility as

AU(T) =
1

|T |

|T |∑
i=1

ûA(i),yi , (3.4)

where yi is the true class of example i, A(i) is the selected subset for example i

using the notations and equations introduced in Section 1.3.2, ûA(i),yi is the utility of
assigning sample i to subset A ⊆ Ω when its true class is yi. When only considering
precise acts, the AU criterion defined by (3.4) boils down to classification accuracy.
The averaged cardinality is also computed as

AC(T) =
1

|T |

|T |∑
i=1

|A(i)|. (3.5)

Additionally, we also consider the case where a dataset T ′ = {T ′
O, T

′
I} is composed

of a subset T ′
O of outliers whose class does not belong to the frame of discernment

Ω, and a subset T ′
I of inliers whose class belongs to Ω. We compare the rate of fΩ

in T ′
I and T ′

O to evaluate the capacity of a classifier to reject outliers together with
ambiguous samples. This capacity is called novelty detection in [20]. Generally, a
well-trained classifier is expected to have a low rate of fΩ in T ′

I but a high rate in T ′
O.

In this study, we compare the proposed classifiers with probabilistic CNNs. To
ensure a fair comparison, we adopt the following strategy for probability-based set-
valued classification in CNNs: fA ⪰∗ fA′ if and only if E(fA) ≤ E(fA′), with E(fA) =∑

ωk∈A p(ωk) · ûA,k.

3.2.2 Image classification experiment

Datasets. We used the CIFAR-10 dataset to evaluate the performance of the pro-
posed classifier in image classification. The CIFAR-10 dataset [63] consists of 60k
RGB images of size 32 × 32 partitioned in 10 classes. There are 50k training exam-
ples and 10k testing examples. During training, we randomly selected 10k images as
validation data. We used two datasets (CIFAR-100 [63] and MNIST [69]) for novelty
detection. The CIFAR-100 dataset is just like the CIFAR-10 except it has 100 classes
containing 600 images each, while the MNIST dataset of handwritten digits has 70k
examples. All examples in the two datasets are used for novelty detection except
some images whose classes are included in the CIFAR-10 dataset.

Precise classification. To only perform the precise classification, the utility layer
connects its input mass functions and outputs of precise acts F = {fω1 , . . . , fωM }.

46 Chapter 3. Evidential convolutional neural network classifier

Table 3.3: Three CNN backbones used on CIFAR-10 dataset.

NIN [74] FitNet-4 [106] ViT-L/16 [27]
Input: 32 × 32 × 3

16 × 16 × 3 × 4 patches
5 × 5 Conv. NIN 64 ReLU 3 × 3 Conv. 32 ReLU 3 × 3 Conv. 32 ReLU

3 × 3 Conv. 32 ReLU 3 × 3 Conv. 32 ReLU
3 × 3 Conv. 32 ReLU 3 × 3 Conv. 32 ReLU
3 × 3 Conv. 48 ReLU 3 × 3 Conv. 48 ReLU
3 × 3 Conv. 48 ReLU 3 × 3 Conv. 48 ReLU

2 × 2 max-pooling with 2 strides
5 × 5 Conv. NIN 64 ReLU 3 × 3 Conv. 80 ReLU 3 × 3 Conv. 80 ReLU

2 × 2 mean-pooling with 2 strides 3 × 3 Conv. 80 ReLU 3 × 3 Conv. 80 ReLU
3 × 3 Conv. 80 ReLU 3 × 3 Conv. 80 ReLU
3 × 3 Conv. 80 ReLU 3 × 3 Conv. 80 ReLU
3 × 3 Conv. 80 ReLU 3 × 3 Conv. 80 ReLU

2 × 2 max-pooling with 2 strides
5 × 5 Conv. NIN 128 ReLU 3 × 3 Conv. 128 ReLU 3 × 3 Conv. 128 ReLU

2 × 2 mean-pooling with 2 strides 3 × 3 Conv. 128 ReLU 3 × 3 Conv. 128 ReLU
3 × 3 Conv. 128 ReLU 3 × 3 Conv. 128 ReLU
3 × 3 Conv. 128 ReLU 3 × 3 Conv. 128 ReLU
3 × 3 Conv. 128 ReLU 3 × 3 Conv. 128 ReLU

8 × 8 max-pooling with 2 strides 4 × 4 max-pooling with 2 strides+position embedding
Average global pooling Transformer encoder

Table 3.4: Test average utilities in precise classification on CIFAR-10
dataset.

Models NIN [74] FitNet-4 [106] ViT-L/16 [27]
Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier

Utility 0.8959 0.8978 0.9353 0.9361 0.9921 0.9908
p-value

(McNemar’s test) 0.0489 0.0492 0.0452

In this experiment, three CNN backbones were combined with the DS and utility
layers, as shown in Table 3.3. The detailed information of the three CNN backbones
has been introduced in Section 2.1.4. The three backbones have the same number
of output feature maps but different convolutional and pooling layers. As shown in
Table 3.4, the proposed classifiers slightly outperform the probabilistic ones in pre-
cise classification, except with ViT-L/16 feature extraction. McNemar’s test results
indicate a small but statistically significant effect of the proposed combination on
the image classification task with p-values below 5%. These results suggest that the
utility of an evidential classifier is larger than that of a probabilistic CNN classifier
with the same backbone as the evidential one. They also demonstrate that the use
of the convolutional and pooling layers in Step 1 of Section 3.1.1 allows for good
precise-classification performance of the evidential CNN classifiers.

Transfer learning. The feasibility of transfer learning on the proposed classifier
was also verified in this study. The three evidential CNN classifiers trained on the
CIFAR-10 classification task, as well as the three probabilistic CNNs, were fine-tuned
using the training set of the CIFAR-100 dataset as a new task. Table 3.5 shows the
testing utilities of fine-tuned classifiers on the CIFAR-100 dataset. The evidential
and probabilistic classifiers achieve close results for precise classification after fine-
tuning. Besides, the average utilities of the evidential CNN classifiers are close to
those already reported in [27, 74, 106]. This demonstrates the feasibility of transfer
learning with the proposed classifiers.

3.2. Experimental evaluation 47

Table 3.5: Test average utilities for precise classification of the
CIFAR-100 data set after transfer learning.

Models NIN [74] FitNet-4 [106] ViT-L/16 [27]
CNN classifier Evidential classifier Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier

Utility 0.3442 0.3461 0.6688 0.6714 0.8251 0.8217

Precise classification with a rejection option. We use the outputs of a DS layer
and one of the evidence-theoretic decision rules with a parameter λ0 (see Section
1.3.2) to perform the precise classification with a rejection option. The act set is
F = {fω0 , fω1 , . . . , fωM }. The test error rates with rejection of the evidential and
probabilistic CNN classifiers are presented in Figure 3.4. A rejection decision is
not regarded as an incorrect classification. When the rejection rate is 0, indicating
that there are no rejection decisions, the test set error in Figure 3.4 equals to (1 −
AU) × 100% in Table 3.4. When the rejection rate increases, the test set error
decreases, which shows that the evidential classifiers reject a part of the incorrect
classification. However, the error decreases slightly when the rejection rate is higher
than 7.5%. This demonstrates that the evidential classifiers reject more and more
correctly classified patterns with the increase of rejection rates. Thus, a satisfactory
λ0 should be determined to guarantee that the evidential CNN classifiers have a
desirable accuracy rate and a low correct-rejection rate. In [130], we propose a method
of k-fold cross-validation for determining λ0 to guarantee a classifier with a certain
rejection rate, as shown in Figure 3.5. We randomly select four-fifths of a learning
set to train an evidential classifier, while the rest of the set is used as a validation
set to draw a λ

(1)
0 -rejection curve. We can determine the value of λ(1)

0 for a certain
rejection rate from the curve. We repeat the process k times and take the average of
λ
(i)
0 as the final λ0 for the desired rejection rate.

Compared with the probabilistic ones, the evidential classifiers reject significantly
more incorrectly classified patterns using one of the evidence-theoretic decision rules.
For example, the p-value of McNemar’s test for the difference of error rates between
the evidential and probabilistic CNN classifiers with a 5.0% rejection rate is close to 0.
We can conclude that an evidential classifier with an evidence-theoretic rejection rule
is more suitable for making a decision allowing for pattern rejection than a softmax
layer and the probability-based rejection rule.

Table 3.6 presents the prediction distribution of the evidential NIN classifier with
a 5% rejection ratio. The classifier tends to select rejection when there are two or
more similar patterns, such as the “dog” and “cat” classes, which can lead to incor-
rect classification. In the view of evidence theory, the CNN architecture provides
conflicting evidence when two or more similar patterns exist. The maximally con-
flicting evidence corresponds to m({ωi}) = m({ωj}) = 0.5 [23]. Additionally, the
additional mass function m(Ω) provides the possibility to verify whether the model
is well trained because we have m(Ω) = 1 when the CNN architecture cannot provide
any useful evidence.

48 Chapter 3. Evidential convolutional neural network classifier

(a)

(b)

(c)

Figure 3.4: Rejection-error curves of evidential NIN (a), FitNet-4
(b), and ViT-L/16 (c) on the CIFAR-10 testing set. A rejection rate
mean the percent of the samples with the reject act in a dataset.

Figure 3.5: Illustration of the 5-fold cross validation for determining
λ0 with

3.2. Experimental evaluation 49

Table 3.6: Prediction distribution for the evidential CNN classifier
with the NIN backbone on the CIFAR-10 dataset when using maxi-
mum credibility rule and 5.0% rejection rate. The sums of the table
and each column equal to 100% and 10%, respectively.

Label
Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

Prediction

Airplane 9.65 0.03 0.03 0.01 0.02 0.05 0.03 0.01 0.04 0.05
Automobile 0 9.63 0.04 0.04 0.08 0.08 0.02 0.06 0.02 0.07
Bird 0.02 0.04 9.39 0.02 0.04 0.07 0.03 0.08 0 0.02
Cat 0.02 0.02 0.1 8.02 0.06 0.44 0.11 0.04 0.05 0.05
Deer 0.01 0.04 0.07 0.12 8.3 0.03 0.12 0.34 0.04 0.08
Dog 0.02 0.03 0.05 0.49 0.11 7.99 0.06 0.09 0.01 0.04
Frog 0.01 0.04 0.08 0.06 0.1 0.06 9.35 0.06 0.06 0.05
Horse 0.01 0.02 0.04 0.06 0.31 0.1 0.04 7.94 0.01 0.04
Ship 0.04 0.02 0.02 0.04 0.12 0.05 0.04 0.18 9.55 0.02
Truck 0.02 0 0.04 0.09 0.02 0.06 0.06 0.06 0.04 9.47
Rejection 0.2 0.13 0.14 1.05 0.84 1.07 0.14 1.14 0.18 0.11

Set-valued classification. In the set-valued classification experiment, we consider
all possible acts F = {fA, A ∈ 2Ω\∅}. Before evaluating the performance of the
proposed classifiers in set-valued classification, we need to determine the optimal
pessimism index ν in Eq. (1.26a) once given a value of imprecision tolerance degree
γ. Based on the ν-utility curves on the training set (Figure 3.6), we can determine
the optimal ν for any given γ. As we consider all of the 2|Ω| acts, the three proposed
classifiers always achieve average utilities of 1 when γ equals 1. The value of ν has
an apparent effect on the average utilities when γ is higher than 0.7. These curves
show that parameter ν should be carefully tuned to ensure optimal performance of
the proposed classifier in set-valued classification.

Figure 3.7 shows the test average utilities and cardinalities of the evidential CNN
classifiers as functions of γ with the optimal ν. When the imprecision tolerance
degree increases, the average cardinalities increase. This indicates that the proposed
classifiers tend to perform set-valued assignments when given a large tolerance degree
of imprecision. The test average utilities decrease slightly and then increase when
γ increases. To explain this behavior, Table 3.7 provides four examples with their
assignments and corresponding utilities. For the first example, the utility increases
from 0 to 1 as γ becomes larger. However, for examples correctly classified when
γ = 0.5 (#2 and #3), their utilities first decrease and then increase back to 1. The
majority of examples in the CIFAR-10 testing set fall in the latter category. Therefore,
the test average utilities decrease slightly and then increase when γ increases from
0.5 to 1.

The use of the DS and utility layers has an effect when there is a lack of evidence
in a CNN backbone. In Figure 3.7, when γ is increased from 0.5 to 0.9, the largest
gains in average utility are obtained by the evidential classifier with the NIN backbone
[74], whose feature extraction was found to be the worst among the three proposed
classifiers since it achieved the minimum utility in the precise assignments (Table 3.4).
Thus, the classifier with the NIN backbone is more affected by the DS and utility

50 Chapter 3. Evidential convolutional neural network classifier

(a) (b)

(c)

Figure 3.6: Average utility vs. ν for the evidential CNN classifiers
on the CIFAR-10 dataset: NIN (a), FitNet-4 (b), and ViT-L/16 (c).

3.2. Experimental evaluation 51

Table 3.7: Label classification/utilities with different γ.

#1(ω∗ =cat) #2(ω∗=dog) #3(ω∗ =deer) #4(ω∗ =automobile)
γ=0.5 {dog}/0 {dog}/1 {deer}/1 {airplane}/0
γ=0.6 {cat,dog}/0.6 {cat,dog}/0.6 {deer}/1 {airplane}/0
γ=0.7 {cat,dog}/0.7 {cat,dog}/0.7 {deer,horse}/0.7 {airplane}/0
γ=0.8 {cat,dog}/0.8 {cat,dog}/0.8 {deer,horse}/0.8 {airplane}/0
γ=0.9 {cat,dog}/0.9 {cat,dog}/0.9 {cat,deer,dog,horse}/0.7104 {cat,deer,dog,horse}/0
γ=1.0 Ω/1.0 Ω/1.0 Ω/1.0 Ω/1.0

layers than the other two classifiers. Therefore, we can conclude that the effects of
DS and utility layers are more significant if there is a lack of evidence in the feature
extraction part.

As shown in Figure 3.7, the proposed model with a DS layer and a utility layer
outperforms probabilistic CNN classifiers for set-valued classification. The average
utilities of the proposed classifiers increase significantly when γ increases from 0.5 to
0.9. In contrast, the average utilities of the probabilistic CNN classifiers only increase
sharply when γ increases from 0.9 to 1.0. This is evidence that the proposed classifiers
make well-distributed set-valued classification based on the user’s tolerance degree of
imprecision, while the probabilistic CNN classifiers only assign samples to the multi-
class sets when the tolerance is large. This phenomenon is caused by the use of DS
and utility layers in the proposed classifiers. The DS layer tends to generate uniformly
distributed masses when the features are not informative. As a result, the expected
utility of a set-valued classification is the maximum among all acts, rather than the
utility of a precise classification. This effect explains the superiority of the proposed
approach for set-valued classification. However, the average utilities of the evidential
classifiers are less than those of the probabilistic CNN classifiers for γ = 0.7. The
reason is that the probabilistic CNN classifiers make few set-valued assignments for
γ = 0.7, and the evidential classifiers are so cautious that they perform set-valued
assignments for some instances that are correctly classified when γ is less than 0.7,
such as #2 and #3 in Table 3.7.

In the experiment of the precise classification with a rejection option, we found
that some ambiguous patterns always led the incorrect classification. Thus, we do
not need to consider all of the 2Ω acts. In this experiment, the performances of
the classifiers with partial acts are compared to those with all 2Ω acts. Taking the
evidential classifier with a NIN backbone [74] as an example, we used the strategy
introduced in Section 3.1.3 to generate the dendrograms, as shown in Figure 3.8.
When using Ward linkage [139], we get an inflection point to cut the dendrogram,
with the CHI equal to 1.286 and the corresponding distance equal to 1.238. The
selected multi-class sets consist of {cat, dog}, {deer, horse}, {cat, dog, deer, horse},

52 Chapter 3. Evidential convolutional neural network classifier

(a)

(b)

Figure 3.7: Average utility (a) and average cardinality (b) vs. γ
for the evidential and probabilistic CNN classifiers on the CIFAR-10
dataset.

3.2. Experimental evaluation 53

(a) (b)

(c) (d)

Figure 3.8: Dendrograms for the CIFAR-10 dataset: single linkage
(a), complete linkage (b), average linkage (c) , and Ward linkage (d).

Table 3.8: Set-valued assignment rates using the selected and 2Ω acts
(unit:%).

γ 0.5 0.6 0.7 0.8 0.9 1

CIFAR-10 Selected acts 0 0.52 1.74 13.24 19.62 52.04
2Ω acts 0 0.52 1.76 14.21 22.67 100

UrbanSound 8K Selected acts 0 2.47 9.10 23.96 49.91 64.43
2Ω acts 0 2.47 9.71 28.74 55.62 100

SemEval-2010 Task 8 Selected acts 0 1.69 8.11 17.62 43.11 66.62
2Ω acts 0 1.69 8.57 27.71 52.77 100

and {cat, dog, deer, horse, frog} in the comparison study. Table 3.8 reports the test-
ing rates of set-valued classification using the selected and 2Ω acts. The rates of the
classifiers with the selected and 2Ω acts are close when γ is less than 0.9. Besides,
the rates of the samples assigned correctly using 2Ω acts but incorrectly using the
selected acts are small when γ is less than 0.9, as shown in Table 3.9. A set-valued
assignment is regarded as correct if the multi-class set contains the true label. Thus,
the proposed strategy is useful once an evidential classifier has a value of γ in the
range of 0.5-0.9.

Table 3.9: Proportions of samples correctly assigned to acts in 2Ω

and incorrectly assigned to selected acts, for different values of γ.

γ 0.5 0.6 0.7 0.8 0.9 1
CIFAR-10 0 0 0 0.18 0.47 2.87

UrbanSound 8K 0 0 0 0.42 0.95 6.62
SemEval-2010 Task 8 0 0 0.11 0.48 0.74 4.43

54 Chapter 3. Evidential convolutional neural network classifier

Novelty detection. Figure 3.9 displays the results of novelty detection using evi-
dential and probabilistic CNN classifiers. The evidential CNN classifiers can assign
outliers and a few of the known-class examples to set Ω when values of γ are between
0.7 and 0.9, while the probabilistic CNN classifiers cannot, which demonstrates that
the proposed models outperform the probabilistic CNN classifiers for rejecting out-
liers together with ambiguous samples. This is due to the fact that, when the feature
vector fed into the DS layer is far from all prototypes, the activations of the RBF
units in the DS layer become close to zero, as shown by Eq. (1.29). As a consequence,
all the mass functions mi computed by Eq. (1.30) assign a large mass to set Ω, and
so does their orthogonal sum m. The output of the DS layer thus reflects ignorance
about the class of the input sample (whereas the probabilistic output of the softmax
layer does not), leading to the assignment of the sample to set Ω.

We also applied McNemar’s test with the CIFAR-100 and MNIST datasets, where
outliers assigned to Ω are regarded as positive samples, and the others are negative
ones. The results indicate the use of the DS and utility layers has a distinct effect
on novelty detection since all p-values are smaller than 0.001. However, none of the
classifiers performs well when γ is less than 0.7 since these classifiers favor precise
decisions. The classifiers tend to reject outliers whose features are different from
the known classes. For example, the proposed classifiers reject more samples in the
MNIST dataset than in the CIFAR-100 dataset since the hand-written digits are very
different from the patterns in the CIFAR-10 dataset.

3.2.3 Signal classification experiment

In the application of the proposed classifier on signal processing, we used the Ur-
banSound 8K dataset [108] composed of 8732 short (less than 4 seconds) excerpts of
various urban sound sources (air conditioner (AI), car horn (CA), playing children
(CH), dog bark (DO), drilling (DR), engine idling (EN), gun shot (GU), jackhammer
(JA), siren (SI), street music (ST)) prearranged into 10 classes. The ratio between
the training and testing set is about 3:1. We randomly selected 25% of the train-
ing samples as validation data. Free Spoken Digit Dataset (FSDD) [109], was used
to evaluate the capacity of novelty detection in the signal classification experiment.
FSDD is an audio/speech dataset with 2k recordings (50 of each digit per speaker)
in English pronunciations.

The baseline CNN backbones in this experiment are shown in Table 3.10. The DS
and utility layers show a significant difference in the precise classification as 0.01 <

p < 0.05 according to McNemar’s test (Table 3.11). Similarly to CIFAR-10, this
demonstrates that the performance of the proposed classifiers is better than those of
probabilistic CNN classifiers for precise classification. As shown in Figure 3.10, the
results of the precise classification with a rejection option demonstrate that the use

3.2. Experimental evaluation 55

(a) (b)

(c)

Figure 3.9: Rate of fΩ vs. γ for novelty detection in the image-
classification experiment: NIN (a), FitNet-4 (b), and ViT-L/16 (c).

56 Chapter 3. Evidential convolutional neural network classifier

Table 3.10: Three baseline CNN backbones used on UrbanSound 8K.

Stage 1 [100] Stage 2 Stage 3
Pre-processing: clip, data augmentation, and segmentation

Input: 60 × 41 × 2

57 × 6 Conv. 80 ReLU
57 × 6 Conv. 80 ReLU 29 × 3 Conv. 80 ReLU
1 × 1 Conv. 80 ReLU 29 × 3 Conv. 80 ReLU

4 × 3 max-pooling stride 1 × 3 with 50% dropout

1 × 3 Conv. 80 ReLU
1 × 3 Conv. 80 ReLU 1 × 2 Conv. 80 ReLU
1 × 1 Conv. 80 ReLU 1 × 2 Conv. 80 ReLU

1 × 3 max-pooling stride 1× 3 without dropout

Table 3.11: Test average utilities in precise classification on Urban-
Sound 8K.

Models Stage 1 [100] Stage 2 Stage 3
Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier

Utility 0.7132 0.7261 0.7164 0.7284 0.7210 0.7302
p-value

(McNemar’s test) 0.0234 0.0319 0.0365

of a DS layer can improve the performance of signal classification by rejecting some
ambiguous samples.

After determining the optimal ν for each value of γ based on the ν-utility curves
(Figure 3.11), we can compute the test average utilities and cardinalities of the ev-
idential and probabilistic CNN classifiers, as shown in Figure 3.12. The proposed
classifiers outperform the probabilistic ones with the same CNN backbones for the
set-valued classification in the signal processing task. The proposed classifiers make
more cautious decisions than do the probabilistic CNNs since it assigns ambiguous
samples to multi-class sets. Additionally, the performance of the evidential classifiers
exceeds those of the probabilistic classifiers in novelty detection (Figure 3.13). The
use of the DS and utility layers has significant effects on novelty detection as the
results of p-value are close to 0 according to McNemar’s test.

For the testing of act-selection strategy, an inflection point was used to cut off
the complete-linkage dendrogram [15] in Figure 3.14, in which CHI is 2.198 and
corresponding distance is 1.036. Thus, we selected partial multi-class sets including
{DR, JA}, {AI,EN}, {CH,ST}, {DR, JA,AI,EN}, and {DR, JA,AI,EN,CH,ST}.
From Tables 3.8 and 3.9, we can see that the strategy works well if γ is less than 0.9.
This demonstrates that the proposed strategy is acceptable when the classifier has a
reasonable γ.

3.2.4 Semantic-relationship classification experiment

For the semantic-relationship classification task, we used the SemEval-2010 Task 8
dataset [50]. It contains 10,717 annotated examples, including 8,000 training in-
stances and 2,717 test instances. There are 10 semantic relationships in the dataset as
cause-effect (CE), instrument-agency (IA), product-producer (PP), content-container

3.2. Experimental evaluation 57

(a)

(b)

(c)

Figure 3.10: Rejection-error curves of evidential stage 1 (a), stage 2
(b), and stage 3 (c) on the UrbanSound 8K testing set. A rejection
rate mean the percent of the samples with the reject act in a dataset.

58 Chapter 3. Evidential convolutional neural network classifier

0.0 0.2 0.4 0.6 0.8 1.0
0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86
A

ve
ra

ge
 u

til
ity

 =0.5 =0.6 =0.7
 =0.8 =0.9

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

A
ve

ra
ge

 u
til

ity

 =0.5 =0.6 =0.7
 =0.8 =0.9

(b)

0.0 0.2 0.4 0.6 0.8 1.0
0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

A
ve

ra
ge

 u
til

ity

 =0.5 =0.6 =0.7
 =0.8 =0.9

(c)

Figure 3.11: Average utility vs. ν for the evidential CNN classifiers
on the UrbanSound 8K dataset: Stage 1 (a), Stage 2 (b), and Stage 3
(c).

(a) (b)

Figure 3.12: Average utility (a) and average cardinality (b) vs. γ for
the proposed classifiers and the probabilistic CNN classifiers on the
UrbanSound 8K dataset.

3.2. Experimental evaluation 59

(a) (b)

(c)

Figure 3.13: Rate of fΩ vs. γ for novelty detection in the signal-
classification experiment: Stage 1 (a), Stage 2 (b), and Stage 3 (c).

(a) (b)

(c) (d)

Figure 3.14: Dendrograms for the UrbanSound 8K dataset: single
linkage (a), complete linkage (b), average linkage (c) , and Ward link-
age (d).

60 Chapter 3. Evidential convolutional neural network classifier

Table 3.12: Three baseline CNN backbones used on SemEval-2010
Task 8.

Stage 1 [154] Stage 2 Stage 3
Pre-processing: word representation

Input: 50 × 1 × t, in which t is the number of input sentences

3 × 1 Conv. 200 ReLU
3 × 1 Conv. 200 ReLU 2 × 1 Conv. 200 ReLU
1 × 1 Conv. 200 ReLU 2 × 1 Conv. 200 ReLU

1 × 1 Conv. 100 tanh
1 × 1 Conv. 200 tanh 1 × 1 Conv. 200 tanh
1 × 1 Conv. 100 tanh 1 × 1 Conv. 100 tanh

1 × 1 mean-pooling stride 1× 1

Table 3.13: Test average utilities in precise classification on SemEval-
2010 Task 8.

Models Stage 1 [154] Stage 2 Stage 3
Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier

Utility 0.8255 0.8347 0.8351 0.8425 0.8370 0.8436
p-value

(McNemar’s test) 0.0301 0.0415 0.0430

(CC), entity-origin (EO), entity-destination (ED), component-whole (CW), member-
collection (MC), message-topic (MT), and other (O). The approach to generate the
validation set in this experiment is the same as those used in the experiments on the
CIFAR-10 and UrbanSound 8K datasets. The FewRel dataset [46] with 100 semantic-
relationship classes and 70k examples was used in novelty detection, in which the
known-class examples were excluded in the experiment.

We referred to the backbones shown in Table 3.12 to design the evidential CNN
classifiers. In the precise classification, the use of DS and utility layers improves the
test average utilities of the CNN models, as shown in Table 3.13. Thus, a DS layer and
a utility layer instead of a softmax layer introduce a positive effect on the networks
in the semantic-relationship classification. Figure 3.15 indicates that a DS layer with
an evidential rejection rule exceeds a softmax layer with a probability rejection rule
on processing semantic relationships with highly uncertain information.

The strategy for determining the optimal values of ν in this experiment was the
same as those in the CIFAR-10 and UrbanSound 8K experiments (see Figure 3.16).
The test average utilities in the set-valued classification of the two types of models
are shown in Figure 3.17, which demonstrates the superiority of the evidential deep-
learning classifiers. Figure 3.18 indicates the acceptable capacity of novelty detection
in the evidential CNN classifiers. Similar to the CIFAR-10 and UrbanSound 8K
dataset, the acts generated from the complete-linkage dendrogram (Figure 3.19 and
an inflection point whose CHI is 2.627 and a distance equals 1.107) works as well as
the 2Ω acts if the classifier has a suitable γ.

3.2. Experimental evaluation 61

(a)

(b)

(c)

Figure 3.15: Rejection-error curves of evidential stage 1 (a), stage
2 (b), and stage 3 (c) on the SemEval-2010 Task 8 testing set. A
rejection rate mean the percent of the samples with the reject act in
a dataset.

62 Chapter 3. Evidential convolutional neural network classifier

0.0 0.2 0.4 0.6 0.8 1.0

0.82

0.84

0.86

0.88

0.90

0.92
A

ve
ra

ge
 u

til
ity

 =0.5 =0.6 =0.7
 =0.8 =0.9

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.82

0.84

0.86

0.88

0.90

0.92

A
ve

ra
ge

 u
til

ity

 =0.5 =0.6 =0.7
 =0.8 =0.9

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.82

0.84

0.86

0.88

0.90

0.92

A
ve

ra
ge

 u
til

ity

 =0.5 =0.6 =0.7
 =0.8 =0.9

(c)

Figure 3.16: Curves in ν-utility for the evidential CNN classifiers on
the SemEval-2010 Task 8 dataset: Stage 1 (a), Stage 2 (b), and Stage
3 (c).

(a) (b)

Figure 3.17: Average utility (a) and average cardinality (b) vs. γ for
the proposed classifiers and the probabilistic CNN classifiers on the
SemEval-2010 Task 8 dataset.

3.2. Experimental evaluation 63

(a) (b)

(c)

Figure 3.18: Rate of fΩ vs. γ for novelty detection in the semantic-
relationship-classification experiment: Stage 1 (a), Stage 2 (b), and
Stage 3 (c).

(a) (b)

(c) (d)

Figure 3.19: Dendrograms for the SemEval-2010 Task 8 dataset:
single linkage (a), complete linkage (b), average linkage (c) , and Ward
linkage (d).

64 Chapter 3. Evidential convolutional neural network classifier

3.3 Conclusion

In this chapter, to deal with the problems of data uncertainty, we have presented a
new neural-network classifier based on CNN and DST for set-valued classification,
called the evidential CNN classifier. This new classifier consists of a CNN backbone
with several convolutional and pooling layers for feature representation, a DS layer to
construct mass functions, and a utility layer to make set-valued classification based
on the mass functions. The classifier can be trained in an end-to-end way. Besides,
we have proposed a strategy to select partial acts instead of considering all of them.

A major finding of this chapter is that the hybridization of CNNs and DST-based
ENNs makes it possible to improve the performance of CNN models by assigning
ambiguous patterns with uncertain information to multi-class sets. The proposed
classifier is able to select a set of classes when the feature representation does not
allow us to select a single class unambiguously, which easily leads to incorrect classi-
fication in probabilistic classifiers. This result provides a novel direction to improve
the cautiousness of CNNs in classification problems. The use of DS and utility layers
also improves precise classification performance. The hybridization also makes it pos-
sible to reject outliers together with ambiguous patterns when the tolerance degree
of imprecise is between 0.7 and 0.9. Additionally, the strategy of selecting partial
multi-class acts works as well as that of considering all 2|Ω| acts.

65

Chapter 4

Evidential fully convolutional
network

In this chapter, to further verify the capacity of the evidential deep neural network
to deal with data uncertainty, we extend its applications to pixel-wise semantic seg-
mentation, where each pixel in an image must be assigned to one of the subsets of
the frame of discernment. We propose a hybrid architecture composed of a fully
convolutional network (FCN), a Dempster-Shafer (DS) layer and a utility layer for
semantic segmentation [131]. In the so-called evidential FCN (E-FCN), an encoder-
decoder architecture of an FCN first extracts pixel-wise feature maps from an input
image. A DS layer then computes mass functions at each pixel location based on
distances to prototypes. Finally, a utility layer performs semantic segmentation from
mass functions and allows for imprecise classification of ambiguous pixels and out-
liers. We propose an end-to-end learning strategy for jointly updating the network
parameters, which can make use of soft (imprecise) labels. Experiments using three
datasets (Pascal VOC 2012 [30], MIT-scene Parsing [156] and SIFT Flow [128]) show
that the proposed combination improves the accuracy and calibration of semantic
segmentation by assigning confusing pixels to multi-class sets.

In this chapter, the proposed E-FCN model is first introduced in Section 4.1.
Section 4.2 presents numerical experiments, which demonstrate the advantages of the
E-FCNs. Finally, we conclude the chapter in Section 4.3.

4.1 Evidential FCN model

In this section, we describe the proposed E-FCN. Section 4.1.1 presents the overall
architecture composed of an encoder-decoder module for feature representation, a DS
layer to construct mass functions, and a utility layer for decision-making. Section
4.1.2 introduces the strategy for training E-FCN models using a learning set with
soft labels.

66 Chapter 4. Evidential fully convolutional network

Figure 4.1: Architecture of an evidential fully convolutional net-
work (E-FCN). The E-FCN performs semantic segmentation using a
three-step procedure. In the first step, an encoder-decoder architecture
extracts pixel-wise feature maps from the input image. Each vector
in the feature maps is fed into a DS layer to construct the pixel-wise
mass functions in the second step. These mass functions are finally
fed into a utility layer to generate the pixel-wise expected utilities of
all acts. Finally, the segmentation mask is computed based on the
expected utilities.

4.1.1 Network architecture

The main idea of this work is to hybridize the ENN classifier presented in Section 1.4
and the FCN recalled in Section 2.2 by “plugging” a DS layer followed by a utility
layer at the output of the final upsampling layer in an FCN. The architecture of the
proposed method, called the evidential FCN (E-FCN), is illustrated in Figure 4.1.
An E-FCN classifier performs set-valued semantic segmentation and quantifies the
uncertainty about the class of each pixel, taking values in Ω = {ω1, . . . , ωM}, using a
three-step procedure defined as follows.

Step 1: An image of size W × H × 3 is presented as input to the encoder-decoder
architecture of an FCN to generate pixel-wise feature maps of size W ×H ×P ,
where P is the number of output channels, as introduced in Section 2.2. Each
feature vector 1× 1× P from a pixel-wise feature map is a P -dimensional rep-
resentation of the corresponding pixel, ready to be fed into the DS layer. This
architecture generates reliable pixel-wise representations of the input image.
Thanks to the representations, the E-FCN yields similar or even better perfor-
mance for precise semantic segmentation than does a probabilistic FCN with
the same encoder-decoder architecture, as will be shown in Section 4.2.

Step 2: Each feature vector from the encoder-decoder architecture is fed into the DS
layer, in which it is converted into a mass function as explained in Section 1.4.
The output of the DS layer for a given feature vector is an (M +1)-dimensional
mass vector

m = (m({ω1}), . . . ,m({ωM}),m(Ω))T .

4.1. Evidential FCN model 67

Thus, given pixel-wise feature maps of size W ×H ×P from Step 1, the output
of the DS layer is a tensor of size W ×H × (M + 1). Each mass vector in the
tensor represents the uncertainty about the class of the corresponding pixel.
More precisely, the mass m({ωi}) is a degree of belief that the ground truth
of the pixel is ωi. The DS layer tends to allocate uniform masses if the rep-
resentations contain confusing information. The additional degree of freedom
m(Ω) makes it possible to quantify the lack of evidence [23] and verify whether
the model is well trained [130]. The advantages of this uncertainty representa-
tion will be demonstrated in the performance evaluation of set-valued semantic
segmentation using E-FCN in Section 4.2.4.

Step 3: The output pixel-wise mass vectors are fed into a utility layer to compute the
expected utilities of acts for set-valued semantic segmentation, as introduced in
Section 1.3.2. This pixel-wise utility layer can also be illustrated as Figure 3.2.
In practice, when the cardinality of Ω is very large, we may consider partial
subsets from 2Ω. One direction for determining the subsets is presented in
Section 3.1.3. For a problem of semantic segmentation, we can follow an easy
method. The majority of confusing pixels are at object borders. Thus, we
can simply define boundary pixels as soft labels consisting of the neighboring
classes. Then we have only considered the acts fA such that A is a singleton, Ω,
or one of the soft labels present in the learning set (as explained in Section 4.2.1
below). After selecting the acts, we only need to provide the connection weights
between each output unit of the DS layer and each unit of the pixel-wise utility
layer corresponding to the selected act. These connection weights do not need
to be updated during training because coefficient γ describing the imprecision
tolerance degree is fixed. This capability of this step will be demonstrated by
the performance comparison between the two types of FCNs in the tasks of
set-valued segmentation (Section 4.2.4) and novelty detection (Section 4.2.5).

4.1.2 Learning with soft labels

In traditional learning systems for image semantic segmentation, all pixels are labeled
with a single class even when their true class cannot be determined with full certainty.
For example, the true class may be uncertain at object borders, but the border pixels
are still given precise labels. Additionally, one cannot reliably label some small objects
in an image, such as distant objects in a driving scene. Arbitrarily giving precise labels
to pixels with confusing information may have negative effects on learning systems
for image semantic segmentation. The notion of soft label [12, 25] may be a way to
solve this problem.

Here, we define a soft label as a nonempty subset A∗ ∈ 2Ω\∅ of classes a pixel
may belong to, based on our current knowledge. For example, label A∗ = {ωi, ωj}
indicates that the true class of a pixel is known to be either ωi or ωj but we cannot

68 Chapter 4. Evidential fully convolutional network

determine which one specifically. A strategy of end-to-end learning is proposed to
train an E-FNC from an image learning set with soft labels. All parameters in the
DS layer are first initialized randomly using normal distributions. For a given pixel
with nonempty soft label A∗ ⊆ Ω, let ml be the logical mass function with focal set
A∗, i.e., such that ml(A∗) = 1. The labeling pignistic expected utilities Eml,p(fA) for
A ∈ 2Ω\∅ can be computed using Eq. (1.27) and the pignistic transformation Eq.
(1.5). Similarly, we consider the predicted pignistic expected utilities Em,p(fA) for
A ∈ 2Ω\∅ , where m is the predicted mass function from the DS layer of the E-FCN,
with focal sets {ω1}, . . . , {ωM},Ω. For a given pixel with soft label ml and predicted
mass function m, using the pignistic criterion (1.27), the loss L(m,ml) is defined as
the squared Euclidean distance between the vectors of expected utilities w.r.t. ml

and m:
L(m,ml) =

∑
∅̸=A⊆Ω

[Eml,p(fA)− Em,p(fA)]
2 . (4.1)

The derivatives of Lp(m,ml) of the error w.r.t the output mass m({ωk}) are

∂L(m,ml)

∂m({ωk})
=

∑
∅̸=A⊆Ω

∂L(m,ml)

∂Em,p(fA)
· ∂Em,p(fA)

∂m({ωk})

= −2
∑

∅̸=A⊆Ω

[Eml,p(fA)− Em,p(fA)]
M∑
j=1

∂Em,p(fA)

∂BetPm(ωj)

∂BetPm(ωj)

∂m({ωk})

= −2
∑

∅̸=A⊆Ω

[Eml,p(fA)− Em,p(fA)]
M∑
j=1

ûA,j

(
δkj −

1

M

)
,

(4.2)

where δkj = 1 if k = j and δkj = 0 otherwise. The gradient calculation of L(m,ml)

w.r.t the parameters in the DS layer are shown in Appendix A, and the gradient with
respect to all network parameters can be back-propagated from the output layer to
the input layer.

4.2 Experimental evaluation

In this section, we present numerical experiments that demonstrate the advantages
of the proposed model. The datasets and metrics are first introduced in Section
4.2.1 and 4.2.2, respectively. Precise and imprecise segmentation results are then
reported, respectively, in Sections 4.2.3 and 4.2.4. Finally, novelty detection results
are presented in Section 4.2.5.

4.2.1 Datasets

Three benchmark datasets were used in the experiment: Pascal VOC 2012 [30], MIT-
scene Parsing [156], and SIFT Flow [128]. These datasets were used to train and test
the E-FCNs as well as the P-FCNs for comparison. The Pascal VOC 2012 dataset

4.2. Experimental evaluation 69

Table 4.1: Lists of classes for the Pascal VOC, MIT-scene Parsing and
SIFT Flow datasets in the semantic segmentation experiments. Classes
in bold characters are included in two or three datasets. Classes with
close meanings, such as “minibike” and “motorbike”, are considered as
identical.

Dataset Class list
Pascal VOC 2012 background, cat, dog, horse, sheep, train, sofa, aeroplane, bi-

cycle, bird, boat, bottle, bus, car, chair, cow, diningtable,
motorbike, person, pottedplant, tv.

MIT-scene parsing wall, floor, ceiling, bed, cabinet, earth, curtain, water, painting,
shelf, house, mirror, rug, armchair, seat, desk, wardrobe, lamp,
bathtub, railing, cushion, base, box, column, chest, counter,
sink, skyscraper, fireplace, refrigerator, grandstand, path, stairs,
runway, case, pool, pillow, screen, bookcase, blind, coffee, toi-
let, flower, book, hill, bench, countertop, stove, palm, kitchen,
computer, swivel, bar, arcade, hovel, towel, light, truck, tower,
chandelier, booth, dirt track, apparel, land, bannister, escalator,
ottoman, buffet, poster, stage, van, ship, fountain, conveyer,
canopy, washer, plaything, swimming, stool, barrel, basket, wa-
terfall, tent, bag, minibike, cradle, oven, ball, food, step, tank,
trade, microwave, pot, animal, lake, dishwasher, screen, blan-
ket, sculpture, hood, sconce, vase, traffic, tray, ashcan, fan,
pier, screen, plate, monitor, bulletin, shower, radiator, glass,
clock, flag, sofa, airplane, building, sky, tree, road, win-
dowpane, grass, sidewalk, person, door, table, moun-
tain, plant, chair, car, sea, field, fence, rock, sign, sand,
staircase, river, bridge, boat, bus, awning, streetlight, tv,
pole, bottle, minibike, bicycle.

SIFT Flow balcony, crosswalk, desert, moon, sun, window, awning, bird,
boat, bridge, building, bus, car, cow, door, fence, field,
grass, mountain, person, plant, pole, river, road, rock,
sand, sea, sidewalk, sign, sky, staircase, streetlight, tree.

contains 20 object classes in 5034 images, with segmentation masks that indicate the
class of each pixel, or label it as “background” if the object does not belong to one
of the twenty specified classes. The MIT-scene Parsing and SIFT Flow datasets are
similar to the Pascal VOC 2012 dataset but have, respectively, 150 categories in 22K
labeled images and 33 classes in 2688 labeled images. The list of classes for the three
datasets is given in Table 4.1. For the Pascal VOC and SIFT Flow datasets, we
split each into 50% for training/validation and 50% for testing. For the MIT-scene
Parsing dataset, we followed the pre-split protocol for 20k training and 2k for testing.
In the study, the validation sets were used to determine hyper-parameters, such as
the number of prototypes in each DS layer. In practice, a validation set can also
be used to determine the optimal imprecision tolerance degree γ since it can also be
considered as a hyper-parameter. The held-out images without labels on the Pascal
VOC 2012 and MIT-scene Parsing datasets were not used in the experiments.

There is no confidence value associated with the pixel labels in any of the three

70 Chapter 4. Evidential fully convolutional network

(a)

(b) (c)

Figure 4.2: Segmentation masks with soft labels: (a) Pascal VOC
2012, (b) MIT-scene Parsing, and (c) SIFT Flow.

datasets. Thus, we defined soft labels for them. For the Pascal VOC 2012 dataset,
we assigned each pixel in a boundary area a soft label A ⊆ Ω, where A consists of the
object classes around the boundary area. Some examples are shown in Figure 4.2a.
For the MIT-scene Parsing and SIFT Flow datasets with no identified boundary areas,
we assigned soft labels to the pixels situated between every two objects, as shown in
Figures 4.2b and 4.2c.

A semantic segmentation model should not only be accurate for the classes in the
learning set, but it should also be able to detect some objects whose classes are not
included in the learning set. To evaluate this novelty detection capacity, we mixed
the three datasets: for example, an FCN model trained using the Pascal VOC 2012
dataset was tested on the other two datasets.

4.2.2 Evaluation metrics

We used three metrics for the performance evaluation of semantic segmentation: pixel
utility (PU), utility of intersection over union (UIoU), and expected calibration error
(ECE).

Pixel utility. For an image with T pixels, the pixel utility is defined as

PU =
1

|T |

|T |∑
i=1

ũA(i),A∗(i) (4.3)

where A∗(i) is the label of pixel i, A(i) is the selected set of classes for pixel i

determined by the pignistic criterion, and using the notations introduced in Section
1.3.2, ũA(i),A∗(i) is the utility of assigning pixel i to subset A(i) ⊆ Ω when its label
is A∗(i). Thus, PU is the same as pixel accuracy when only considering precise
assignments and precise labels. To consider soft labels, the utility matrix U of size
(2M − 1) × M defined in Section 1.3.2 should be extended to a matrix U′ of size

4.2. Experimental evaluation 71

Table 4.2: Utility matrix considering soft labels with γ = 0.8.

Label
ω1 ω2 ω3 {ω1, ω2} {ω1, ω3} {ω2, ω3} Ω

Act

f{ω1} 1 0 0 0.625 0.625 0 0.489
f{ω2} 0 1 0 0.625 0 0.625 0.489
f{ω3} 0 0 1 0 0.625 0.625 0.489

f{ω1,ω2} 0.8 0.8 0 1 0.5 0.5 0.782
f{ω1,ω3} 0.8 0 0.8 0.5 1 0.5 0.782
f{ω2,ω3} 0 0.8 0.8 0.5 0.5 1 0.782

fΩ 0.682 0.682 0.682 0.853 0.853 0.853 1

(2M − 1) × (2M − 1) with general term ũA,A∗ defined as the utility of assigning a
pixel to subset A ⊆ Ω when its label is A∗, with |A∗| ≥ 1. Soft label A∗ means that
we only know the true class of a pixel is in set A∗, and nothing more. To define the
utility ũA,A∗ , we first compute the average of the utilities of selecting subset A when
the true class is in A∗ as

uA,A∗ =
1

|A∗|
∑

wk∈A∗

ûA,k, (4.4a)

where ûA,k is the utility of selecting subset A when the true class is k, and we normalize
this average utility to ensure that ũA∗,A∗ = 1:

ũA,A∗ =
uA,A∗

uA∗,A∗
. (4.4b)

Example 4.1 Table 4.2 shows an example of the utility matrix considering soft labels,
which is extended from Example 1.1. The last four columns correspond to the utility
matrix for soft labels. An act achieves utility 1 only if A = A∗, 0 if A ∩A∗ = ∅, and
a value between 0 and 1 if A ̸= A∗ and A ∩A∗ ̸= ∅.

Utility of intersection over union. The segmentation performance was also eval-
uated by the utility of intersection over union (UIoU) defined as

UIoU =
1

2|Ω| − 1

∑
B⊆Ω

∑
i∈GB∩PB ũA(i),B

|GB ∪ PB|
, (4.5)

where PB = {i : A(i) ∩ B ̸= ∅} is the predicted area containing pixels assigned to a
set of classes that intersect B, and GB = {i : A∗(i) = B)} is the ground truth area
composed of pixels with label B. Thus, in the special case of precise segmentation
with only precise labels, UIoU boils down to intersection over union, a widely used
metric for semantic segmentation [62, 77, 95].

Expected calibration error. In decision systems, a neural network should not
only be accurate, but it should also indicate when it is likely to be incorrect. Thus,
the confidence of an E-FCN should be calibrated. To characterize this property, we

72 Chapter 4. Evidential fully convolutional network

extend the expected calibration error (ECE) defined in [41] as follows. We define the
prediction confidence of pixel i as

co(i) = BetPi(A∗(i)) =
∑

ωj∈A∗(i)

BetPi({ωj}), (4.6)

where BetPi is the predicted pignistic probability measure for pixel i. Let Iq be the
set of pixels whose prediction confidence lies in the interval (q−1

Q , q
Q], q = 1, . . . , Q.

The average utility and confidence of Iq are defined, respectively, as

au(Iq) =
1

|Iq|
∑
i∈Iq

ũA(i),A∗(i), (4.7a)

and
co(Iq) =

1

|Iq|
∑
i∈Iq

co(i). (4.7b)

We consider that the classifier is well calibrated if co(Iq) ≈ au(Iq) for all q, and we
define the ECE as

ECE =

∑Q
q=1 |Iq| × |co(Iq)− au(Iq)|∑Q

q′=1 |I ′q|
(4.8)

When only considering precise acts and labels, ECE defined by (4.8) boils down to
the original definition in [41].

4.2.3 Precise segmentation results

In precise segmentation, each pixel of an image is assigned to exactly one class, the
set of acts being defined as F = {fω1 , . . . , fωM }. Three datasets without soft labels
mentioned in Section 4.2.1 were used to train and test the E- and P-FCNs. The
metrics defined in Section 4.2.2 with the utility matrix U equal to the identity matrix
were used for performance assessment.

In the experiment with each dataset, three widely-used encoder-decoder archi-
tectures were combined with the DS and utility layers, as shown in Table 4.3. The
details of these architectures have been introduced in Section 2.2.3. The numbers of
feature maps from the encoder-decoder architectures for the Pascal, MIT and SIFT
datasets were, respectively, 64, 128 and 64. The numbers of prototypes in the DS
layer for these three datasets were set, respectively, to 75, 300 and 95.

The DS and utility layers slightly improve the accuracy of precise assignments
performed by FCN models, even though the performance of FCN models on pre-
cise segmentation mainly depends on the encoder-decoder architectures. Table 4.3a
presents the results of PU and UIoU for the Pascal VOC dataset. E-FCNs achieved
higher PU and UIoU than P-FCNs with the same encoder-decoder architecture, which

4.2. Experimental evaluation 73

Table 4.3: Performance evaluation of precise segmentation: (a) Pas-
cal VOC 2012, (b) MIT-scene Parsing, and (c) SIFT Flow. P-FCN
and E-FCN are, respectively, probabilistic and evidential FCNs. The
rests of the notations, such as “-32s” and “-16s”, stand for different
encoder-decoder architectures. The results are in form of “mean value
± standard deviation”. The best results for each encoder-decoder ar-
chitecture are highlighted in bold.

(a)

PU UIoU
P-FCN-32s [77] 0.8912 ± 0.0019 0.5941 ± 0.0033
P-FCN-16s [77] 0.9001 ± 0.0015 0.6243 ± 0.0025
P-FCN-8s [77] 0.9033 ± 0.0017 0.6269 ± 0.0021
E-FCN-32s 0.8973 ± 0.0021 0.6128 ± 0.0024
E-FCN-16s 0.9045 ± 0.0014 0.6304 ± 0.0019
E-FCN-8s 0.9074 ± 0.0015 0.6337 ± 0.0020

(b)

PU UIoU
P-FCN-16s [77] 0.7009 ± 0.0030 0.2889 ± 0.0051
P-FCN-8s [77] 0.7128 ± 0.0024 0.2937 ± 0.0048
P-FCN-SegNet [1] 0.7153 ± 0.0023 0.3053 ± 0.0042
E-FCN-16s 0.7090 ± 0.0026 0.2919 ± 0.0048
E-FCN-8s 0.7148 ± 0.0025 0.2962 ± 0.0046
E-FCN-SegNet 0.7167 ± 0.0026 0.3103 ± 0.0043

(c)

PU UIoU
P-FCN-16s [77] 0.8489 ± 0.0034 0.3922 ± 0.0047
P-FCN-8s [77] 0.8525 ± 0.0032 0.3948 ± 0.0042
P-FCN-CRF [5] 0.8643 ± 0.0036 0.4168 ± 0.0043
E-FCN-16s 0.8521 ± 0.0030 0.3937± 0.0042
E-FCN-8s 0.8528 ± 0.0031 0.3961 ± 0.0040
E-FCN-CRF 0.8649 ± 0.0035 0.4182 ± 0.0038

74 Chapter 4. Evidential fully convolutional network

Figure 4.3: Pixel confidence distributions (top) and pixel utility his-
tograms (bottom) for P-FCN-8s (left) and E-FCN-8s (right) on the
Pascal VOC dataset.

shows the E-FCNs outperform the P-FCNs for precise segmentation. Similar improve-
ments can also be found in the MIT-scene Parsing and SIFT Flow datasets as shown,
respectively, in Tables 4.3b and 4.3c.

The use of DS and utility layers also makes the FCN models better calibrated.
Figure 4.3 presents a visual calibration representation of the FCN-8s models in the
Pascal VOC dataset. The top row shows the pixel distribution of prediction confi-
dence (4.7b) as histograms. The average confidence of the E-FCN-8s model closely
matches its average pixel utility, while the average confidence of the P-FCN-8s model
is substantially higher than its average pixel utility. This is further illustrated in
the bottom row of pixel utility diagrams, which show pixel utility as a function
of confidence. The E-FCN-8s model is well calibrated since its confidence in each
bin approximates the expected average utility, whereas the predicted utility of the
P-FCN-8s model does not match its confidence. As a consequence, the E-FCN-8s
model achieves a smaller ECE than the probabilistic one. The effect of the DS and
utility layers on the calibration can also be found in the FCN-SegNet and FCN-CRF
models on the MIT-scene Parsing and SIFT Flow datasets as shown, respectively, in
Figures 4.4 and 4.5.

4.2. Experimental evaluation 75

Figure 4.4: Pixel confidence distributions (top) and pixel utility his-
tograms (bottom) for P-FCN-SegNet (left) and E-FCN-SegNet (right)
on the MIT-scene Parsing dataset.

Figure 4.5: Pixel confidence distributions (top) and pixel utility his-
tograms (bottom) for P-FCN-CRF (left) and E-FCN-CRF (right) on
the SIFT Flow dataset.

76 Chapter 4. Evidential fully convolutional network

4.2.4 Imprecise segmentation results

In imprecise segmentation, each pixel of an image is assigned to a non-empty subset
A of Ω; the set of acts is F = {fA, A ∈ 2Ω\∅}, or a subset thereof. Here we only
considered acts fA such that A is a singleton, Ω or one of the soft labels in the
training set. For performance evaluation, we used the metrics and the three datasets
described in Sections 4.2.1 and 4.2.2, respectively. For each dataset, the segmentation
masks with and without soft labels were used to train different FCN models. The
same encoder-decoder architectures used for precise segmentation in Section 4.2.3
were combined with the DS and utility layers.

Figure 4.6 displays the test results according to PU and UIoU for imprecise seg-
mentation of the Pascal VOC dataset. For a wide range of imprecision tolerance
degree γ, the E-FCN models reach higher PU and UIoU values than those obtained
by the P-FCN models; this is due to the fact that the E-FCN models tend to as-
sign ambiguous pixels to multi-class sets, instead of making precise decisions. Such
imprecise assignments avoid pixel-wise misclassification in case of high uncertainty,
especially when feature vectors from an encoder-decoder architecture do not contain
sufficient information to identify a precise class, and multiple classes have similar
probabilities. Figure 4.7 shows the pixel confidence distributions for the FCN models
with γ = 0.8. We can see that the average confidences of the E-FCN models are
smaller than those of the P-FCN models. This observation suggests that the E-FCN
models make cautious decisions for ambiguous pixels by assigning them to multi-class
sets, rather than classifying them arbitrarily into a single class. The E-FCN models
are thus better calibrated than those based on P-FCN, which can be over-confident.
Similar results are observed with the MIT-scene Parsing (Figures 4.8-4.9) and SIFT
Flow (Figures 4.10-4.11) datasets. We can thus conclude the DS and utility lay-
ers improve the performance of the FCN models in imprecise segmentation tasks by
allowing us to assign some ambiguous pixels to multi-class sets.

In Figures 4.6, 4.8 and 4.10, we can see that the value of UIoU first increases and
then decreases when γ increases from 0.5 to 1. To explain this behavior, Figure 4.12
illustrates some segmentation examples generated by the E-FCN-8s model trained on
the Pascal VOC dataset with soft labels. The first and second columns of Figure 4.12
contain, respectively, the original images and their precise segmentation predicted
masks, while the third to sixth columns show the imprecise segmentation results for
values of γ ranging from 0.6 to 0.9. When γ increases from 0.5 to 0.8, the majority
of the green masks (the areas whose pixels are assigned to multi-class sets) tends to
cover the red masks (the areas whose pixels are incorrectly classified in the precise
segmentation). This observation can be explained by the fact that, in Eq. (4.5),
the increase in the utility of the intersection between predicted and labeled areas
is larger than the increase in the union between the two areas. As a result, UIoU
increases when γ increases from 0.5 to 0.8. However, when γ increases from 0.8 to

4.2. Experimental evaluation 77

(a) (b)

(c) (d)

Figure 4.6: Testing PU and UIoU vs. γ on the Pascal VOC dataset.
The first and second columns are the models trained with/without soft
labels, respectively.

Figure 4.7: Pixel confidence distributions for the P-FCN-8s (left)
and E-FCN-8s (right) models on the Pascal VOC dataset without
(top)/with (bottom) soft labels.

78 Chapter 4. Evidential fully convolutional network

(a) (b)

(c) (d)

Figure 4.8: Testing PU and UIoU vs. γ on the MIT-scene Pars-
ing dataset. The first and second columns are the models trained
with/without soft labels, respectively.

Figure 4.9: Pixel rate histograms for the P-FCN-SegNet (left) and E-
FCN-SegNet (right) models on the MIT-scene Parsing dataset without
(top)/with (bottom) soft labels.

4.2. Experimental evaluation 79

(a) (b)

(c) (d)

Figure 4.10: Testing PU and UIoU vs. γ on the SIFT Flow dataset.
The first and second columns are the models trained with/without soft
labels, respectively.

Figure 4.11: Pixel rate histograms for the P-FCN-CRF (left)
and E-FCN-CRF (right) models on the SIFT Flow dataset without
(top)/with (bottom) soft labels.

80 Chapter 4. Evidential fully convolutional network

Figure 4.12: Segmentation examples from the Pascal VOC dataset:
(a) Original image, (b) Precise segmentation, (c) Imprecise segmen-
tation with γ = 0.6, (d) Imprecise segmentation with γ = 0.7, (e)
Imprecise segmentation with γ = 0.8, and (f) Imprecise segmentation
with γ = 0.9. Red masks are pixels incorrectly classified in the precise
segmentation; green masks are pixels assigned to multi-class sets ex-
cept set Ω; pink masks are pixels assigned to set Ω; other masks are
pixels assigned to correct single-class sets.

1.0, the majority of the green masks cover the areas predicted correctly in the precise
segmentation, which causes the increase in the utility of intersection to be smaller
than the increase in the union areas. This phenomenon leads to the decrease of UIoU
when γ is larger than 0.8.

The use of soft labels improves the performance of the FCN models for imprecision
segmentation tasks. As shown in Figure 4.6, the FCN models trained by the Pascal
VOC dataset with soft labels have larger testing PU and UIoU than the ones without
soft labels, which demonstrates the accuracy improvement using soft labels. Addi-
tionally, the use of soft labels can also improve the calibration of the FCN models.
Figure 4.13 shows that the ECEs and bin gaps in the E-FCN and P-FCN models are
smaller when using the learning set with soft labels. These results demonstrate the
feasibility of processing pixels with confusing information by using soft labels when
training FCN models. The improvement of accuracy and calibration due to learn-
ing from soft labels can also be found with the MIT-scene Parsing and SIFT Flow

4.2. Experimental evaluation 81

Figure 4.13: Average utility histograms for P-FCN-8s (left) and
E-FCN-8s (right) with γ = 0.8 on the Pascal VOC dataset without
(top)/with (bottom) soft labels.

datasets, as shown, respectively, in Figures 4.14 and 4.15. Therefore, we can conclude
that the use of soft labels improves the accuracy and calibration of FCN models.

4.2.5 Novelty detection results

For novelty detection, a pixel is considered as an outlier or an ambiguous sample if it
is assigned to set Ω. Figures 4.16, 4.17 and 4.18 show the results of novelty detection
using the E-FCN and P-FCN models when the learning set is extracted, respectively,
from the Pascal VOC, MIT-scene Parsing and SIFT Flow datasets, and the test set
is composed of images from the other two datasets. In each testing set composed of
two datasets, only the pixels whose classes are not represented in the corresponding
learning set are reported in Figures 4.16-4.18. The E-FCN models assign outliers and
some known-class pixels to set Ω for values of γ between 0.7 and 0.9, while the P-FCN
models do not. This observation shows that the E-FCN models are more efficient than
the probabilistic ones for rejecting outliers together with ambiguous samples. The
proposed architecture thus has the potential to perform novelty detection once given
a reasonable value of imprecision tolerance degree. However, none of the FCN models
performs well when γ is less than 0.7 since these models favor precise decisions.

The E-FCN models tend to reject unknown objects whose features are very dif-
ferent from those of the known objects in the learning set. For example, Figure 4.19
shows images from the MIT-scene Parsing dataset in which pixels representing ‘bag’,
‘street light’ and ‘ball’ objects are rejected by an E-FCN-8s model trained using the

82 Chapter 4. Evidential fully convolutional network

Figure 4.14: Average utility histograms for P-FCN-SegNet (left) and
E-FCN-SegNet (right) with γ = 0.8 on the MIT-scene Parsing dataset
without (top)/with (bottom) soft labels.

Figure 4.15: Average utility histograms for P-FCN-CRF (left) and
E-FCN-CRF (right) with γ = 0.8 on the SIFT Flow dataset without
(top)/with (bottom) soft labels.

4.2. Experimental evaluation 83

Figure 4.16: Proportion of pixels assigned to Ω as a function of γ
for novelty detection on the combination of MIT-scene Parsing and
SIFT Flow datasets (top) and the testing set from the Pascal VOC
dataset (bottom) when the learning set is from the Pascal VOC dataset
without (left)/with (right) soft labels.

Figure 4.17: Proportion of pixels assigned to Ω as a function of γ for
novelty detection on the combination of Pascal VOC and SIFT Flow
(top) and the testing set of the MIT-scene Parsing dataset (bottom)
when the learning set is from the MIT-scene Parsing dataset without
(left)/with (right) soft labels.

84 Chapter 4. Evidential fully convolutional network

Figure 4.18: Proportion of pixels assigned to Ω as a function of γ
for novelty detection on the combination of Pascal VOC and MIT-
scene Parsing (top) and the testing set of the SIFT Flow dataset (bot-
tom) when the learning set is from the SIFT Flow dataset without
(left)/with (right) soft labels.

Pascal VOC dataset, which does not contain these objects. As shown in Table 4.4,
75.2% of the pixels representing a ball in the MIT-scene Parsing and SIFT Flow
datasets are assigned to Ω, while 16.1% are assigned to a set of classes containing
“bottle”. For the “bag” and “street light” classes, these numbers are, respectively,
68.4%/21.8% and 77.3%/16.3%. Some unknown objects are not so easily rejected
because of their similarity with known objects. For instance, 84.7% of the pixels
representing a seat and 81.7% of pixels representing a bench are assigned to a set of
classes containing “chair”, and 88% of “wall” pixels are assigned to a set of classes
containing “background”.

We can also observe that the FCN models trained using a leaning set with soft
labels reject more outliers than those trained without soft labels, as shown in Figures
4.16, 4.17 and 4.18. This is because the use of soft labels makes the FCN models
more cautious and better calibrated, as discussed in Section 4.2.4. More precisely, for
ambiguous pixels or outliers, the output mass functions of the FCN models trained
with soft labels are more uniform than those computed by FCN models trained with-
out soft labels. As a result, ambiguous pixels and outliers are more easily assigned to
set Ω. We can thus conclude that soft labels have the potential to enhance novelty
detection performance.

4.2. Experimental evaluation 85

Figure 4.19: Examples of novelty detention from the MIT-scene
Parsing dataset and their segmentation masks given by the E-FCN-8s
model trained using the Pascal VOC dataset with soft labels when γ
equals 0.8. Red masks are pixels incorrectly assigned in the precise
segmentation; green masks are pixels assigned to multi-class sets ex-
cept set Ω; pink masks are pixels assigned to set Ω; other masks are
pixels assigned to correct single-class sets.

Table 4.4: Percentage of pixels from some unknown classes in the
MIT-scene Parsing and SIFT Flow datasets classified by an E-FCN-8s
model trained on the Pascal VOC dataset into some sets of classes.
The model was trained with soft labels and γ = 0.8. For instance,
68.4% of the pixels representing a bag were rejected (i.e., assigned to
Ω), and 84.7% of pixels representing a seat were assigned to a set of
classes containing the class “chair”.

True class
bag street light ball seat bench bed wall

Assigned
set

Ω 68.4 77.3 75.2 7.8 4.7 15.9 4.9
{bottle, . . .} 21.8 16.3 16.1 48.5 39.7 30.3 0.2
{chair, . . .} 11.3 9.2 8.5 84.7 81.7 58.6 0.3
{background, . . .} 15.2 13.7 11.5 58.7 48.6 46.9 88.0
Others 4.2 2.4 1.5 2.7 3.5 5.2 3.7

86 Chapter 4. Evidential fully convolutional network

4.3 Conclusion

In this chapter, we extended the applications of evidential deep neural networks
to pixel-wise semantic segmentation. In the proposed model, called evidential fully
convolutional network (E-FCN), an encoder-decoder architecture first extracts pixel-
wise feature maps from an input image. A Dempster-Shafer layer then computes
mass functions at each pixel location based on distances to prototypes. Finally, a
utility layer performs semantic segmentation based on pixel-wise mass functions. The
proposed model can be trained using a learning set with soft labels in an end-to-end
way.

The main finding of this chapter is that the proposed combination of FCNs and
ENNs makes it possible to improve accuracy and calibration of FCN models by as-
signing ambiguous pixels to multi-class sets, while maintaining the good performance
of FCNs in precise segmentation tasks. The E-FCN model is able to select a set of
classes when the object representation does not allow us to select a single class un-
ambiguously, which easily leads to incorrect decision-making in probabilistic FCNs.
This result provides a new direction to improve the performance of FCN models for
semantic segmentation. The learning strategy using soft labels further improves the
accuracy and calibration of the FCN models by converting imprecise and unreliable
label data into mass functions. Additionally, the proposed approach makes it possi-
ble to reject outliers together with ambiguous pixels when the imprecision tolerance
degree is between 0.7 and 0.9.

87

Chapter 5

Evidential fusion of
heterogeneous deep neural
networks

One challenge in machine learning is to combine the existing models trained from
heterogeneous datasets for obtaining a more general one. However, the problems of
data uncertainty, especially the partial and imperfect outputs of deep neural networks
(DNNs), make it difficult to fuse heterogeneous networks. The proposed combined
framework of Dempster-Shafer theory (DST) and DNNs provides an approach to solve
the problem.

In this chapter, we extend the proposed combined framework into the evidential
fusion of heterogeneous DNNs [132], such as introduced in Chapters 3 and 4. In
this approach, several pre-trained evidential DNNs extract features from input data
and convert them into mass functions on different frames of discernment. A fusion
module then aggregates these mass functions using Dempster’s rule. An end-to-end
learning procedure allows us to fine-tune the overall architecture using a learning
set with soft labels. This approach not only slightly improves the performances of
pattern classification and semantic segmentation but, above all, it also allows us to
combine heterogeneous DNNs pre-trained with different sets of classes at any stage
to obtain a more general network. In addition, the approach provides a new way to
combine simple and shallow networks for a complicated task, which has the potential
to simplify training and avoid the use of very deep networks.

We organize the chapter as follows. Section 5.1 provides the background and
motivation. The proposed information-fusion approach is then introduced in Section
5.2. Section 5.3 presents numerical experiments on the multi-network fusion, which
demonstrate the flexibility of the proposed approach on the information fusion of
different pre-trained DNNs with different sets of classes. Section 5.4 reports the
experiments on training and combining shallow networks to solve complicated tasks,
showing the potential of the approach to simplify the training difficulty. Finally, we
conclude the chapter in Section 5.5.

88 Chapter 5. Evidential fusion of heterogeneous deep neural networks

5.1 Introduction

DNNs, such as CNNs [70] and FCNs [77] recalled in Chapter 2, have been widely used
for supervised learning (e.g., pattern classification and semantic segmentation) and
have achieved remarkable success. Such networks learn reliable and robust features
from several datasets with different sets of classes and different granularities. For in-
stance, an FCN learns the features from the Cityscapes dataset [13] for understanding
the semantic urban scene, while another is trained for indoor- and outdoor-object seg-
mentation using the Pascal VOC 2012 dataset [30]. However, this problem requires
to combine DNN outputs with different levels of granularities. For example, given
a new image, a network outputs class probabilities for the CIFAR-10 dataset [63],
including a probability of class “bird”. However, compared to the probabilistic out-
puts of a network trained by the Caltech-UCSD Birds 200 dataset with 200 species
of birds [141], the output information of the CIFAR-10 network is partial and imper-
fect. The problem then arises of combining networks trained from such heterogeneous
datasets. Unfortunately, Bayesian probability theory is not flexible enough to fuse
heterogeneous networks and allow the introduction of new datasets with different sets
of classes at any stage [146].

DST provides a way to address the classifier-fusion problem. One of the applica-
tions of DST is evidential classifier fusion, in which classifier outputs are transformed
into mass functions and aggregated by Dempster’s rule [102, 146]. The information-
fusion capacity of DST makes it possible to combine DNNs. In recent few years, some
studies using DST to combine DNNs have been reported, but most of these studies
consider a fixed frame of discernment and do not address the fusion of classifiers
trained with different sets of classes. For example, Soua et al. [119] use deep belief
networks to independently predict traffic flow using streams of data and event-based
data, and then update the beliefs from the networks by Dempster’s conditional rule
to achieve enhanced prediction. Tian et al. [127] also use Dempster’s rule to fuse
the beliefs from some deep-learning models with different types of data to detect
anomalous network behavior patterns. Das et al. [14] use CNNs to perform super-
pixel semantic segmentation with three levels; DST is then utilized to combine the
segmentation results of the three levels into reliable ones. Besides, Guo et al. [43]
propose an “iFusion” framework, which uses Dempster’s rule to combine different
deep-learning discrimination models taking real-time or heterogeneous data as input.
Similar studies using DST for the fusion of DNNs can also be found in the fields
of posture recognition [72], remote-sensing images processing [28, 80], and emotion
classification [147].

In this chapter, we extend the proposed combined framework of DST and DNN
to the evidential fusion of heterogeneous DNNs [132], such as the ones described in
Chapters 3 and 4. In detail, we present a modular fusion approach based on DST
to combine different DNNs. Several pre-trained DST-based DNNs extract features

5.2. Fusion approach 89

from input data and convert them to mass functions defined on different frames of
discernment. A fusion module then aggregates these mass functions using Dempster’s
rule. The aggregated mass function is used for decision-making in a refined frame.
An end-to-end learning procedure allows us to fine-tune the overall architecture using
a learning set with soft labels, which further improves the performance. Our two
main contributions in this chapter are the following:

1. Combining different pre-trained networks for a more general one. The pro-
posed approach makes it possible to combine DNNs trained from heterogeneous
databases with different sets of classes at any stage to obtain a more general one,
which provides a way to fuse the partial and imperfect outputs of DNNs. The
combined network has at least as good performance as those of the individual
networks on their respective datasets.

2. Training shallow networks for a complex task. Many studies have demonstrated
that depth tends to improve network performances. However, deeper networks
are more non-linear, increasing the training difficulty and requiring higher com-
puting demands. Some approaches have to be used for gradient-based training,
such as knowledge distillation (Figure 2.4) and skip connections (Figure 2.5).
The proposed information-fusion approach provides a way to train simple and
shallow networks to solve a complex task, which avoids the use of very deep
networks and has the potential to make training easier.

5.2 Fusion approach

In this section, we describe the proposed approach for the fusion of evidential DNNs.
The overall framework is first described in Section 5.2.1. The end-to-end learning
procedure is then introduced in Section 5.2.2.

5.2.1 Evidential fusion approach

The proposed approach combines different pre-trained evidential DNNs by adding an
information-fusion module at the belief-function outputs of these evidential DNNs,
such as a Dempster-Shafer (DS) layer in an E-CNN (Chapter 3) or an E-FCN (Chap-
ters 4). The architecture of the proposed approach, illustrated in Figure 5.1, can be
defined by a three-step procedure. Here, we take the fusion of evidential CNN classi-
fiers for object classification as an example to describe the three steps. The method
is called “mass-fusion evidential CNN (MFE-CNN) classifier”.

Step 1: An input image is fed into V pre-trained evidential CNN architectures, as
described in Section 3.1. The v-th backbone of the evidential CNN architecture,
v = 1, . . . , V , extracts a feature vector from the input. The vector is then fed
into a DS layer for constructing mass functions. Each unit in this layer computes

90 Chapter 5. Evidential fusion of heterogeneous deep neural networks

(a)

(b)

Figure 5.1: Architecture of the evidential information-fusion ap-
proach: mass-fusion evidential CNN (MFE-CNN) classifier for object
classification (a) and mass-fusion evidential fully convolutional net-
work (MFE-FCN) for semantic segmentation (b). The main differ-
ence between the two models is that the stacked CNN stages of the
former one output feature vector for image-level classification, while
the encoder-decoder architectures in the latter one output pixel-wise
features for semantic segmentation.

5.2. Fusion approach 91

a mass function on the frame of discernment Ωv composed of M(v) classes
ωv
1 , . . . , ω

v
M(v) and an “anything else” class ωv

0 , based on the distance between
the feature vector and a prototype. The mass functions computed by each of
the hidden units are then combined by Dempster’s rule. Given the design of
the DS layer, the focal sets of the combined mass function mv are the singletons
{ωv

k} for k = 1, . . . ,M(v) and Ωv. Thus, the outputs after this first step are the
V mass functions m1, . . . ,mV defined on V compatible frames Ω1, . . . ,ΩV . The
mass mv characterizes the v-th architecture’s belief about the probability of the
sample class on Ωv and quantifies the uncertainty in the object representation of
the convolutional architecture. Compared to a probabilistic CNN architecture,
which extracts a feature vector by a convolutional architecture and imports it
into a softmax layer to generate a probability distribution, an evidential CNN
architecture can improve the classification performance and output cautious
DS-based mass functions. The details and advantages of the evidential CNN
architectures have been exposed in Chapter 3.

Step 2: A belief-function fusion module aggregates the V mass functions. Let Ω0 be a
common refinement of the V compatible frames Ω1, . . . ,ΩV . Each frame Ωv can
be refined to the common one Ω0 using (1.12). We can then compute the vacuous
extension mΩv↑Ω0 in Ω0 using (1.13). We simplify the notation mΩv↑Ω0 as mv↑0.
A combined mass function m̃ on Ω0 is computed as the orthogonal sum of the
V vacuous extensions m̃ = m1↑0 ⊕ . . . ⊕mV ↑0. This final output of the belief-
function fusion module represents the total evidence about the class of the input
image based on the outputs of the V evidential CNN architectures. Dempster’s
rule can be computed using contour functions, as explained in Section 1.2.1,
providing a simple way to aggregates the V mass functions. Each vacuous
extension mv↑0 is approximated by a probability mass function pmv↑0 using the
plausibility transformation (1.10), and these probability mass functions are then
combined as pm1⊕...⊕mV using (1.11). We simplify the notation pm1⊕...⊕mV to
pV . This contour-based combination rule can be performed in O(K) arithmetic
operations by multiplying these probability mass functions element-wise. As
will be discussed in Sections 5.3 and 5.4, this approach makes it possible to (a)
incorporate the new classes of objects while retaining the good performance of
these CNN architectures, and (b) to fuse shallow networks to solve a complicated
task, instead of using a hard-to-train deep neural network.

Step 3: One of the evidence-theoretic rules recalled in Section 1.3 should be selected
to make a decision using the aggregated mass function m̃ or probability mass
function pV . The pignistic or generalized Hurwicz criteria can be used for
decision-making allowing for set-valued assignments, which have been discussed
in Chapters 3 and 4. In this chapter, we only focus on precise classification

92 Chapter 5. Evidential fusion of heterogeneous deep neural networks

using pV . The sample is assigned to class ω such that

ω = arg max
ωi∈Ω0

pV (ωi).

The procedure of fusing different FCNs for semantic segmentation, called the
mass-fusion evidential fully convolutional network (MFE-FCN), is similar to the pro-
cedure just described, except that the encoder-decoder architectures in the MFE-FCN
provide pixel-wise features in the first step, instead of image-level feature vectors.

5.2.2 Learning with soft labels

Before fusion, evidential DNNs are trained using their individual learning sets with
different frames of discernment. However, these frames are different from the refined
one, even though the semantics of some classes do not change. The refined frame is
more detailed, and the learned parameters in the ready-trained networks may not be
very suitable for the new task. Thus, an end-to-end learning procedure should be
applied to fine-tune all the parameters in the combination of evidential DNNs using
a learning set that is made up of these individual learning sets.

In the end-to-end training procedure, the learning sets of different pre-trained
DNNs are merged into a single one. Some labels then become imprecise after merging;
they are referred to as soft labels. For example, the “bird” label in the CIFAR-10 [63]
dataset becomes imprecise when the dataset is merged with the Caltech-UCSD Birds
200 dataset [141] containing 200 bird species. To fine-tune different DNNs using a
learning set with soft labels, we define a label as a nonempty subset A ∈ 2Ω\∅ of
classes an image may belong to. Label A indicates that the true class is known to be
one element of set A, but one cannot determine which one specifically if |A| > 1.

In the fine-tuning phase, taking an MFE-CNN classifier for object classification
as an example, its parameters are initialized by the parameters in the pre-trained
evidential CNNs. Given a learning image with nonempty soft label A∗ ⊆ Ω0, the
MFE-CNN classifier outputs a probability mass function pV . We first normalize the
mass as

p′V (ωi) =
pV (ωi)∑M0

j=1 pV (ωj)
, i = 1, . . . ,M0, (5.1)

where M0 is the number of classes in the common frame Ω0. We then define the loss
as:

L(p′V , A∗) = − log
∑
ω∈A∗

p′V (ω). (5.2)

This loss function is minimized when the normalized probability mass p′V of soft label
A∗ equals 1. The classifier tries to maximize the sum of the probability mass of the
classes in soft label A∗, indicating the classifier tends to believe that the true class is
in A∗ but cannot determine which one. For example, given a sample with soft label
“bird”, a classifier should predict a high value of

∑
ω∈bird p

′
V (ω), which means that

5.3. Experiments on multi-model fusion 93

the classifier believes that the true class is one of the bird species. The gradient of
this loss w.r.t all network parameters can be back-propagated from the output layer
to the input layer, as discussed in Sections 3.1.2 and 4.1.2, and Appendix A.

5.3 Experiments on multi-model fusion

In this section, we study the performance of the above fusion method on multi-model
fusion tasks through two image-classification experiments (Sections 5.3.1 and 5.3.2)
and two semantic-segmentation experiments (Sections 5.3.3 and 5.3.4).

5.3.1 Image-classification experiment #1

Experiment setting. Three datasets are considered in this first experiment: Tiny
ImageNet [17], Flower-102 [93], and CIFAR-10 [63]. The Tiny ImageNet dataset con-
tains 110k labeled images of 200 classes with the size of 64 × 64 × 31. Each class
has 500 training images and 50 validation images2. The Flower-102 dataset consists
of 102 flower categories and each are represented by 40 to 258 images. The train-
ing/validation set contains 40 images per class (totaling 4080 images each), and the
test set consists of the remaining 4,129 images (minimum 10 per class). The CIFAR-
10 database with ten classes was pre-split into 50k training and 10k testing images.
Figure 5.2 shows the semantic relationship of the classes in the three datasets. We
added an “anything else” class to each dataset to make the three frames compatible.
After merging the three datasets, we obtained 154,080 training samples and 24,129
testing samples for, respectively, fine-tuning and performance evaluation.

For a testing set T with soft labels, the average error rate is defined as

AE(T) = 1− 1

|T |
∑
i∈T

1A(i) (ω̂(i)) , (5.3)

where A(i) is the soft label of sample i, ω̂(i) is the predicted class, and 1A(i) is the
indicator function of set A(i).

We designed three different MFE-CNN classifiers for the experiment. Each classi-
fier consists of three pre-trained evidential CNN architectures with 128 output units,
introduced in Section 2.1.4. Table 5.1a presents the optimized numbers of prototypes
in the DS layers for the three datasets. We compared the MFE-CNN classifiers to
four classifier fusion systems with the same CNN architectures:

Probability-to-mass fusion (PMF) [146]: we feed the feature vector from each
CNN backbone v into a softmax layer to generate a Bayesian mass function on

1The class list of the Tiny ImageNet dataset can be found in https://github.com/rmccorm4/
Tiny-Imagenet-200/blob/master/sets/words200.txt.

2The Tiny ImageNet dataset contains 10k held-out and unlabeled images for testing only available
for the Stanford CS231n course. In the thesis, we used the validation set for testing and the training
set for training and validation, as done in [27, 81, 103, 133].

https://github.com/rmccorm4/Tiny-Imagenet-200/blob/master/sets/words200.txt
https://github.com/rmccorm4/Tiny-Imagenet-200/blob/master/sets/words200.txt
http://cs231n.stanford.edu/

94 Chapter 5. Evidential fusion of heterogeneous deep neural networks

Figure 5.2: Semantic relationship of the classes in the Tiny Ima-
geNet (red), Flower-102 (blue), and CIFAR-10 (green) datasets. The
classes in black are unique to one of the three datasets. The colored
classes with black arrows indicate the frame refinement. For example,
automobile → {police wagon, limousine, sport car, convertible} means
that the “automobile” class in the CIFAR-10 dataset becomes the soft
label {police wagon, limousine, sport car, convertible} with the classes
in the Tiny ImageNet dataset after refinement.

Ωv. The mass functions from the three CNNs are then aggregated by Dempster’s
rule. (It should be noted that the vacuous extension of each Bayesian mass
function in the common refinement Ω0 is no longer Bayesian.)

Bayesian-fusion (BF) [140]: the feature vector from each evidential CNN archi-
tecture is converted into a Bayesian mass function on the common frame Ω0,
by equally distributing the mass of a focal set to its elements; the obtained
Bayesian mass functions are combined by Dempster’s rule. This procedure is
equivalent to Bayesian fusion.

Probabilistic feature-combination (PFC) [92]: the three feature vectors are con-
catenated to form a new vector of length 384, fed into a softmax layer to generate
the probability distribution on the common frame.

Evidential feature-combination (EFC): feature vectors are concatenated as in
the above PFC approach, but the aggregated vector is fed into a DS layer to
generate an output mass function. The dimension of the aggregated vector and
the number of prototypes are, respectively, 384 and 400, to obtain an optimal
performance of the EFC-CNN classifier.

Results and discussion. Table 5.2 shows the average test error rates of the ev-
idential and probabilistic CNN classifiers trained from each of the three datasets,

5.3. Experiments on multi-model fusion 95

Table 5.1: Numbers of prototypes in Dempster-Shafer layers:
image-classification experiment #1 (a), image-classification experi-
ment #2 (b), semantic-segmentation experiment #1 (c), and semantic-
segmentation experiment #2 (d).

(a)

Tiny ImageNet Flower-102 Cifar-10
FitNet-4 360 230 70
UPANets 380 220 60
ResNet-101 400 230 65

(b)

Cifar-10 CUB Oxford-IIIT Pet
FitNet-4 70 350 80
ResNet-101 70 300 65
ViT-L/16 65 330 85

(c)
Pascal VOC Cityscapes Stanford background

FCN-8s 75 90 30
FCN-SegNet 65 80 25
FCN-CRF 75 80 35

(d)
Pascal VOC MIT-scene SIFT Flow

FCN-8s 75 300 95
FCN-SegNet 65 280 90
FCN-CRF 75 320 100

as well as the performances of the different fusion strategies (with and without fine
tuning) on each individual dataset, and on the union of the three datasets.

Looking at the performance of the MFE strategy, we can see that, after fusion,
the error rates on the Tiny ImageNet and CIFAR-10 datasets decrease, but the ones
on the Flower-102 dataset do not change. More precisely, as shown in Table 5.3, the
error rates for some classes (e.g., “cat”, “dog” and “bird”) on the CIFAR-10 database
decrease, but the ones of other classes do not change after fusion. The classes whose
errors decrease are the same as the classes in green in Figure 5.2. This is because an
evidential CNN classifier trained by the Tiny ImageNet dataset can provide useful
and detailed information for the image classification on the CIFAR-10 dataset. For
instance, a “cat” image may be misclassified into the “dog” class when only using
a CIFAR-10 classifier, but the image gets a high degree of belief in the “tabby cat”
class from a Tiny-ImageNet classifier. After aggregating the mass functions from
the CIFAR-10 and Tiny-ImageNet classifiers, the image is finally classified into the
“tabby cat” class, which is a correct decision. The reason for the error decrease with
the Tiny ImageNet datasets is a little different from the one with the CIFAR-10
dataset. Table 5.4, which shows examples of probability mass functions computed by
the different classifiers, allows us to explain the reason. The first example from the
Tiny ImageNet dataset labeled as “Egyptian cat” (a species of “cat”) is misclassified
as a “chihuahua” (a species of “dog”) using only the probability mass function from
the classifier trained from this dataset, but the decision is corrected after the evi-
dential fusion because the mass function provided by the classifier trained from the
CIFAR-10 data supports the “cat” class. A similar phenomenon can also be found
in the second example. Thus, the CIFAR-10 classifier can provide useful informa-
tion of some super-classes (e.g., “cat” and “dog”) for the Tiny-ImageNet classifier.
However, the mass from the CIFAR-10 classifier does not help when samples are mis-
classified into some sub-classes by the Tiny-ImageNet classifier. Consider the third
example. An image of the “bull frog” class is misclassified as “tailed frog” by the
Tiny-ImageNet classifier, but the CIFAR-10 classifier can only provide its belief that

96 Chapter 5. Evidential fusion of heterogeneous deep neural networks

Table 5.2: Average test error rates (in percent) of different classifiers
on the classification experiment #1: FitNit-4 (a), UPANets (b), and
ResNet-101 (c). “E2E” stands for fine-tuned classifiers. The lowest
error rates are in bold and second low are underlined. The initialized
weights in ResNet-101 backbone is from a model pre-trained by the
ImageNet-21k dataset [105], and we then fine-tune the backbone on
the Tiny ImageNet dataset and the union of the three datasets.

(a)

Classifier Tiny ImageNet Flower-102 CIFAR-10 Overall
Before fusion E-FitNit-4 41.21 13.06 6.50 -

P-FitNit-4 [106] 41.38 13.28 6.58 -
After fusion MFE-FitNit-4 40.92 13.08 5.61 23.37

PMF-FitNit-4 41.16 13.27 5.84 23.59
BF-FitNit-4 41.84 13.70 8.03 24.42
E2E MFE-FitNit-4 40.80 13.04 5.52 23.29
E2E PMF-FitNit-4 41.05 13.27 5.68 23.52
E2E BF-FitNit-4 41.58 13.61 7.22 24.14
E2E PFC-FitNit-4 41.49 13.12 6.33 23.75
E2E EFC-FitNit-4 41.86 13.88 6.94 24.32

(b)

Classifier Tiny ImageNet Flower-102 CIFAR-10 Overall
Before fusion E-UPANets 34.61 9.77 5.98 -

P-UPANets [133] 34.72 9.83 6.05 -
After fusion MFE-UPANets 34.42 9.77 5.41 19.27

PMF-UPANets 34.61 9.83 5.92 19.46
BF-UPANets 35.59 11.68 8.28 21.03
E2E MFE-UPANets 34.31 9.77 5.35 19.21
E2E PMF-UPANets 34.49 9.83 5.84 19.40
E2E BF-UPANets 35.19 11.08 7.74 20.53
E2E PFC-UPANets 34.79 12.12 6.48 20.58
E2E EFC-UPANets 35.38 16.58 7.32 22.82

(c)

Classifier Tiny ImageNet Flower-102 CIFAR-10 Overall
Before fusion E-ResNet-101 18.66 4.68 4.61 -

P-ResNet-101 [81] 18.70 4.69 4.66 -
After fusion MFE-ResNet-101 18.52 4.68 3.94 10.31

PMF-ResNet-101 18.54 4.69 4.42 10.40
BF-ResNet-101 19.18 5.07 6.04 11.10
E2E MFE-ResNet-101 18.50 4.67 3.82 10.27
E2E PMF-ResNet-101 18.49 4.68 4.28 10.35
E2E BF-ResNet-101 18.87 4.99 5.74 10.89
E2E PFC-ResNet-101 18.59 5.74 4.89 10.94
E2E EFC-ResNet-101 21.68 5.46 7.57 12.56

5.3. Experiments on multi-model fusion 97

Table 5.3: Test error rates (in percent) before and after information
fusion on CIFAR-10 using the FitNit-4 architecture. The classes whose
error rates decrease are highlighted in bold.

Classifier airplane automobile bird cat deer dog frog horse ship truck

Before fusion E-FitNit-4 2.4 3.9 6.4 13.5 9.0 10.1 5.6 6.8 3.5 2.7
P-FitNit-4 1.6 2.6 8.7 15.7 9.6 12.5 4.2 5.3 1.9 2.6

After fusion
E2E MFE 2.2 3.9 1.9 6.3 8.5 3.9 5.5 6.5 3.5 2.7
E2E PMF 1.6 2.5 5.0 12.8 9.0 9.2 4.2 5.3 1.8 2.6
E2E BF 1.5 2.5 8.1 14.0 9.0 11.0 4.1 5.2 1.8 2.5

Table 5.4: Examples of probability mass functions on the Tiny Im-
ageNet dataset before and after fusion by the MFE strategy. Only
some masses before and after fusion are shown for lack of space. The
notations ωi

0, i = 0, . . . , 3, stands for the “anything else” class to make
the frames compatible.

Instance/label Before fusion p′ on Ω0

after fusionp′ from Tiny ImageNet p′ from CIFAR-10 p′ from Flower102

Egyptian cat

p′(Egyptian cat) = 0.472 p′(cat) = 0.873 p′(buttercup) = 0.001 p′(Egytian cat) = 0.860
p′(chihuahua) = 0.511 p′(dog) = 0.116 p′(camellia) = 0 p′(chihuahua) = 0.125
.
p′(ω1

0) = 0.001 p′(ω2
0) = 0.001 p′(ω3

0) = 0.998 p′(ω0
0) = 0.001

king pengui

p′(king penguin) = 0.453 p′(bird) = 0.732 p′(buttercup) = 0 p′(king penguin) = 0.988
p′(academic gown) = 0.532 p′({frog}) = 0.102 p′(camellia) = 0.001 p′(academic gown) = 0.006
.
p′(ω1

0) = 0.001 p′(ω2
0) = 0.004 p′(ω3

0) = 0.993 p′(ω0
0) = 0.001

bull frog

p′(bull frog) = 0.382 p′(frog) = 0.972 p′(buttercup) = 0.001 p′(bull frog) = 0.388
p′(tailed frog) = 0.602 p′(cat) = 0.010 p′(camellia) = 0 p′(tailed frog) = 0.611
.
p′(ω1

0) = 0 p′(ω2
0) = 0 p′(ω3

0) = 0.999 p′(ω0
0) = 0

Yorkshire terrier

p′(Yorkshire terrier) = 0.413 p′(dog) = 0.732 p′(buttercup) = 0 p′(Yorkshire terrier) = 0.476
p′(chihuahua) = 0.452 p′(cat) = 0.158 p′(camellia) = 0.001 p′(chihuahua) = 0.521
.
p′(ω1

0) = 0.001 p′(ω2
0) = 0.011 p′(ω3

0) = 0.983 p′(ω0
0) = 0.001

the image belongs to class “frog”, which is useless. We can find a similar phenomenon
in the final example. This explains why only the error rates of partial classes on the
Tiny ImageNet dataset decrease, such as the “albatross” and “Egyptian cat” classes
shown in Table 5.5. For the images misclassified by the Flower-102 mass function, the
other two individual classifiers do not provide any useful information to correct the
decisions. Consequently, the classification performance on the Flower-102 database
is not improved. In summary, these observations show that the proposed approach
makes it possible to combine CNN classifiers trained from heterogeneous databases
to obtain a more general classifier able to recognize classes from any of the databases,
without degrading the performance of the individual classifiers, and sometimes even
yielding better results for some classes.

Comparing the test error rates of the MFE classifiers with and without the end-
to-end learning procedure as shown in Table 5.2, we can see that the fine-tuning
strategy further slightly boosts the overall performance, as well as the performance
on the Tiny ImageNet and CIFAR-10 datasets. Thus, the fine-tuning procedure
decreases the classification error rate of the proposed architecture, and can be seen
as a way to improve the performance of CNN classifiers. This is because the end-
to-end learning procedure adapts the individual classifiers to the new classification

98 Chapter 5. Evidential fusion of heterogeneous deep neural networks

Table 5.5: Error rates (in percent) of some classes on the Tiny Im-
ageNet dataset before and after fusion. We boldface the classes with
decreased error rates.

Classifier albatross Egyptian cat CD player rocking chair lemon

Before fusion E-FitNit-4 42 36 28 4 12
P-FitNit-4 40 38 28 6 12

After fusion
E2E MF-FitNit-4 26 16 27 4 12
E2E PMF-FitNit-4 34 26 28 6 12
E2E BF-FitNit-4 40 34 29 4 12

problem. More specifically, before fusion, the CNN classifiers are pre-trained for the
classification tasks with the frames of discernment before refinement. The proposed
end-to-end learning procedure fine-tunes the parameters in the CNN and DS layers
to make them more suitable to the classification task in the refined frame.

Finally, Table 5.2 sheds some light on the relative performance of different classifier
fusion strategies. The PMF fusion strategy also improves the performance of the
probabilistic CNNs trained on each of the three databases, but it is not as good as
the proposed method. In contrast, the BF strategy degrades the performance of the
individual classifiers, which shows that the method is not effective when the numbers
of classes in the different frames are very unbalanced. The relatively high error rates
obtained of the two feature fusion strategies (E2E EFC and E2E PFC) show that the
simple feature-concatenation methods is less effective than the other ones. All in all,
the proposed evidential fusion strategy outperforms the other tested methods on the
datasets considered in this experiment.

5.3.2 Image-classification experiment #2

Experiment setting. We used three datasets in this experiment: CIFAR-10 [63],
Caltech-UCSD Birds-200-2011 (CUB) [141], and Oxford-IIIT Pet [98]. The CIFAR-
10 dataset has been pre-split into 50k training and 10k testing images. For the CUB
(11,788 images) and Oxford-IIIT Pet (7,349 images) datasets, we divided each into
training and testing sets with a ratio of about 1:1. The training and testing sets keep
a ratio of about 1:1 in each class. In the fine-tuning procedure, the frames of the three
datasets are refined into a common one, as shown in Table 5.6. Figure 5.3 presents the
semantic relationship of the classes in the three datasets. After merging the three sets,
there are 59669 training samples and 19,468 testing samples for, respectively, fine-
tuning and performance evaluation. We designed three MFE-CNN classifiers whose
CNN architectures have been introduced in Section 2.1.4. The optimized numbers of
prototypes in the DS layers are presented in Table 5.1b.

Results and discussion. Table 5.7 presents the experiment results. The over-
all error rates decrease after fusion, as well as the ones on the CIFAR-10 dataset,
benefiting from the useful information given by the classifiers trained with the CUB

5.3. Experiments on multi-model fusion 99

Table 5.6: Lists of classes in the CIFAR-10, CUB, Oxford-IIIT Pet
datasets. The notations ω2

0 and ω3
0 stand for the “anything else” class

added to the frames of the CUB and Oxford datasets.

Frame Class
CIFAR-10 airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck.
CUB cardinal, house wren, . . . , (200 species of birds), ω2

0.
Oxford-IIIT pet bengal, boxer, . . . , (37 species of cats and dogs), ω3

0.
Common frame airplane, automobile, deer, frog, horse, ship, truck, cardinal, house wren,

. . . , (200 species of birds), bengal, boxer, . . . , (37 species of cats and
dogs).

Figure 5.3: Semantic relationship of the classes on the CIFAR-10
(green), CUB (red) and Oxford-IIIT Pet (yellow) datasets using the
representation way introduced in Figure 5.2.

and Oxford-IIIT Pet datasets. However, for images misclassified by the CUB prob-
ability mass function, the other two individual classifiers do not provide any useful
information to correct the decisions. Consequently, the classification performance
on the CUB dataset is not improved. Besides, the probability mass function from
the CIFAR-10 classifier sometimes includes useful information for classifying samples
into one species of cat or dog, even though the number of such examples is small,
such as the last example in Table 5.8. This phenomenon is responsible for the small
change in the performance on the Oxford-IIIT Pet dataset. Besides, the end-to-end
can slightly improve the overall performance by making the learned parameters in the
CNN backbones and DS layers more suitable for the refined task. In addition, the
proposed approach outperforms the other four strategies on the multi-model fusion.

5.3.3 Semantic-segmentation experiment #1

Experiment setting. In the semantic-segmentation experiment #1, we used three
datasets: Pascal VOC 2012 [30], Cityscapes [13] and Stanford background [38]. Table

100 Chapter 5. Evidential fusion of heterogeneous deep neural networks

Table 5.7: Average test error rates (in percent) of different classifiers
on the classification experiment #2: NIN architecture (a), FitNet-4
(b), and ViT-L/16 (c). “E2E” stands for fine-tuned classifiers. The
lowest error rates are in bold and second low are underlined. The
initialized weights in ResNet-101 backbone is from a model pre-trained
by the ImageNet-21k dataset [105], and we then fine-tune the backbone
on the union of the three datasets.

(a)

Classifier CIFAR-10 CUB Oxford-IIIT pet Overall

Before fusion E-FitNit-4 6.50 25.07 10.17 -
P-FitNit-4 [106] 6.58 25.18 10.56 -

After fusion

MFE-FitNit-4 5.07 25.07 9.82 12.65
PMF-FitNit-4 5.86 25.16 10.13 13.12
BF-FitNit-4 6.10 27.84 11.08 14.31
E2E MFE-FitNit-4 4.49 25.07 9.81 12.37
E2E PMF-FitNit-4 5.47 25.14 10.11 12.92
E2E BF-FitNit-4 6.26 27.76 10.87 14.32
E2E PFC-FitNit-4 6.20 25.11 9.78 13.21
E2E EFC-FitNit-4 6.86 25.10 11.30 13.80

(b)

Classifier CIFAR-10 CUB Oxford-IIIT pet Overall

Before fusion E-ResNet-101 1.66 12.99 6.27 -
P-ResNet-101 [81] 1.71 13.08 6.38 -

After fusion

MFE-ResNet-101 1.39 13.00 6.11 6.14
PMF-ResNet-101 1.56 13.08 6.23 6.28
BF-ResNet-101 3.75 13.68 7.86 7.83
E2E MFE-ResNet-101 1.37 12.99 6.06 6.12
E2E PMF-ResNet-101 1.50 13.08 6.18 6.24
E2E BF-ResNet-101 3.58 13.47 7.32 7.58
E2E PFC-ResNet-101 1.61 13.76 6.32 6.54
E2E EFC-ResNet-101 2.78 14.59 8.61 7.80

(c)

Classifier CIFAR-10 CUB Oxford-IIIT pet Overall

Before fusion E-ViT-L/16 0.94 10.77 3.77 -
P-ViT-L/16 [27] 0.78 10.77 4.06 -

After fusion

MF-ViT-L/16 1.16 10.77 3.67 4.85
PMF-ViT-L/16 0.83 10.75 3.95 4.73
BF-ViT-L/16 0.96 13.87 4.81 6.00
E2E MF-ViT-L/16 0.82 10.74 3.70 4.68
E2E PMF-ViT-L/16 0.83 10.76 3.83 4.71
E2E BF-ViT-L/16 1.10 13.77 4.76 6.02
E2E PFC-ViT-L/16 0.90 11.36 3.86 4.95
E2E EFC-ViT-L/16 3.79 11.14 6.73 6.79

5.3. Experiments on multi-model fusion 101

Table 5.8: Examples of mass functions on the CIFAR-10 and Oxford-
IIT pet datasets before and after fusion by the MFE strategy. Only
some masses before and after fusion are shown for lack of space.

Instance/label Before fusion MF on Ω
after fusionMF from CIFAR-10 MF from CUB MF from Oxford

bird

m({airplane}) = 0.506 m({caspinan}) = 0.698 m({samyod}) = 0 m({airplane}) = 0.101
m({bird}) = 0.382 m({horned grebe}) = 0.109 m({pyrenees}) = 0.001 m({caspinan}) = 0.672
.
m(Θ1) = 0.065 m(θ20) = 0.098 m(θ30) = 0.905 m(Ω) = 0.007

caspian

m({airplane}) = 0.009 m({caspinan}) = 0.423 m({samyod}) = 0 m({caspinan}) = 0.415
m({bird}) = 0.823 m({horned grebe}) = 0.452 m({pyrenees}) = 0.001 m({horned grebe}) = 0.450
.
m(Θ1) = 0.092 m(θ20) = 0.084 m(θ30) = 0.951 m(Ω) = 0.009

byssinian

m({cat}) = 0.742 m({caspinan}) = 0.002 m({byssinian}) = 0.412 m({byssinian}) = 0.414
m({dog}) = 0.131 m({horned grebe}) = 0 m({bengal}) = 0.503 m({bengal}) = 0.505
.
m(Θ1) = 0.032 m(θ20) = 0.931 m(θ30) = 0.038 m(Ω) = 0.005

keeshond

m({cat}) = 0.158 m({albatross}) = 0.001 m({rogdoll}) = 0.682 m({rogdoll}) = 0.369
m({dog}) = 0.705 m({horned grebe}) = 0 m({keeshond}) = 0.254 m({keeshold}) = 0.485
.
m(Θ1) = 0.058 m(θ20) = 0.975 m(θ30) = 0.001 m({cat}) = 0.021

Table 5.9: Lists of classes for the Pascal VOC, Cityscapes, and Stan-
ford background datasets in the semantic segmentation experiments
#1. Classes in bold characters have the same semantics as the “any-
thing else” class.

Frame Class
Pascal VOC Ω1 person, bird, cat, cow, dog, horse, sheep, aeroplane, bicycle,

boat, bus, car, motorbike, train, bottle, chair, dining table, pot-
ted plant, sofa, tv, background.

Cityscapes Ω2 person, rider, car, truck, bus, rails, motorcycle, bicycle, caravan,
trailer, road, sidewalk, parking, rail track, building, wall, fence,
guard rail, bridge, tunnel, pole, pole group, traffic sign, traffic
light, vegetation, terrain, sky, ground, void.

Stanford background Ω3 sky, tree, road, grass, water, building, mountain, foreground.
Common frame Ω0 person, rider, bird, cat, cow, dog, horse, sheep, aeroplane, bicy-

cle, boat, bus, car, motorbike, train, caravan, trailer, road, side-
walk, parking, rail track, building, wall, fence, guard rail, bridge,
tunnel, pole, pole group, traffic sign, traffic light, terrain, sky,
tree, grass, mountain, bottle, chair, dining table, potted plant,
sofa, tv, ω0

0.

5.9 summaries the classes on the three datasets. The information of the Pascal VOC
2012 has been introduced in Section 4.2.1. The Cityscapes dataset focuses on semantic
understanding of urban street scenes, which consists of 5k annotated images labeled
in 30 classes. Data was captured in 50 cities during several months, daytimes, and
good weather conditions. The Stanford Background dataset with 715 labeled images
is mainly used for geometric and semantic scene understanding. Its selection criteria
are for the images to be of outdoor scenes, have approximately 320-by-240 pixels,
contain at least one foreground object, and have the horizon position within the image
(it need not be visible). The classes “background” (Pascal VOC), “void” (Cityscapes),
and “foreground” (Stanford background) have the semantics of “anything else” that
makes the three frames compatible.

102 Chapter 5. Evidential fusion of heterogeneous deep neural networks

Table 5.10: Numbers of output units in the encoder-decoder archi-
tectures: semantic-segmentation experiment #1 (a), and semantic-
segmentation experiment #2 (b).

(a)
Pascal VOC Cityscapes Stanford background

FCN-8s 64 96 28
FCN-SegNet 64 96 28
FCN-CRF 64 96 28

(b)
Pascal VOC MIT-scene SIFT Flow

FCN-8s 64 128 64
FCN-SegNet 64 128 64
FCN-CRF 64 128 64

For a testing set T with pixel-wise soft labels, intersection over union (IoU) is
defined as

IoU =
1

2|Ω| − 1

∑
B⊆Ω

|GB ∩ PB|
|GB ∪ PB|

, (5.4)

where PB = {i : ω̂(i) ∈ B} is the predicted area containing pixels classified to one of
the classes in B; and GB = {i : A∗(i) = B)} is the ground truth area composed of
pixels with label B. In the special case without soft labels, IoU in this chapter boils
down to the original definition of IoU [62, 77, 95].

We designed three different MFE-FCN models in the experiment. Each model
consists of three pre-trained evidential FCN, referring to one of the encoder-decoder
architectures introduced in Section 2.2.3. Tables 5.1c and 5.10a present, respectively,
the optimized numbers of prototypes in the DS layers and the output units in the
encoder-decoder architectures for the three datasets. We also compared the proposed
approach with the four fusion systems, as introduced in Section 5.3.1.

Results and discussion. Table 5.11 presents the experiment results. The overall
IoU rates increase after fusion, as well as the ones on the three datasets. This indi-
cates that each model can provide useful information for the other two. Thus, the
proposed approach has the potential to combine different FCN-based models trained
from heterogeneous databases to obtain a more general one that is able to segment
images from any of the databases. The multi-FCN fusion does not degrade the per-
formance of the individual models, and sometimes even yields better results for some
classes, as shown in Table 5.12. Figure 5.4 provides some segmentation results before
and after fusion from the Cityscapes dataset.

Similar to the two image-classification experiments, the proposed information-
fusion strategy outperforms the other four on semantic segmentation. In contrast
to the image-classification experiments, the BF and EFC strategies can also improve
the segmentation performance. For the BF strategy, this is because the numbers of
classes in the three frames are not very unbalanced. In the EFC strategy, the small
numbers of output units from the encoder-decoder architectures make the distance
measurement using (1.29) in the DS layers still valid after concatenating pixel-wise
feature vectors, which guarantees the segmentation performance in the EFC-FCN
models. This phenomenon also indicates the limitations of the BF and EFC strate-
gies. All in all, the proposed evidential fusion strategy outperforms the other tested

5.3. Experiments on multi-model fusion 103

(a) (b) (c) (d)

Figure 5.4: Segmentation examples from the Cityscapes dataset be-
fore and after fusion: Segmentation results from (a) E-FCN-CRF be-
fore fusion, (b) P-FCN-CRF before fusion, (c) MFE strategy after
fusion, (d) PMF strategy after fusion. Different colors stands for dif-
ferent classes.

methods on the datasets considered in this experiment.

5.3.4 Semantic-segmentation experiment #2

Three benchmark datasets were used in this experiment: Pascal VOC 2012 [30], MIT-
scene Parsing [156], and SIFT Flow [128], having been introduced in Section 4.2.1.
The classes “background” (Pascal VOC and MIT-scene Parsing) and “foreground”
(SIFT Flow) have the semantics of “anything else” that makes the three frames com-
patible. The encoder-decoder architectures and metrics for performance evaluation
in this experiment are the same as the ones in experiment #1. Tables 5.1d and
5.10b present, respectively, the optimized numbers of prototypes in the DS layers
and the output units in the encoder-decoder architectures. In this experiment, we
also compared the MFE-FCN models to the four fusion systems.

The founds in the experiment are similar to the previous three, as shown in Table
5.13. The results demonstrate the advantage of the proposed approach on aggregating
the information from different DNNs to make more general decisions without the
negative effects on the performance of the individual FCNs. Besides, compared to
the other widely-used methods, the proposed one is more flexible to introduce new

104 Chapter 5. Evidential fusion of heterogeneous deep neural networks

Table 5.11: Mean intersection over union of different FCN models
on the segmentation experiment #1: FCN-8s (a), FCN-SegNet (b),
and FCN-CRF (c). “E2E” stands for fine-tuned classifiers. The lowest
error rates are in bold and second low are underlined.

(a)

Classifier Pascal VOC Cityscapes Stanford background Overall

Before fusion E-FCN-8s 0.634 0.649 0.756 -
P-FCN-8s [77] 0.627 0.648 0.748 -

After fusion

MFE-FCN-8s 0.653 0.663 0.780 0.669
PMF-FCN-8s 0.638 0.658 0.769 0.661
BF-FCN-8s 0.604 0.633 0.754 0.635
E2E MFE-FCN-8s 0.656 0.665 0.782 0.671
E2E PMF-FCN-8s 0.643 0.662 0.770 0.665
E2E BF-FCN-8s 0.613 0.639 0.758 0.642
E2E PFC-FCN-8s 0.651 0.653 0.769 0.660
E2E EFC-FCN-8s 0.650 0.658 0.773 0.664

(b)

Classifier Pascal VOC Cityscapes Stanford background Overall

Before fusion E-FCN-SegNet 0.652 0.565 0.778 -
P-FCN-SegNet [1] 0.645 0.558 0.773 -

After fusion

MFE-FCN-SegNet 0.662 0.578 0.785 0.609
PMF-FCN-SegNet 0.653 0.566 0.775 0.598
BF-FCN-SegNet 0.650 0.538 0.761 0.576
E2E MFE-FCN-SegNet 0.664 0.583 0.787 0.613
E2E PMF-FCN-SegNet 0.655 0.570 0.777 0.601
E2E BF-FCN-SegNet 0.652 0.549 0.765 0.585
E2E PFC-FCN-SegNet 0.659 0.569 0.775 0.601
E2E EFC-FCN-SegNet 0.660 0.572 0.779 0.604

(c)

Classifier Pascal VOC Cityscapes Stanford background Overall

Before fusion E-FCN-CRF 0.789 0.694 0.843 -
P-FCN-CRF [6] 0.784 0.691 0.842 -

After fusion

MFE-FCN-CRF 0.803 0.710 0.861 0.739
PMF-FCN-CRF 0.801 0.697 0.861 0.729
BF-FCN-CRF 0.774 0.680 0.848 0.711
E2E MFE-FCN-CRF 0.804 0.712 0.861 0.741
E2E PMF-FCN-CRF 0.802 0.701 0.863 0.733
E2E BF-FCN-CRF 0.778 0.684 0.851 0.715
E2E PFC-FCN-CRF 0.792 0.703 0.855 0.732
E2E EFC-FCN-CRF 0.799 0.699 0.859 0.730

Table 5.12: Test IoU before and after information fusion on the
Cityscapes dataset using the FCN-CRF architecture.

Classifier sky building person rider car bus bicycle

Before fusion E-FCN-CRF 0.946 0.913 0.784 0.598 0.936 0.642 0.693
P-FCN-CRF 0.940 0.903 0.792 0.585 0.931 0.668 0.684

After fusion
E2E MFE-FCN-CRF 0.951 0.919 0.801 0.594 0.950 0.661 0.709
E2E PMF-FCN-CRF 0.944 0.914 0.799 0.586 0.936 0.675 0.687
E2E BF-FCN-CRF 0.924 0.884 0.794 0.581 0.926 0.671 0.684

5.4. Experiments on training shallow networks for complex tasks 105

Table 5.13: Mean intersection over union of different FCN models
on the segmentation experiment #2: FCN-8s (a), FCN-SegNet (b),
and FCN-CRF (c). “E2E” stands for fine-tuned classifiers. The lowest
error rates are in bold and second low are underlined.

(a)

Classifier Pascal VOC SIFT flow MIT-scening Overall

Before fusion E-FCN-8s 0.634 0.396 0.296 -
P-FCN-8s [77] 0.627 0.394 0.294 -

After fusion

MFE-FCN-8s 0.649 0.420 0.311 0.449
PMF-FCN-8s 0.641 0.412 0.306 0.441
BF-FCN-8s 0.638 0.412 0.299 0.440
E2E MFE-FCN-8s 0.652 0.421 0.313 0.450
E2E PMF-FCN-8s 0.643 0.414 0.308 0.443
E2E BF-FCN-8s 0.640 0.415 0.304 0.443
E2E PFC-FCN-8s 0.642 0.415 0.299 0.443
E2E EFC-FCN-8s 0.644 0.413 0.291 0.441

(b)

Classifier Pascal VOC SIFT flow MIT-scening Overall

Before fusion E-FCN-SegNet 0.652 0.400 0.310 -
P-FCN-SegNet [1] 0.645 0.399 0.305 -

After fusion

MFE-FCN-SegNet 0.671 0.422 0.315 0.455
PMF-FCN-SegNet 0.664 0.415 0.310 0.447
BF-FCN-SegNet 0.661 0.414 0.304 0.445
E2E MFE-FCN-SegNet 0.674 0.423 0.317 0.456
E2E PMF-FCN-SegNet 0.666 0.417 0.312 0.449
E2E BF-FCN-SegNet 0.663 0.417 0.308 0.448
E2E PFC-FCN-SegNet 0.664 0.416 0.304 0.448
E2E EFC-FCN-SegNet 0.666 0.415 0.297 0.447

(c)

Classifier Pascal VOC SIFT flow MIT-scening Overall

Before fusion E-FCN-CRF 0.789 0.418 0.354 -
P-FCN-CRF [6] 0.784 0.417 0.350 -

After fusion

MFE-FCN-CRF 0.801 0.431 0.360 0.487
PMF-FCN-CRF 0.796 0.426 0.356 0.482
BF-FCN-CRF 0.791 0.420 0.352 0.477
E2E MFE-FCN-CRF 0.802 0.433 0.361 0.489
E2E PMF-FCN-CRF 0.799 0.427 0.359 0.484
E2E BF-FCN-CRF 0.794 0.423 0.355 0.480
E2E PFC-FCN-CRF 0.794 0.419 0.352 0.476
E2E EFC-FCN-CRF 0.791 0.423 0.357 0.479

classes at any stage. The end-to-end learning can slightly improve by making the
learned parameters in an MFE-FCN model more suitable for the new task.

5.4 Experiments on training shallow networks for com-
plex tasks

In the last decade, neural networks have become deeper and deeper from the original
AlexNet [64] to the 19-layer VGG [116], even the ResNet with hundred layers [48], be-
cause depth tends to improve network performances in practice. One of the problems
from the “deeper and deeper” practice is that gradient-based training becomes more

106 Chapter 5. Evidential fusion of heterogeneous deep neural networks

difficult since deeper networks are more non-linear. Besides, training procedures re-
quire more and more powerful graphics processor units (GPUs) and memories, which
limits the possibility for some small research groups to achieve state-of-the-art results
using the networks proposed by some big laboratories.

The main superiority of the proposed information-fusion approach is to combine
DNNs trained from heterogeneous databases with different sets of classes while having
at least as good performance as those of the individual networks on their respective
datasets. In this section, we consider combining simple and shallow networks for
a complicated problem using the information-fusion approach. More precisely, a
problem with a large number of classes is first decomposed into some simple sub-
problems, such as binary classifications. We then train shallow neural networks for
each sub-problem and combine them using the proposed approach to conduct the
original complicated task. Compared with a single DNN for the full problem, these
shallow networks are easily trained and their combination has the potential to achieve
a similar performance as that of the single DNN. Thus, in the experiments, we do not
aim at introducing new algorithms to outperform the state-of-the-art ones in terms
of average error rate (5.3) or intersection over union (5.4), but we investigate the
combination of existing shallow neural networks for reducing training difficulty while
having similar performances as the state-of-the-art models.

5.4.1 Experiment on the Tiny ImageNet dataset

Experiment setting. We tried to solve the classification problem on the Tiny
ImageNet dataset by combining shallow evidential CNNs, whose CNN backbone is
shown in Figure 5.5. We decomposed the classification problem with 200 classes
into 200 binary classification problems, in which each CNN was used to distinguish
one class from others, named the 200 mass-fusion evidential CNN (200-MFE-CNN)
classifier. The output of each evidential CNN is the mass on the frame of a binary-
classification problem, such that

mi = {mi({ωi}),mi({ωi}),mi(Ω)},

where {ωi} is the set of anything else except class ωi and Ω is the frame of discernment
on the Tiny ImageNet dataset. We then aggregate the 200 CNNs using Dempster’s
rule (1.11). We also decomposed the original classification problem into 25 multi-
class classification problems. Precisely, the 200 classes in the dataset were divided
into 25 groups and each group has 8 classes. Every two groups are disjoint. For each
group A, we defined a frame of discernment ΩA with all classes in the group and
designed an evidential CNN classifier. The outputs of the classifier were the mass to
each singleton class in A and frame of discernment Ω. Finally, we combined the 25
classifiers using the proposed method and the combination is referred to as the 25-
MFE-CNN classifier. Similarly, we designed the 50- and 100-MFE-CNN classifiers.

5.4. Experiments on training shallow networks for complex tasks 107

Figure 5.5: Architecture of a shallow CNN with 91k parameters.

Results and discussion. Figure 5.6a presents the test error rates of MFE-CNN
classifiers with different numbers of CNNs, as well as the performances of the different
fusion strategies with fine-tuning. The 200-MFE-CNN classifier achieves an error
rate of 32.67%, which is lower than those of the evidential FitNet-4 and UPANets
classifiers. This demonstrates that those of the proposed approach makes it possible
to get a high accuracy using simple and shallow CNNs. Besides, the performances of
100-MFE-CNN and 50-MFE-CNN classifiers also exceed that of the FitNet-4 classifier
and is similar to that of the UPANets, indicating that each shallow CNN can handle
a classification problem with a small number of classes (e.g., two or four classes), and
we should select a reasonable number of CNNs for the problem on the Tiny ImageNet
dataset. In addition, we do not compare the proposed classifier with the ResNet-101
ones, as shown in Table 5.2c, because its pre-trained weights are obtained using an
extra learning set, ImageNet-21k [105].

The PMF and PFC classifiers also have lower error rates than those of FitNet-
4 and UPANets but are outperformed by the MFE-CNN classifiers with the same
numbers of CNNs. This indicates the proposed approach method is better than the
PMF and PFC approaches for training simple networks for a complex task. Figure
5.6a does not report the error rates of the BFC approach since they are too large.
The BFC approach does not work because the distance measurement in a DS layer
(1.29) becomes invalid when the dimension of the concentrated feature vectors is too
large.

Figure 5.6b displays the training times of different information-fusion strategies
to achieve the error rates reported in Figure 5.6a, as well as the training times of the
evidential FitNet and UPANets classifiers. The 50-MFE-CNN classifier costs less time
than the FitNet and UPANets classifiers, requiring no extra training technologies,
such as knowledge distillation in FitNet-4 or skip connections in ResNet-101. This
demonstrates that the training processes of the MFE-CNN classifiers with 50 or less
CNN are easier than the ones of FitNet and UPANets classifiers. Therefore, the
proposed approach has the potential to reduce the training difficulty, while having a
similar performance as the state-of-the-art models. Compared to the PMF and PFC
approaches, the proposed approach requires a slightly large training time owing to the

108 Chapter 5. Evidential fusion of heterogeneous deep neural networks

(a) (b)

(c) (d)

Figure 5.6: Results of CNN combination experiment on the Tiny
ImageNet dataset: error rate (a), training time (b), GFLOPs (c), and
the number of parameters (d) vs. the number of shallow CNNs. The
black line indicates the results of the evidential FitNet-4 classifier.
Error rate, training time, GFLOPs and parameters of the evidential
UPANets classifier are 34.61%, > 24 h, 2.77 and 24.4 M , respectively.
GFLOPs stands for 109 (giga) floating point operations and M means
million.

DS layers, but the increase in computation cost is still acceptable, partially thanks
to the simplified contour function-based combination rule. In addition, the training
time almost linearly increases with the number of evidential CNNs. Thus, we should
carefully select a reasonable number of evidential CNNs for the problem.

The number of network parameters and floating point operations (FLOPs) can be
considered as the metrics to determine the number of evidential CNNs. FLOPs are
widely used to describe how many operations are required to run a single instance
in a deep neural network [27, 42, 143, 9]; calculation processes can be found in
[54]. A lower value of FLOPs always means that an algorithm processes a new
instance with less computation costs. Figures 5.6c and 5.6d provide, respectively, the
parameters and FLOPs of the classifiers using different information-fusion strategies.
The parameters and FLOPs increase with the increase in the number of shallow
CNNs. The FLOPs of the 50-MFE-CNN classifier is still close to that of the FitNet-4
classifier, though its parameters exceed the FitNet-4 classifier. Thus, when using 50

5.5. Conclusion 109

shallow CNNs, the proposed approach achieves better performance than the FitNet-4
model but it does not introduce significant computation costs or training difficulty.
We can also use 100 shallow CNNs to get a similar performance as that of the UPANets
classifier but still have a reasonable value of FLOPs. The proposed classifier uses a
little more FLOPs than the PMF and PFC classifiers owing to the use of DS layers,
even though the gaps are small. All in all, the proposed evidential fusion strategy
has the potential of combining shallow networks for the complicated task on the Tiny
ImageNet dataset.

5.4.2 Experiment on the Cityscapes dataset

Experiment setting. The Cityspaces dataset was considered in this experiment.
U-net models, as shown in Figure 2.12, were combined by the proposed approach to
solve the problem of semantic segmentation. Similar to the classification experiment,
we divided the segmentation task into 30 problems of binary segmentation or some
easy problems of multi-class segmentation. We also compared the proposed approach
with four other methods described in Section 5.3.1.

Results and discussion. Figure 5.7 shows the results of IoU from the MFE-FCN
models with different numbers of U-nets. The 30-MFE-FCN model has the maxi-
mum value of IoU, and the 15-, 20-, 25-MFE-FCN ones also achieve the values of
IoU higher than the FCN-CRF model. Considering training times and FLOPs, we
can conclude the 15-MFE-FCN model is suitable for the segmentation task on the
Cityscapes dataset. The proposed approach allows us to achieve a good performance
of semantic segmentation even using some shallow and simple FCN-based models
while reducing the training difficulty and introducing small extra costs on processing
a new sample.

5.5 Conclusion

In this chapter, we have extended the proposed combined framework of DST and
DNNs into the evidential fusion of heterogeneous DNNs. In this extension, pre-trained
DST-based evidential DNNs extract features from input data and convert them into
mass functions on different frames of discernment. A fusion module then aggregates
these mass functions using Dempster’s rule. An end-to-end learning procedure allows
us to fine-tune the overall architecture using a learning set with soft labels.

The proposed approach makes it possible to combine DNNs trained from hetero-
geneous databases with different sets of classes, which provides a way to fuse the
partial and imperfect outputs of DNNs. In the experiments of classification and seg-
mentation, the combined network can classify or segment images from any of these
datasets while having at least as good performance as those of the individual networks
on their respective datasets. The proposed approach has the capacity of introducing

110 Chapter 5. Evidential fusion of heterogeneous deep neural networks

(a) (b)

(c) (d)

Figure 5.7: Results of FCN combination experiment on the
Cityscapes dataset: mean IoU (a), training time (b), FLOPs (c), and
parameters (d) vs. the number of U-nets. The black and green dot-
ted lines indicate the results of the evidential FCN-CRF and FCN-8s
models, respectively. GFLOPs stands for 109 (giga) floating point op-
erations and M means million.

additional networks trained from new datasets with different sets of classes at any
stage. An end-to-end learning procedure further slightly improves the performance
of the proposed architecture. This approach is shown to outperform other decision-
level or feature-level fusion strategies for combining DNNs. In addition, the proposed
approach allows us to use some simple and shallow neural networks to achieve a sim-
ilar performance as a state-of-the-art algorithm for a complex task, while reducing
the training difficulty and introducing small extra FLOPs. These results indicate a
potential direction to simplify the training procedure for some very difficult problems
on object classification and semantic segmentation.

111

Conclusions and perspectives

In this thesis, we have proposed a new framework based on deep neural networks and
DST to tackle the problem of data uncertainty in deep learning, mainly including
ambiguous, unreliable, imprecise, and incomplete data. The advantages of this frame-
work for decision-making with uncertainty have been demonstrated in pattern clas-
sification and semantic segmentation tasks by combining DST-based neural-network
layers with CNNs and FCNs, respectively. In addition, the proposed framework using
an evidential fusion strategy makes it possible to combine heterogeneous DNNs. The
following three main contributions have been described in this thesis.

First, an evidential CNN classifier has been designed by plugging a DST-based
neural-network layer followed by a utility layer at the backbone output of a convo-
lutional neural network (CNN) to perform set-valued classification and outlier de-
tection. A major finding is that this hybridization makes it possible to improve the
performance of CNN models by assigning ambiguous patterns to multi-class sets. The
proposed classifier is able to select a set of classes when the feature representation
does not allow us to select a single class unambiguously, which easily leads to in-
correct classification in probabilistic CNN classifiers. This result provides a novel
direction to improve the cautiousness of CNNs for classification problems. The use of
DS and utility layers also slightly improves precise classification performance, and the
hybridization makes it possible to reject outliers together with ambiguous patterns.
Additionally, the strategy of selecting partial multi-class acts works as well as that
of considering all possible acts.

Second, we extended the idea of combining DNNs and DST to semantic seg-
mentation. In the proposed approach, the pixel-wise features from a fully convolu-
tional network (FCN) are converted into pixel-wise mass functions by a DST-based
neural-network layer for set-valued segmentation. Experiments have shown that the
proposed combination improves the accuracy and calibration of FCN models by as-
signing ambiguous pixels to multi-class sets, while maintaining the good performance
of FCNs in precise segmentation tasks. The proposed learning strategy converts the
imprecise and unreliable label data into mass functions, which further improves the
accuracy and calibration of the FCN models. Additionally, the proposed approach
makes it possible to reject outliers together with ambiguous pixels, which provides a
way to handle learning sets with incompletely labeled data.

Finally, we have proposed a fusion approach based on belief functions to combine
heterogeneous DNNs. The proposed approach makes it possible to combine DNNs

112 Conclusions and perspectives

trained from heterogeneous databases with different sets of classes. The combined
network can classify or segment images from any of these datasets while having at
least as good performance as those of the individual networks on their respective
datasets. Thus, using the proposed approach, it is possible to introduce additional
networks trained from new datasets with different sets of classes at any stage. This
approach was shown to outperform other decision-level or feature-level fusion strate-
gies for combining DNNs. In addition, the proposed approach allows us to use some
simple and shallow neural networks to achieve a similar performance as state-of-the-
art algorithms for a complex task, while reducing training difficulty and introducing
small extra floating point operations. This provides a potential direction to simplify
the training procedure for some very difficult problems in supervised learning.

Perspectives

The work presented in this thesis can be continued in many directions. In the following
paragraphs, we sketch three of them.

In the long term, we will further extend the main idea of hybridizing DST and
DNNs to other deep learning-based algorithms. Chapters 3 and 4 presents the ap-
plications of the idea on CNNs and FCNs. Many other categories of DNNs have the
potential to be combined with DST. For example, long short-term memory [39, 52]
and recurrent neural networks [84, 85] are two successful DNN models for processing
sequences of data, such as speech or video. A DST-based neural network layer could
replace the softmax layer in a long short-term memory or recurrent neural network
to construct mass functions, providing more informative outputs for decision-making.
Similar extensions can also be considered for deep autoencoders [53, 78], deep belief
neural networks [51, 88], transformers [27, 136, 142], and so on.

Other advanced DST-based evidential neural networks could also be considered
for the hybridization of DNNs and DST. In Chapter 5, we found that the distance
measurement (1.29) in a DS layer suffers from the curse of dimensionality if the
dimension of an input feature vector is too large, which makes the evidential feature-
combination strategy unsuitable for multi-model fusion. This problem also limits the
applications of evidential DNNs since we have to use the backbone networks that
output feature vectors with a moderate dimension or map the output feature vectors
into ones with a smaller dimension. Other model-based evidential neural networks
could solve the problem, such as the one introduced in [23], which avoids the distance
calculation for converting features into belief functions.

In this thesis, we have proved the feasibility of evidential DNNs in classification
and segmentation tasks by combining DST-based evidential neural networks with
some widely-used DNNs. However, we do not achieve the most recent state-of-the-
art performance on some datasets, such as the Cityspaces and MIT-scene parsing
datasets, because a large number of DNN models have been proposed during the

Conclusions and perspectives 113

writing of the thesis, such as [76, 121, 155]. We will apply our approach to some
up-to-date deep networks to achieve better performances.

115

Appendix A

Appendix: gradient calculation
in evidential neural network

In the original study of Denœux [20], when using an evidential neural network (ENN),
the loss is defined as the gap between the predicted and target mass functions and
the gradients are calculated based on the loss. In the thesis, we consider an ENN
as a neural network layer, called the DS layer, and “plug” it followed by a decision-
making layer at the output of a deep neural network. In the forward-propagation, a
decision-making layer converts the mass from a DS layer into other forms for decision-
making, such as expected utilities in Chapters 3 and 4 and probability mass functions
in Chapter 5. In the end-to-end forward-propagation of such combination, a DS layer
receives the gradients w.r.t the mass from another layer and then back-propagates
the gradients with respect to all layer’s parameters, which is a little different from
the gradient calculation in [20]. The appendix provides the gradient calculation with
normalized output mass functions in a DS layer that is used in Chapters 3-51.

Let m be the normalized outputs of a DS layer for an input vector x. For i-th
prototype in the layer, i = 1, . . . , n,:

di =
∥∥x− pi

∥∥ (A.1)

si = τ i exp(−
(
ηidi

)2
) (A.2)

τ i = (1 + exp(−ξi))−1 (A.3)

mi = (hi1s
i, . . . , hiMsi, 1− si)T (A.4)

hij =
(βi

j)
2∑M

k=1(β
i
j)

2
. (A.5)

The vector of outputs from the ENN m = (m({ω1}), . . . ,m({ωM}),m(Ω)) is com-
puted as

mj =
µn({ωj})∑M

j′=1 µ
n({ωj′}) + µn(Ω)

(A.6a)

1In practice, users can also adopt the method of automatic differentiation and gradients in Ten-
sorFlow as a simple way, see https://www.tensorflow.org/guide/autodiff and https://www.
tensorflow.org/guide/advanced_autodiff.

https://www.tensorflow.org/guide/autodiff
https://www.tensorflow.org/guide/advanced_autodiff
https://www.tensorflow.org/guide/advanced_autodiff

116 Appendix A. Appendix: gradient calculation in evidential neural network

mM+1 =
µn(Ω)∑M

j′=1 µ
n({ωj′}) + µn(Ω)

, (A.6b)

with µn =
⋂n

i=1m
i as unnormalized aggregated mass-functions outputs of the DS

layer using (1.31); µi is the conjunctive combination of the mass m1, . . . ,mi with
µ1 = m1, i = 1, . . . , n. We simply notate unnormalized and normalized aggregated
mass functions in (A.6) as µn = (µn

1 , . . . , µ
n
M , µn

M+1) and m = (m1, . . . ,mM ,mM+1),
receptively.

Derivatives w.r.t. βi
j: In the back propagation of end-to-end learning, we assume

the DS layer receives the gradients w.r.t m as ∂L(x)/∂ml, l = 1, . . . ,M + 1. The
derivatives of L(x) w.r.t βi

j is given by

∂L(x)
∂βi

j

=

M∑
k=1

∂L(x)
∂hik

∂hik
∂βi

j

(A.7)

=
2βi

j(∑M
j′=1(β

i
j′)

2
)2
∂L(x)

∂hij

M∑
j′=1

(βi
j′)

2

−
M∑

j′=1

(βi
j′)

2∂L(x)
∂hij′

 . (A.8)

We then compute ∂L(x)/∂hij as

∂L(x)
∂hij

=
M+1∑
l=1

∂L(x)
∂µn

l

∂µn
l

∂hij
. (A.9)

Because the l-th unnormalized output mass µn
l does not depend on hij for j ̸= l, Eq.

(A.9) can be simplified as

∂L(x)
∂hij

=
∂L(x)
∂µn

j

∂µn
j

∂hij
(A.10)

=
∂µn

j

∂hij

M+1∑
l=1

∂L(x)
∂ml

∂ml

∂µn
j

, (A.11)

with K =
∑M+1

l′=1 µn
l′ and

∂ml

∂µn
j

=

{
(K − µn

j)/K
2 l = j,

−µn
j /K

2 l ̸= j.
(A.12)

The derivative ∂µn
j /∂h

i
j is the same as the original study in [20] as

∂µn
j

∂hij
= si(mi

j +mi
M+1), (A.13)

Appendix A. Appendix: gradient calculation in evidential neural network 117

with
mi

j =
mj −mM+1m

i
j/m

i
M+1

mi
j +mi

M+1

j = 1, . . . ,M, (A.14)

mi
M+1 =

mM+1

mi
M+1

. (A.15)

Hence, we can re-express (A.11) as

∂L(x)
∂hij

= si(mi
j +mi

M+1) ·

∂L(x)
∂mj

K − µn
j

K2
−
∑
l ̸=j

∂L(x)
∂ml

µn
j

K2

 . (A.16)

Derivatives w.r.t. si: The derivatives of L(x) w.r.t si can be expressed as

∂L(x)
∂si

=
M+1∑
l=1

∂L(x)
∂µn

l

∂µn
l

∂si
, (A.17)

where each item ∂L(x)/∂µn
l , l = 1, . . . ,M + 1 can be calculated as

∂L(x)
∂µn

l

=

M+1∑
l′=1

∂L(x)
∂ml′

∂ml′

∂µn
j

, (A.18)

using Eq. (A.12); the expression of each item ∂µn
l /∂s

i, l = 1, . . . ,M +1, is the same
the same as the original study, such that

∂µn
l

∂si
= hil(m

i
l +mi

M+1)−mi
l, (A.19)

∂µn
M+1

∂si
= −mi

M+1. (A.20)

Thus, we now re-express Eq. (A.17) as

∂L(x)
∂si

=
∂L(x)
∂µn

M+1

∂µn
M+1

∂si
+

M∑
j=1

∂L(x)
∂µn

j

∂µn
j

∂si
(A.21)

= −mi
M+1

M+1∑
l=1

∂L(x)
∂ml

∂ml

∂µn
M+1

+
M∑
j=1

[
hij(m

i
j +mi

M+1)−mi
j

]M+1∑
l=1

∂L(x)
∂ml

∂ml

∂µn
j

(A.22)

= −mi
M+1

(
1

K
· ∂L(x)
∂mM+1

−
M+1∑
l=1

∂L(x)
∂ml

µn
l

K2

)

+
M∑
j=1

[
hij(m

i
j +mi

M+1)−mi
j

](1

K
· ∂L(x)

∂mj
−

M+1∑
l=1

∂L(x)
∂ml

µn
l

K2

)
. (A.23)

118 Appendix A. Appendix: gradient calculation in evidential neural network

Derivatives w.r.t. ηi, ξi, and pij: The derivatives of L(x) w.r.t ηi, ξi, and pij can
be expressed as a function of ∂L(x)/∂si:

∂L(x)
∂ηi

=
∂L(x)
∂si

∂si

∂ηi
=

∂L(x)
∂si

(−2ηi(di)2si), (A.24)

∂L(x)
∂ξi

=
∂L(x)
∂si

∂si

∂τ i
d

τ i
d

ξi
=

∂L(x)
∂si

exp(−(ηidi)2)(1− τ i)τ i, (A.25)

∂L(x)
∂pij

=
∂L(x)
∂si

∂si

∂pij
=

∂L(x)
∂si

2(ηi)2si(xj − pij), (A.26)

where xj and pij are j-th element in the feature vectors of input vector x and prototype
pi, respectively.

119

Bibliography

[1] V. Badrinarayanan, A. Kendall, and R. Cipolla. “SegNet: A deep convolutional
encoder-decoder architecture for image segmentation”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 39.12 (2017), pp. 2481–2495.

[2] Y. Bi. “The impact of diversity on the accuracy of evidential classifier en-
sembles”. In: International Journal of Approximate Reasoning 53.4 (2012),
pp. 584–607.

[3] B. Biggio, B. Nelson, and P. Laskov. “Support vector machines under adver-
sarial label noise”. In: Proceedings of the 2011 Asian Conference on Machine
Learning. Taiwain, China, 2011, pp. 97–112.

[4] T. Caliński and J. Harabasz. “A dendrite method for cluster analysis”. In:
Communications in Statistics-theory and Methods 3.1 (1974), pp. 1–27.

[5] S. Chandra and I. Kokkinos. “Fast, exact and multi-scale inference for semantic
image segmentation with deep gaussian CRFs”. In: Proceedings of the 2016
European Conference on Computer Vision. Springer. Amsterdam, Netherlands,
2016, pp. 402–418.

[6] L.-C. Chen et al. “DeepLab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected CRFs”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 40.4 (2017), pp. 834–
848.

[7] X.-l. Chen et al. “Evidential KNN-based condition monitoring and early warn-
ing method with applications in power plant”. In: Neurocomputing 315 (2018),
pp. 18–32.

[8] C. Chow. “On optimum recognition error and reject tradeoff”. In: IEEE Trans-
actions on Information Theory 16.1 (1970), pp. 41–46.

[9] X. Chu et al. “Twins: Revisiting spatial attention design in vision transform-
ers”. In: arXiv preprint arXiv:2104.13840 (2021).

[10] E. Chzhen et al. “Set-valued classification–overview via a unified framework”.
In: arXiv preprint arXiv:2102.12318 (2021).

[11] B. R. Cobb and P. P. Shenoy. “On the plausibility transformation method
for translating belief function models to probability models”. In: International
Journal of Approximate Reasoning 41.3 (2006), pp. 314–330.

120 Bibliography

[12] E. Côme et al. “Learning from partially supervised data using mixture models
and belief functions”. In: Pattern Recognition 42.3 (2009), pp. 334–348.

[13] M. Cordts et al. “The cityscapes dataset for semantic urban scene understand-
ing”. In: Proceedings of the 29th IEEE Conference on Computer Vision and
Pattern Recognition. Paradise, United States, 2016, pp. 3213–3223.

[14] A. Das et al. “Combining multilevel contexts of superpixel using convolutional
neural networks to perform natural scene labeling”. In: Proceedings of Recent
Developments in Machine Learning and Data Analytics. Singapore: Springer,
2019, pp. 297–306.

[15] D. Defays. “An efficient algorithm for a complete link method”. In: The Com-
puter Journal 20.4 (1977), pp. 364–366.

[16] A. Dempster. “Upper and lower probabilities induced by a multivalued map-
ping”. In: Annals of Mathematical Statistics 38 (1967), pp. 325–339.

[17] J. Deng et al. “ImageNet: A large-scale hierarchical image database”. In: Pro-
ceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recog-
nition. IEEE. Miami, USA, 2009, pp. 248–255.

[18] L. Deng and D. Yu. “Deep learning: methods and applications”. In: Founda-
tions and Trends in Signal Processing 7.3–4 (2014), pp. 197–387.

[19] T. Denœux. “40 years of Dempster-Shafer theory”. In: International Journal
of Approximate Reasoning 79.C (2016), pp. 1–6.

[20] T. Denœux. “A neural network classifier based on Dempster-Shafer theory”.
In: IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans 30.2 (2000), pp. 131–150.

[21] T. Denœux. “Analysis of evidence-theoretic decision rules for pattern classifi-
cation”. In: Pattern Recognition 30.7 (1997), pp. 1095–1107.

[22] T. Denœux. “Decision-making with belief functions: A review”. In: Interna-
tional Journal of Approximate Reasoning 109 (2019), pp. 87–110.

[23] T. Denœux. “Logistic regression, neural networks and Dempster-Shafer theory:
A new perspective”. In: Knowledge-Based Systems 176 (2019), pp. 54–67.

[24] T. Denœux, D. Dubois, and H. Prade. “Representations of Uncertainty in
Artificial Intelligence: Beyond Probability and Possibility”. In: A Guided Tour
of Artificial Intelligence Research. Vol. 1. Compiègne, France: Springer Verlag,
2020. Chap. 4, pp. 119–150.

[25] T. Denœux, O. Kanjanatarakul, and S. Sriboonchitta. “A new evidential K-
nearest neighbor rule based on contextual discounting with partially super-
vised learning”. In: International Journal of Approximate Reasoning 113 (2019),
pp. 287–302.

Bibliography 121

[26] S. Destercke, F. Pichon, and J. Klein. “From set relations to belief function
relations”. In: International Journal of Approximate Reasoning 110 (2019),
pp. 46–63.

[27] A. Dosovitskiy et al. “An image is worth 16x16 words: Transformers for image
recognition at scale”. In: Proceedings of the 2021 International Conference on
Learning Representations. Vienna, Austria, 2021, pp. 1–21.

[28] S. Du et al. “Incorporating DeepLabv3+ and object-based image analysis for
semantic segmentation of very high resolution remote sensing images”. In: In-
ternational Journal of Digital Earth 14.3 (2020), pp. 357–378.

[29] A. Ess et al. “Segmentation-based urban traffic scene understanding”. In: Pro-
ceedings of the 20th British Machine Vision Conference. Vol. 1. London, UK,
2009, p. 2.

[30] M. Everingham et al. “The pascal visual object classes challenge: A retrospec-
tive”. In: International Journal of Computer Vision 111.1 (2015), pp. 98–136.

[31] S. Fang et al. “Real-time object detection and semantic segmentation hard-
ware system with deep learning networks”. In: Proceedings of the 2018 Inter-
national Conference on Field-Programmable Technology. IEEE. Naha, Japan,
2018, pp. 389–392.

[32] C. Farabet et al. “Learning hierarchical features for scene labeling”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 35.8 (2012), pp. 1915–
1929.

[33] D. FCiresan et al. “Deep neural networks segment neuronal membranes in
electron microscopy images”. In: Proceedings of the 2012 International Con-
ference on Field-Programmable Technology. Citeseer. Sierra Nevada, United
States, 2012, pp. 2843–2851.

[34] M. Forouzanfar, N. Forghani, and M. Teshnehlab. “Parameter optimization
of improved fuzzy c-means clustering algorithm for brain MR image seg-
mentation”. In: Engineering Applications of Artificial Intelligence 23.2 (2010),
pp. 160–168.

[35] M. Gamal, M. Siam, and M. Abdel-Razek. “Shuffleseg: Real-time semantic
segmentation network”. In: arXiv preprint arXiv:1803.03816 (2018).

[36] I. Golan and R. El-Yaniv. “Deep Anomaly Detection Using Geometric Trans-
formations”. In: Proceedings of the 2018 Conference on Neural Information
Processing Systems. Montréal, Canada, 2018, pp. 9781–9791.

[37] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

[38] S. Gould, R. Fulton, and D. Koller. “Decomposing a scene into geometric and
semantically consistent regions”. In: Proceedings of the 12th IEEE International
Conference on Computer Vision. IEEE. Kyoto, Japan, 2009, pp. 1–8.

122 Bibliography

[39] A. Graves. “Long short-term memory”. In: Proceedings of Supervised sequence
labelling with recurrent neural networks. Berlin, Heidelberg: Springer, 2012,
pp. 37–45.

[40] N. Guettari, A. S. Capelle-Laizé, and P. Carré. “Blind image steganalysis
based on evidential K-Nearest Neighbors”. In: Proceedings of the 2016 IEEE
International Conference on Image Processing. Phoenix, USA, 2016, pp. 2742–
2746.

[41] C. Guo et al. “On calibration of modern neural networks”. In: Proceedings
of the 34th International Conference on Machine Learning. Sydney, NSW,
Australia: JMLR.org, 2017, pp. 1321–1330.

[42] J. Guo et al. “CMT: Convolutional Neural Networks Meet Vision Transform-
ers”. In: arXiv preprint arXiv:2107.06263 (2021).

[43] K. Guo et al. “iFusion: Towards efficient intelligence fusion for deep learning
from real-time and heterogeneous data”. In: Information Fusion 51 (2019),
pp. 215–223.

[44] S. Gupta et al. “Learning rich features from RGB-D images for object detec-
tion and segmentation”. In: Proceedings of the 2014 European conference on
computer vision. Springer. Zurich, Switzerland, 2014, pp. 345–360.

[45] T. M. Ha. “The optimum class-selective rejection rule”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 19.6 (1997), pp. 608–615.

[46] X. Han et al. “FewRel: A large-scale supervised few-shot relation classification
dataset with state-of-the-art evaluation”. In: Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing. Punta Cana,
Dominican Republic, 2018, pp. 4803–4809.

[47] B. Hariharan et al. “Simultaneous detection and segmentation”. In: Proceed-
ings of the 2014 European conference on computer vision. Springer. Zurich,
Switzerland, 2014, pp. 297–312.

[48] K. He et al. “Deep residual learning for image recognition”. In: Proceedings of
the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las
Vegas, USA, 2016, pp. 770–778.

[49] N. Helal et al. “The capacitated vehicle routing problem with evidential de-
mands”. In: International Journal of Approximate Reasoning 95 (2018), pp. 124–
151.

[50] I. Hendrickx et al. “SemEval-2010 Task 8: Multi-Way Classification of Seman-
tic Relations between Pairs of Nominals”. In: Proceedings of the 5th Interna-
tional Workshop on Semantic Evaluation. Uppsala, Sweden, 2010, pp. 33–38.

[51] G. E. Hinton. “Deep belief networks”. In: Scholarpedia 4.5 (2009), p. 5947.

Bibliography 123

[52] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural
Computation 9.8 (1997), pp. 1735–1780.

[53] C. Hong et al. “Multimodal deep autoencoder for human pose recovery”. In:
IEEE Transactions on Image Processing 24.12 (2015), pp. 5659–5670.

[54] R. Hunger. Floating point operations in matrix-vector calculus. Munich Uni-
versity of Technology, Inst. for Circuit Theory and Signal, 2005.

[55] L. Hurwicz. “The generalized Bayes minimax principle: a criterion for decision
making under uncertainty”. Cowles Commission Discussion Paper 355. 1951.

[56] J.-Y. Jaffray. “Linear utility theory for belief functions”. In: Operations Re-
search Letters 8.2 (1989), pp. 107–112.

[57] H. Jiang et al. “Evidence fusion-based framework for condition evaluation of
complex electromechanical system in process industry”. In: Knowledge-Based
Systems 124 (2017), pp. 176–187.

[58] L. Jiao, Q. Pan, and X. Feng. “Multi-hypothesis nearest-neighbor classifier
based on class-conditional weighted distance metric”. In: Neurocomputing 151
(2015), pp. 1468–1476.

[59] L. Jiao et al. “Belief rule-based classification system: Extension of FRBCS in
belief functions framework”. In: Information Sciences 309 (2015), pp. 26–49.

[60] D. Karimi et al. “Deep learning with noisy labels: Exploring techniques and
remedies in medical image analysis”. In: Medical Image Analysis 65 (2020),
p. 101759.

[61] Y. Kim, H. Lee, and E. M. Provost. “Deep learning for robust feature gener-
ation in audiovisual emotion recognition”. In: Proceedings of the 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing. IEEE.
Vancouver, Canada, 2013, pp. 3687–3691.

[62] P. Krähenbühl and V. Koltun. “Efficient inference in fully connected CRFs
with gaussian edge potentials”. In: Proceedings of the 25th Annual Conference
of Advances in Neural Information Processing Systems. Granada, Spain, 2011,
pp. 109–117.

[63] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny
images. Tech. rep. University of Toronto, 2009.

[64] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet classification with
deep convolutional neural networks”. In: Proceedings of the 26th Annual Con-
ference on Neural Information Processing Systems. Nevada, United States,
2012, pp. 1097–1105.

[65] N. Kumar et al. “Attribute and simile classifiers for face verification”. In: Pro-
ceedings of the 12th International Conference on Computer Vision. IEEE.
Kyoto, Japan, 2009, pp. 365–372.

124 Bibliography

[66] A. L. Kun et al. “Human-machine interaction for vehicles: Review and out-
look”. In: Foundations and Trends® in Human–Computer Interaction 11.4
(2018), pp. 201–293.

[67] M. Lachaize et al. “Evidential framework for Error Correcting Output Code
classification”. In: Engineering Applications of Artificial Intelligence 73.0952-
1976 (2018), pp. 10–21.

[68] M. Lachaize et al. “SVM classifier fusion using belief functions: application to
hyperspectral data classification”. In: Proceedings of the 4th International Con-
ference on Belief Functions. Springer. Prague, Czech Republic, 2016, pp. 113–
122.

[69] Y. LeCun et al. “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[70] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. In: Nature 521.7553
(2015), pp. 436–444.

[71] Y. LeCun et al. “Backpropagation applied to handwritten zip code recogni-
tion”. In: Neural Computation 1.4 (1989), pp. 541–551.

[72] G. Li et al. “Standing-posture recognition in human-robot collaboration based
on deep learning and the Dempster-Shafer evidence theory”. In: Sensors 20.4
(2020), p. 1158.

[73] C. Lian, S. Ruan, and T. Denœux. “An evidential classifier based on feature se-
lection and two-step classification strategy”. In: Pattern Recognition 48 (2015),
pp. 2318–2327.

[74] M. Lin, Q. Chen, and S. Yan. “Network in network”. In: Proceedings of the
2014 International Conference on Learning Representations. Banff, Canada,
2014, pp. 1–10.

[75] X. Liu, Z. Deng, and Y. Yang. “Recent progress in semantic image segmenta-
tion”. In: Artificial Intelligence Review 52.2 (2019), pp. 1089–1106.

[76] Z. Liu et al. “Swin transformer: Hierarchical vision transformer using shifted
windows”. In: arXiv preprint arXiv:2103.14030 (2021).

[77] J. Long, E. Shelhamer, and T. Darrell. “Fully convolutional networks for se-
mantic segmentation”. In: Proceedings of the 28th IEEE Conference on Com-
puter Vision and Pattern Recognition. Boston, USA, 2015, pp. 3431–3440.

[78] K. G. Lore, A. Akintayo, and S. Sarkar. “LLNet: A deep autoencoder approach
to natural low-light image enhancement”. In: Pattern Recognition 61 (2017),
pp. 650–662.

[79] M. Lukasik et al. “Does label smoothing mitigate label noise?” In: Proceedings
of the 37th International Conference on Machine Learning. Vienna, Austria:
PMLR, 2020, pp. 6448–6458.

Bibliography 125

[80] H. Luo et al. “Urban change detection based on Dempster-Shafer theory for
multitemporal very high-resolution imagery”. In: Remote Sensing 10.7 (2018),
p. 980.

[81] Y. Luo et al. “Direction concentration learning: Enhancing congruency in ma-
chine learning”. In: IEEE Transactions on Pattern Analysis and Machine In-
telligence 43.6 (2019), pp. 1928–1946.

[82] L. Ma and T. Denœux. “Partial classification in the belief function framework”.
In: Knowledge-Based Systems 214 (2021), p. 106742.

[83] A. Meyer-Baese, A. Meyer-Baese, and V. J. Schmid. Pattern recognition and
signal analysis in medical imaging. Academic Press, 2004.

[84] T. Mikolov et al. “Extensions of recurrent neural network language model”.
In: Proceedings of the 2011 IEEE international conference on acoustics, speech
and signal processing. IEEE. Prague, Czech Republic, 2011, pp. 5528–5531.

[85] T. Mikolov et al. “Recurrent neural network based language model”. In: Pro-
ceedings of the 11th Annual Conference of the International Speech Commu-
nication Association. Makuhari, Japan, 2010.

[86] P. Minary et al. “Evidential joint calibration of binary SVM classifiers using
logistic regression”. In: Soft Computing 23.13 (2019), pp. 4655–4671.

[87] P. Minary et al. “Face pixel detection using evidential calibration and fusion”.
In: International Journal of Approximate Reasoning 91 (2017), pp. 202–215.

[88] A.-r. Mohamed, G. E. Dahl, and G. Hinton. “Acoustic modeling using deep
belief networks”. In: IEEE Transactions on Audio, Speech, and Language Pro-
cessing 20.1 (2011), pp. 14–22.

[89] T. Mortier et al. “Efficient set-valued prediction in multi-class classification”.
In: Data Mining and Knowledge Discovery 35 (2021), pp. 1435–1469.

[90] N. Natarajan et al. “Learning with noisy labels”. In: Proceedings of the 2013
Advances in Neural Information Processing Systems. Sierra Nevada, USA,
2013, pp. 1196–1204.

[91] H. T. Nguyen. An introduction to random sets. Chapman and Hall/CRC, 2006.

[92] L. D. Nguyen et al. “Deep CNNs for microscopic image classification by ex-
ploiting transfer learning and feature concatenation”. In: Proceedings of the
2018 IEEE International Symposium on Circuits and Systems. IEEE. Flo-
rence, Italy, 2018, pp. 1–5.

[93] M.-E. Nilsback and A. Zisserman. “Automated flower classification over a large
number of classes”. In: Proceedings of the 6th Indian Conference on Com-
puter Vision, Graphics & Image Processing. IEEE. Bhubaneswar, India, 2008,
pp. 722–729.

126 Bibliography

[94] F. Ning et al. “Toward automatic phenotyping of developing embryos from
videos”. In: IEEE Transactions on Image Processing 14.9 (2005), pp. 1360–
1371.

[95] H. Noh, S. Hong, and B. Han. “Learning deconvolution network for semantic
segmentation”. In: Proceedings of the 2015 IEEE International Conference on
Computer Vision. Santiago, Chile, 2015, pp. 1520–1528.

[96] M. O’Hagan. “Aggregating template or rule antecedents in real-time expert
systems with fuzzy set logic”. In: Proceedings of Twenty-Second Asilomar Con-
ference on Signals, Systems and Computers. Vol. 2. Pacific Grove, USA, 1988,
pp. 681–689.

[97] G. Pang et al. “Deep Learning for Anomaly Detection: A Review”. In: ACM
Computing Surveys 54.2 (2021), pp. 1–38.

[98] O. M. Parkhi et al. “Cats and Dogs”. In: Proceedings of the 2012 IEEE Confer-
ence on Computer Vision and Pattern Recognition. Rhode Island, USA: IEEE,
2012, pp. 3498–3505.

[99] F. Pichon, A.-L. Jousselme, and N. B. Abdallah. “Several shades of conflict”.
In: Fuzzy Sets and Systems 366 (2019), pp. 63–84.

[100] K. J. Piczak. “Environmental sound classification with convolutional neural
networks”. In: Proceedings of the 25th International Workshop on Machine
Learning for Signal Processing. IEEE. Boston, USA, 2015, pp. 1–6.

[101] P. Pinheiro and R. Collobert. “Recurrent convolutional neural networks for
scene labeling”. In: Proceedings of the 2014 International Conference on Ma-
chine Learning. PMLR. Bejing, China, 2014, pp. 82–90.

[102] B. Quost, M.-H. Masson, and T. Denœux. “Classifier fusion in the Dempster-
Shafer framework using optimized t-norm based combination rules”. In: Inter-
national Journal of Approximate Reasoning 52.3 (2011), pp. 353–374.

[103] A. Rame, R. Sun, and M. Cord. “MixMo: Mixing Multiple Inputs for Multiple
Outputs via Deep Subnetworks”. In: arXiv preprint arXiv:2103.06132 (2021).

[104] M. Ren et al. “Learning to Reweight Examples for Robust Deep Learning”.
In: Proceedings of the 35th International Conference on Machine Learning.
Vol. 80. Stockholm, Sweden: PMLR, 2018, pp. 4334–4343.

[105] T. Ridnik et al. ImageNet-21K Pretraining for the Masses. 2021. arXiv: 2104.
10972 [cs.CV].

[106] A. Romero et al. “Fitnets: Hints for thin deep nets”. In: Proceedings of the 3rd
International Conference on Learning Representations. San Diego, USA, 2015,
pp. 1–13.

https://arxiv.org/abs/2104.10972
https://arxiv.org/abs/2104.10972

Bibliography 127

[107] O. Ronneberger, P. Fischer, and T. Brox. “U-net: Convolutional networks
for biomedical image segmentation”. In: Proceedings of the 18th International
Conference on Medical Image Computing and Computer-Assisted Intervention.
Springer. Strasbourg, France, 2015, pp. 234–241.

[108] J. Salamon, C. Jacoby, and J. P. Bello. “A Dataset and Taxonomy for Urban
Sound Research”. In: Proceedings of the 22nd ACM International Conference
on Multimedia. New York, USA: Association for Computing Machinery, 2014,
pp. 1041–1044.

[109] H. Salehinejad, Z. Wang, and S. Valaee. “Ising Dropout with Node Grouping
for Training and Compression of Deep Neural Networks”. In: Proceedings of the
2019 IEEE Global Conference on Signal and Information Processing. Ottawa,
Canada, 2019, pp. 1–5.

[110] E. Sánchez-Nielsen, L. Antón-Canalís, and M. Hernández-Tejera. “Hand ges-
ture recognition for human-machine interaction”. In: Journal of WSCG 12
(2004), pp. 1–8.

[111] F. Scarselli et al. “Graph neural networks for ranking Web pages”. In: Pro-
ceedings of the 2005 IEEE/WIC/ACM International Conference on Web In-
telligence. Compiègne, France, 2005, pp. 666–672.

[112] F. Scarselli et al. “The graph neural network model”. In: IEEE Transactions
on Neural Networks 20.1 (2008), pp. 61–80.

[113] C. N. N. for Sentence Classification. “Convolutional Neural Networks for Sen-
tence Classification”. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing. Doha, Qatar, 2014, pp. 1746–1751.

[114] G. Shafer. A mathematical theory of evidence. Princeton: Princeton University
Press, 1976.

[115] R. Sibson. “SLINK: An optimally efficient algorithm for the single-link cluster
method”. In: The Computer Journal 16.1 (Jan. 1973), pp. 30–34.

[116] K. Simonyan and A. Zisserman. “Very deep convolutional networks for large-
scale image recognition”. In: Proceedings of the 3rd International Conference
on Learning Representations. San Diego, USA, 2015, pp. 1–14.

[117] P. Smets. “Constructing the pignistic probability function in a context of un-
certainty”. In: Proceedings of the 5th Uncertainty in Artificial Intelligence. Ed.
by M. Henrion et al. Amsterdam, Netherlands: North-Holland, 1990, pp. 29–
40.

[118] P. Smets. “Belief functions: the disjunctive rule of combination and the gener-
alized Bayesian theorem”. In: International Journal of Approximate Reasoning
9.1 (1993), pp. 1–35.

128 Bibliography

[119] R. Soua, A. Koesdwiady, and F. Karray. “Big-data-generated traffic flow pre-
diction using deep learning and dempster-shafer theory”. In: Proceedings of the
2016 International Joint Conference on Neural Networks. IEEE. Vancouver,
Canada, 2016, pp. 3195–3202.

[120] T. M. Strat. “Decision analysis using belief functions”. In: International Jour-
nal of Approximate Reasoning 4.5–6 (1990), pp. 391–417.

[121] R. Strudel et al. “Segmenter: Transformer for Semantic Segmentation”. In:
arXiv preprint arXiv:2105.05633 (2021).

[122] Z.-G. Su et al. “Evidential K-NN classification with enhanced performance
via optimizing a class of parametric conjunctive t-rules”. In: Knowledge-Based
Systems 142 (2018), pp. 7–16.

[123] H.-I. Suk and D. Shen. “Deep learning-based feature representation for AD/MCI
classification”. In: Proceedings of the 2013 International Conference on Med-
ical Image Computing and Computer-Assisted Intervention. Springer. Berlin,
Heidelberg, 2013, pp. 583–590.

[124] V Suma. “Computer vision for human-machine interaction-review”. In: Journal
of Trends in Computer Science and Smart Technology 1.02 (2019), pp. 131–
139.

[125] K. Suzuki. “Overview of deep learning in medical imaging”. In: Radiological
Physics and Technology 10.3 (2017), pp. 257–273.

[126] P. Thodoroff, J. Pineau, and A. Lim. “Learning robust features using deep
learning for automatic seizure detection”. In: Proceedings of the 2016 Machine
Learning for Healthcare Conference. PMLR. Durham, USA, 2016, pp. 178–190.

[127] Z. Tian et al. “Deep learning and Dempster-Shafer theory Based insider threat
detection”. In: Mobile Networks and Applications (2020), pp. 1–10.

[128] J. Tighe and S. Lazebnik. “Superparsing: scalable nonparametric image pars-
ing with superpixels”. In: Proceedings of the 2010 European conference on
Computer Vision. Springer. Berlin, Heidelberg, 2010, pp. 352–365.

[129] Z. Tong, P. Xu, and T. Denœux. “An evidential classifier based on Dempster-
Shafer theory and deep learning”. In: Neurocomputing 450 (2021), pp. 275–
293.

[130] Z. Tong, P. Xu, and T. Denœux. “ConvNet and Dempster-Shafer Theory for
Object Recognition”. In: Processing of the 13th International Conference on
Scalable Uncertainty Management. Compiègne, France: Springer International
Publishing, 2019, pp. 368–381.

[131] Z. Tong, P. Xu, and T. Denœux. “Evidential fully convolutional network for
semantic segmentation”. In: Applied Intelligence 51 (2021), pp. 6376–6399.

Bibliography 129

[132] Z. Tong, P. Xu, and T. Denœux. “Fusion of evidential CNN classifiers for
image classification”. In: Proceedings of the 6th International Conference on
Belief Functions. Springer. Shanghai, China, 2021, pp. 168–176.

[133] C.-H. Tseng et al. “UPANets: Learning from the Universal Pixel Attention
Networks”. In: arXiv preprint arXiv:2103.08640 (2021).

[134] J. Vandoni, E. Aldea, and S. Le Hégarat-Mascle. “An evidential framework for
pedestrian detection in high-density crowds”. In: Proceedings of the 14th IEEE
International Conference on Advanced Video and Signal Based Surveillance
(AVSS). Lecce, Italy, 2017, pp. 1–6.

[135] J. Vandoni, S. L. Hégarat-Mascle, and E. Aldea. “Augmenting deep learn-
ing performance in an evidential multiple classifier system”. In: Sensors 19.21
(2019), p. 4664.

[136] A. Vaswani et al. “Attention is all you need”. In: Proceedings of the 31st Con-
ference on Neural Information Processing Systems. Long Beach, USA, 2017,
pp. 5998–6008.

[137] F. Voorbraak. “A computationally efficient approximation of Dempster-Shafer
theory”. In: International Journal of Man-Machine Studies 30.5 (1989), pp. 525–
536.

[138] P. Walley. “Statistical reasoning with imprecise probabilities”. In: Journal of
the American Statistical Association 88.422 (1993), pp. 700–703.

[139] J. H. Ward Jr. “Hierarchical grouping to optimize an objective function”. In:
Journal of the American Statistical Association 58.301 (1963), pp. 236–244.

[140] Q. Wei, N. Dobigeon, and J.-Y. Tourneret. “Bayesian fusion of multi-band
images”. In: IEEE Journal of Selected Topics in Signal Processing 9.6 (2015),
pp. 1117–1127.

[141] P. Welinder et al. Caltech-UCSD Birds 200. Tech. rep. CNS-TR-2010-001.
California Institute of Technology, 2010.

[142] T. Wolf et al. “Transformers: State-of-the-art natural language processing”. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. Online, 2020, pp. 38–45.

[143] S. Xie et al. “Aggregated residual transformations for deep neural networks”.
In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern
Recognition. Honolulu, USA: IEEE, 2017, pp. 1492–1500.

[144] J. Xu et al. “Understanding and Improving Layer Normalization”. In: Pro-
ceedings of the 2019 Conference on Neural Information Processing Systems.
Vol. 32. Vancouver, Canada: Curran Associates, Inc., 2019, pp. 1–11.

[145] P. Xu. “Information fusion for scene understanding”. PhD thesis. Université
de Technologie de Compiègne, 2014.

130 Bibliography

[146] P. Xu et al. “Multimodal information fusion for urban scene understanding”.
In: Machine Vision and Applications 27.3 (2016), pp. 331–349.

[147] Q. Xu, C. Zhang, and B. Sun. “Emotion recognition model based on the
Dempster-Shafer evidence theory”. In: Journal of Electronic Imaging 29.2
(2020), p. 023018.

[148] R. R. Yager. “On ordered weighted averaging aggregation operators in multi-
criteria decision-making”. In: IEEE Transactions on Systems, Man, and Cy-
bernetics 18.1 (1988), pp. 183–190.

[149] R. R. Yager and L. Liu. Classic works of the Dempster-Shafer theory of belief
functions. Vol. 219. Berlin, Heidelberg: Springer, 2008.

[150] X. Yi, E. Walia, and P. Babyn. “Generative adversarial network in medical
imaging: A review”. In: Medical Image Analysis 58 (2019), p. 101552.

[151] Y. Yoon et al. “Learning a deep convolutional network for light-field image
super-resolution”. In: Proceedings of the 2015 IEEE International Conference
on Computer Vision Workshops. Santiago, Chile, 2015, pp. 24–32.

[152] L. A. Zadeh. “Fuzzy sets as a basis for a theory of possibility”. In: Fuzzy Sets
and Systems 1.1 (1978), pp. 3–28.

[153] M. D. Zeiler and R. Fergus. “Stochastic pooling for regularization of deep
convolutional neural networks”. In: Proceedings of the 1st International Con-
ference on Learning Representations. Scottsdale, USA, 2013, pp. 1–10.

[154] D. Zeng et al. “Relation classification via convolutional deep neural network”.
In: Proceedings of the 25th International Conference on Computational Lin-
guistics. Dublin, Ireland, 2014, pp. 2335–2344.

[155] S. Zheng et al. “Rethinking semantic segmentation from a sequence-to-sequence
perspective with transformers”. In: Proceedings of the 2021 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. Online, 2021, pp. 6881–
6890.

[156] B. Zhou et al. “Semantic understanding of scenes through the ADE20k dataset”.
In: International Journal of Computer Vision 127 (2019), pp. 302–321.

	Abstract
	Acknowledgements
	List of Publications
	List of Figures
	List of Tables
	Acronyms & notations
	Introduction
	I Background
	Dempster-Shafer theory
	Information representation
	Mass function
	Discounting

	Operations of belief functions
	Dempster's rule
	Change of frame of discernment

	Decision-making with belief functions
	Precise decision with belief functions
	Imprecise decision with belief functions

	Evidential neural network based on Dempster-Shafer theory
	Conclusion

	Deep neural networks
	Convolution neural network
	Convolution operation and its motivation
	Pooling operation
	Data types
	Efficient modern variants of convolutional neural networks

	Fully convolutional networks
	Overall architecture of fully convolutional network
	Upsampling operations
	Variants of fully convolution networks

	Conclusion

	II Evidential deep neural networks
	Evidential convolutional neural network classifier
	Evidential CNN classifier
	Network architecture
	Learning
	Act selection

	Experimental evaluation
	Evaluation metrics
	Image classification experiment
	Signal classification experiment
	Semantic-relationship classification experiment

	Conclusion

	Evidential fully convolutional network
	Evidential FCN model
	Network architecture
	Learning with soft labels

	Experimental evaluation
	Datasets
	Evaluation metrics
	Precise segmentation results
	Imprecise segmentation results
	Novelty detection results

	Conclusion

	Evidential fusion of heterogeneous deep neural networks
	Introduction
	Fusion approach
	Evidential fusion approach
	Learning with soft labels

	Experiments on multi-model fusion
	Image-classification experiment #1
	Image-classification experiment #2
	Semantic-segmentation experiment #1
	Semantic-segmentation experiment #2

	Experiments on training shallow networks for complex tasks
	Experiment on the Tiny ImageNet dataset
	Experiment on the Cityscapes dataset

	Conclusion

	Conclusions and perspectives
	Appendix: gradient calculation in evidential neural network
	Bibliography

