
Construction and Building Materials 352 (2022) 129067

Available online 8 September 2022
0950-0618/© 2022 Elsevier Ltd. All rights reserved.

Novel Computer Tomography image enhancement deep neural networks 
for asphalt mixtures 

Handuo Yang a, Ju Huyan a,*, Tao Ma a, Zheng Tong a, Chengjia Han a, Tianyan Xie b 

a School of Transportation, Southeast University, 2# Southeast University Road, Jiangning District, Nanjing 211189, China 
b School of foreign Language, Nanjing University, 163# Xianlin Avenue, Qixia District, Nanjing 210023, China   

A R T I C L E  I N F O   

Keywords: 
Asphalt mixture 
CT image enhancement 
Deep learning 
Semantic feature 
Multiple tasks 

A B S T R A C T   

This paper aims to solve two significant problems observed in Computer Tomography(CT) asphalt mixture im
ages, which are 1) low-quality CT image, and 2) low efficiency, by intelligent word embedding methods. The first 
model is called Asphalt Mixture CT Image Enhancement Network (AMCTEN), which is featured by ignoring the 
semantic loss, while the second model, AMCTEN+, is feature by considering semantic loss without requiring 
semantic information. Two models can be integrated to realize end-to-end real-application image enhancement. 
Experimental results show that peak signal to noise ratio of AMCTEN and AMCTEN + in the test set increased by 
79.0 % and 66.4 %, structural similarity increased by 15.1 % and 13.3 %, and mean square error decreased by 
97.5 % and 95.3 %, respectively. Analysis of semantic feature spaces generated by the two models indicate that 
word embedding can construct an effective semantic feature space, fusing the semantic features with image 
features can improve the image quality, and the proposed model has superiority in multiple image enhancement 
tasks.   

1. Introduction 

With the increased emphasize on green roads, green technologies, 
and sustainable development on transportation systems, researches on 
new technologies towards pavements, such as recycled pavement [1,2], 
drainage pavement[3,4], intelligent pavement detection technology 
[4,5] and intelligent compaction technologies have attracted the 
attention. As a kind of flexible pavement, the internal structure of 
asphalt mixture, such as gradation [6] and the homogeneity property of 
coarse aggregate skeleton [7] has important influence on the road per
formance. In order to improve the road performance of the pavement, 
the low-temperature cracking, fatigue cracking, rutting resistance and 
creep properties of asphalt pavements have been carried out over the 
last decades from the perspective of internal structure of the pavement 
[8,9]. 

Image technology, numerical simulation and sensor technology are 
the main methods for researchers to explore the internal structure of 
asphalt mixture. Image technology extracts internal structure informa
tion directly from asphalt mixture images [10], based on which to 
analyze the relationship between the internal structure and the control 
variables [11–15]. Huang et al. extracted the main axis direction of the 

aggregate and the distance between layers from the image to evaluate 
the migration characteristics of porous asphalt concrete particle aggre
gates [16]. The research on the internal structure of asphalt mixture is 
also reflected in the numerical simulation [17]. Chen et al. reconstructed 
the three-dimensional structure of asphalt mixture voids and used it as a 
simulation input [18]. Du et al. established a local mean value model of 
asphalt mixture in combination with finite element. The proposed model 
considers both the global-scale pavement structure information and the 
local-scale internal structure information of the asphalt mixture [19]. 
With the help of sensors to detect internal structure response, it can 
reflect the impact of internal structure on road performance. Dan et al. 
used the Smart Rock sensor to obtain the internal stress during the 
compaction process to reflect the degree of compaction of the material 
[20]. Fu et al. used acoustic emission technology to detect internal 
damage during the loading process of asphalt mixtures, and studied the 
effects of freeze–thaw cycles and aging effects on damage [21]. Image 
technology is favored by more researchers due to its intuitiveness, 
convenience and easy access. However, image can only reflect the sur
face characteristic of the testing sample. To obtain more internal 
structure information, it is often necessary to further cut and photograph 
the sample. This method destroys the original sample and cannot 
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achieve a high degree of three-dimensional restoration. Therefore, it is 
necessary to provide a non-destructive testing method to restore and 
three-dimensional reconstruction of the internal structure. 

Computer Tomography (CT) technology, as a nondestructive testing 
technology, has been widely used for asphalt mixture analysis and 
achieved successful applications [22–24]. Cui et al. used CT technology 
to analyze the moisture damage mechanism, and pointed out the in
fluence of water pressure on the degree of moisture damage [25]. When 
Xu et al. used CT technology to demonstrate the evolution of the internal 
structure of the asphalt mixture, and pointed out the main manifesta
tions of the diversification of the internal structure [26]. Li et al. used CT 
to investigate and observe the internal structure changes of asphalt 
mixture during rotary compaction [27]. Li et al. also used CT imaging 
technology to determine the direction of the aggregate, the number of 
aggregate contact points, the void distribution and the void shape index 
[28]. In order to obtain the internal structure information, the re
searchers also combined a large number of digital image processing 
techniques to repair, segment and detect the edges of CT images [29]. By 
adding perlite powder, Wei, JJ et al. realizing the improvement of image 
segmentation accuracy from the perspective of asphalt mixture mate
rials [30]. Zhang et al. used the ring block OTSU method to study the 
void distribution characteristics of asphalt mixture in combination with 
non-destructive testing technology [31]. Hu et al. used the same ring 
segmentation method to study the three-dimensional voids of asphalt 
mixtures [32]. Huang et al. used an improved morphological algorithm 
to segment the adhering parts of aggregates in asphalt mixtures [33]. 
Xing et al. accurately and effectively extracted the gradation informa
tion of AC, SMA and OGFC from CT images [34]. The use of traditional 
image processing methods for CT image processing requires a series of 
processing procedures and cumbersome threshold determination, which 
is a significant disadvantage when dealing with big datasets, for which 
the efficiency usually significant decreased. In addition, traditional step- 
by-step processing methods usually have their own problems, such as 
local threshold segmentation has the incoherence problem between the 
local and the local. This indicates that more convenient and accurate 
image processing solution is required. 

With the rise of deep learning technology, researchers have turned to 
the application of DL technologies in asphalt mixture images analysis 
with the objective of obtaining more comprehensive information from 
the images, thus making the analysis more intelligent [35–37]. Jiang 
et al. used the convolutional neural network to classify the CT scan 
images of asphalt mixtures, and realized the automatic recognition of 
different types of asphalt mixtures [37]. Aiming at the voids segmen
tation problem of CT images of asphalt mixture, Enriquez-Leon et al. 
compared various image segmentation techniques including deep 
learning. The results showed that machine learning and deep learning 
segmentation results are accurate [38]. These studies have made sig
nificant contributions to the intelligent classification and segmentation 
of asphalt mixture CT images. However those solutions are usually based 

on traditional image enhancement methods when the quality of the 
image cannot meet the requirement [39,40], for example, Non-Local 
Network [41], DnCNN, and MWCNN [42]. This provides a new idea 
for researchers to solve the CT image enhancement problem of asphalt 
mixture. As the first step of image processing, image preprocessing plays 
a vital role in subsequent image processing and the correct character
ization of the internal structure of the aggregate. 

Therefore, an efficient, accurate, time-saving and laborsaving 
method is needed to improve the quality of CT images of asphalt mix
tures. This research developed two models to solve the above-mentioned 
problems about CT image of asphalt mixture. Specifically, the first 
model, Asphalt Mixture CT Image Enhancement Network (AMCTEN), 
pays more attention to the improvement of repair quality, while the 
second model, AMCTEN+, is focused on the reduction of processing 
workload. The CT image data set of high-quality asphalt mixture are 
obtained by scanning samples in multiple angles and directions, by 
which the image restoration data set is constructed. Experimental results 
prove that AMCTEN can recognize semantic information, while 
AMCTEN + can automatically recognizes semantic information. The 
results of CT image enhancement of asphalt mixture were verified by 
Peak signal to noise ratio (PSNR), Structural similarity (SSIM), and mean 
square error (MSE) indicators. The results show that the model proposed 
in this study outperforms popular algorithms such as FCN. 

2. Problem statement 

2.1. CT scanning related problems 

Generally, the difference between density components of asphalt 
mixtures, such as the voids, mortar and aggregates, are reflected by 
different brightness in the CT images. To this point, there are two key 
prerequisites for obtaining reliable results based on CT images, which 
are 1) being able to obtain high-precision images, and 2) work on multi- 
sourced images. 

To date, the main obstacle of CT based asphalt mixture analysis is the 
low-quality phenomenon of, which are usually reflected in the following 
two aspects: 

1. Variation in radiation sources related quality decrease. If the in
tensity of radiation does not match the mixture density, the captured 
asphalt mixture image becomes extremely dark or bright; and the 
noise generated in the process of imaging and transmission makes 
the image not smooth enough and reduces the image edge quality; 
the insufficient intensity of the ray can also bring the problem of 
blurred image and low image quality. Brightness, clarity, and noise 
issues will adversely affect subsequent analysis and calculations. As 
shown in Fig. 1, radiographic imaging quality of different intensities 
vary significantly. Insufficient radiographic intensity produces a 

Fig. 1. CT image comparison under different intensity rays.  
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large amount of image noise, and image blurring leads to insufficient 
differentiation of internal noise and boundary.  

2. Over thick sample with insufficient radiation source related quality 
decrease. In order to characterize the pavement structure, asphalt 
mixture specimens are often large in size, such as standard rutting 

specimens (300 mm × 300 mm × 50 mm), core specimens with a 
diameter greater than 100 mm. These large-size samples can also 
cause poor-quality images due to insufficient ray intensity, and im
ages with sufficient sharpness and detailed information cannot be 
obtained. The scanning picture of core sample of pavement structure 

Fig. 2. Circumferential image quality of asphalt mixture samples.  

Fig. 3. Image quality in the height direction of asphalt mixture samples.  
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with a diameter of 150 mm is shown in the Fig. 2. As can be seen from 
the Fig. 2, a large amount of edge information is lost due to the 
thickness of the sample and the insufficient radiation. In addition, 
slice images located at different heights can also have different im
aging quality, as shown in the Fig. 3. It can be seen that the areas 
with large grayscale changes in the image indicate that the upper and 
lower ends of the sample contain more grayscale information. 

In addition, in Fig. 3, the distinguishability of the bottom image 
aggregate is significantly better than the image information collected 
from the middle of the light. The above two situations reflect the law of 
attenuation from the outside to the inside of the asphalt mixture spec
imen. The reason for this phenomenon is that the material close to the 
outside becomes more easily penetrated due to the reduced distance of 
radiation penetration. In addition, the closer to the upper and lower 
ends, the greater the void content of the specimen it is. And therefore, 
the easier it is to be penetrated by rays. However, there are still valid 
information of internal structure in the image, so it is necessary to 
provide an appropriate image enhancement scheme to solve this 
problem. 

In the solution of CT image enhancement of asphalt mixture, most 
researchers adopt the traditional image enhancement method. These 
enhancement methods usually include a series of operation procedures, 
each of which also requires the selection of processing thresholds. Such 
as the use of histogram equalization, brightness adjustment and filter 
filtering for image enhancement in the research of CT scan image of 
asphalt mixture damage [43]. In addition, noise reduction such as me
dian filtering [18] and Gaussian filtering [44] have also been widely 
adopted. Furthermore, based on the local information of the image, 
some studies have used fuzzy mathematics to denoise the CT images. 
These image enhancement schemes can only meet single-stage image 
enhancement and reasonable threshold selection is required. In other 
words, they cannot meet the requirement of enhancing multiple number 

of images by one single model. Therefore, there is an urgent demand of 
developing more effective and flexible solutions. 

Intuitively, another way of improving the quality of CT images is to 
increase the intensity of scanning radiation source. As has been 
mentioned, sufficient radiation intensity is often required to obtain 
higher quality CT images. However, increasing the intensity of the ra
diation means higher experimental costs, which makes it difficult to 
carry out a large number of comparative experiments. Therefore, 
extensive studies on how to perform CT scans with low-intensity rays to 
obtain high-quality CT images is of great significance for reducing 
experimental costs. 

In the field of medical image, convolutional autoencoder has been 
used for medical CT image denoising [45]. The residual encoder- 
decoder convolutional neural network is also used to perform the 
noise reduction process of CT images, and achieves a better noise 
reduction effect [15]. In addition, there are also studies that combine 
adversarial training to obtain image noise reduction models, in which 
the discriminator provides additional adversarial loss and the generator 
serves as the final noise reduction model [46]. Nevertheless, the char
acteristics of asphalt mixture CT images are very different from those of 
medical CT images, so the corresponding networks cannot be used 
directly. Moreover, most image enhancement only addresses the prob
lem of image noise, but CT images of asphalt mixture also face problems 
such as blur and brightness discomfort. 

In order to improve the imaging quality of CT images and reduce the 
cost of CT scanning, this paper proposes two adaptive image enhance
ment models combined with deep learning technology. Both models 
take into account image features and enhanced semantic features to 
achieve end-to-end image enhancement. To achieve high quality image 
enhancement, a model without semantic loss has been developed, which 
can achieve lossless embedding of semantic features. In order to achieve 
high flexibility of being able to adapt to different situations in real ap
plications, a model with semantic loss was developed. This model can 

Fig. 4. AMCTEN network architecture.  
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automatically select the enhancement scheme only by inputting images 
under the premise of losing some enhancement quality, which makes the 
processing more convenient. 

2.2. Characteristics of asphalt mixture CT image 

Unlike ordinary cameras that use light-sensitive components for 
imaging, CT equipment combines the principle of different ray attenu
ation of objects with different densities and the back projection method 
for image acquisition. The definition is expressed as follows: 

I = I0e− μx (1)  

where, I is the outgoing intensity, I0 is the incident intensity, and X is the 
traveling distance of ray. In this special image acquisition process, the 
image quality degradation comes from the tube current dissipation ef
fect, the image transmission process and the electron beam intensity 
matching issues. For CT scanning of asphalt mixture, multiple images 
can be extracted from scanning a specimen, which are mainly gray scale 
images. Due to the different thickness of radiographic projection, the 
images at different positions of the same specimen have different 

degrees of quality degradation. 

3. Methodology 

In order to enhance the asphalt mixture industry CT imaging quality, 
this paper proposes a CT image enhancement scheme based on fusion of 
semantic information. In the study, two kinds of information are pro
vided for the training process of the model, which is semantic infor
mation and image information respectively. For the image information, 
it is the CT image of the asphalt mixture. On the other hand, semantic 
information indicates how the image needs to be repaired. Firstly, the 
original images of asphalt mixture with their semantic information is 
used as the input. Image features and semantic features are fused by 
several parallel Mini Convolution Auto Encoder (MiniCAE) modules. In 
this way, the model can adjust the image automatically according to the 
selected enhancement scheme. Furthermore, a new model has been 
provided. The new model can automatically recognize enhanced se
mantics information through the Word Pred block. This paper named 
first model as Asphalt Mixture CT Image Enhancement Network 
(AMCTEN), The second model as its plus version (AMCTEN + ). The first 
model aims to deal with the situation when semantic information is 
available, and when a lot of processing is required and semantic infor
mation is difficult to provide, the second model shows its value. 

3.1. AMCTEN architecture 

The structure AMCTEN is shown in Fig. 4. Feature Pyramid Networks 
(FPN) structure is selected as the image feature extraction network to 
obtain the feature maps of four sizes. Each unit consists of two 

Fig. 5. AMCTEN + network architecture.  

Table 1 
Corruption strategies and corruption parameters.  

Corruption Strategies Corruption Parameters 

Add noise (Gaussian) μ = [0.1, 0.2]
Blur image (Gaussian) δ = [3, 3.1]
Lighten(Gamma transform) γ = [0.4,0.1)
Darken(Gamma transform) γ = (1,2.5]
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convolutional layers and a max pooling layer, the convolutional layer 
convolution kernel size is 3 × 3, and the pooling layer convolution 
kernel size is 2 × 2. which is to maximize the information of input image 
features. 

As can be seen from the architecture of AMCTEN, word embedding 
block is constructed to embed semantic features. Each semantic is rep
resented as a 72-length vector. For the word embedding structure, first, 
11 kinds of semantic information are compiled into vectors of length 72 
through the embedding layer, and then through the fully connected 
layer, combined with Reshape to increase the dimension, then through 
one-dimensional convolution, and finally through the Reshpe layer to 
obtain the feature map of word vectors. After that, a 72 × 72 × 1 se
mantic information feature map was obtained through a series of coding 
and dimension transformation. Several Mini CAE blocks are used in 
parallelly as the multi-scale feature fusion structure. Mini CAE is a 
smaller version of CAE, consisting of three convolutional layers, one 
downsampling layer and one upsampling layer. The outputs of multi- 
scale features are fused again with the image information extracted by 
FPN to obtain the final output result. These are implemented by a 
convolution with an output channel of 1. The corresponding Upsampling 
block in the AMCTEN has 8 inputs and 8 outputs. Different inputs 
correspond to different upsampling scales, but the output has the same 
size. These are determined by the convolution kernel size of the 
upsampling layer. The convolution kernel length and width used in this 
study is 2 × 2, 4 × 4, 8 × 8 and 16 × 16. 

3.2. AMCTEN + architecture 

The architecture of AMCTEN + is shown in Fig. 5. The main 
framework of the model is the same as AMCTEN. The main difference is 
that this model uses Word Pred block to learn semantic information from 
the image. Intuitively, the semantic information of the image used as the 
input of Word Embedding block for subsequent feature processing. The 
main feature of this model is that it only requires for original CT image 
as the input, without adding additional semantic information, to get the 
final processing results. It should be mentioned that even though less 
information in requited, this approach also introduces some semantic 
learning errors. As output features, semantic features are processed as 
11- dimensional One-Hot vectors, which are smoothed. Word Pred block 
achieves fast image dimensionality reduction and output of multi- 

classification results through a series of convolutions that control the 
step size. Through the Word Pred block method provided in this article, 
AMCTEN + only adds 10,000 to 20,000 parameters on the basis of 
AMCTEN, and achieves a higher accuracy. In addition, the parameters of 
the neural network in this study are obtained by the summary attribute 
of the instantiated network, which can display the total parameters of 
the neural network structure. 

3.3. Training procedure 

The operating system used in this experiment is Ubuntu 18.04.5. The 
model relies on TensorFlow 2.7.0. The GPU is GeForce RTX 3090. CPU 
version used in this research is Intel(R) Xeon(R) Gold 6226R CPU @ 
2.90 GHz, with the Memory of 128G. 

The optimization strategy is Adam when training models. The 
learning rate is 0.0001. Batch size is 8. A total of 20 epochs were trained. 

3.3.1. Loss function 
The loss function used in the training of AMCTEN is expressed in Eq. 

(2). 

L =
1
N

∑

i
Li =

1
N

∑

i
− [yilog(pi) + (1 − yi)log(1 − pi) ] (2) 

where yi represents the label of sample i. If sample i belongs to the 
positive class, thenyi = 1, otherwiseyi = 0. pi represents the probability tt 
sample i is predicted to be a positive class; N represents the total number 
of samples. 

For multiple categories, the categorical cross entropy as shown in 
Equation (3) has been used in to train the model. 

L =
1
N
∑

i
Li = −

1
N
∑

i

∑M

c=1
yiclog(Pic) (3) 

where yic represents the true classification of sample i. If the true type 
of sample i is equal to c, take 1, otherwise take 0; pic represents the 
probability that sample i is predicted to be c; M represents the number of 
classifications. 

3.3.2. Evaluation metric 
In order to evaluate the CT image enhancement effect of asphalt 

Fig. 6. Damaged image generation process.  
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mixture, this study selected Peak signal to noise ratio (PSNR), Structural 
similarity (SSIM), and mean square error (MSE) to assess the models. 
Each calculation metric is defined as follows: 

MSE = −
i

mm
∑m− 1

mn

∑n− 1

i=0
hx(i, j) − Y(i, j)h2 (4) 

where, X and Y represent the two images to be compared. 

PSNR = 10⋅log10

(
MAX2

X

MSE

)

= 20⋅log10

(
MAXX
̅̅̅̅̅̅̅̅̅̅
MSE

√

)

(5) 

where, MAXX represents the largest gray value in the image. In this 
study, the value is 255. 

SSIM index consists three different items each represents one aspect 
of the processed image, which are luminance L(X,Y), contrast C(X,Y) and 
structure S(X,Y). As shown in Eqs. (6)–(8). 

L(X,Y) =
2μXμY + C1

μ2
X + μ2

Y + C1
(6)  

C(X,Y) =
2σXσY + C2

σ2
X + σ2

Y + C2
(7)  

S(X, Y) =
σXY + C3

σXσY + C3
(8) 

where, μX and μY denote the mean values of images X and Y 
respectively; σX and σY represent the standard deviation of images X and 
Y respectively. σ2

X and σ2
Y represent the variance of images X and Y 

respectively. C1, C2 and C3 are constants. Furthermore, the SSIM can be 
calculated by Eq. (9). 

SSIM(X,Y) = L(X, Y)*C(X, Y)*S(X,Y) (9)  

3.4. Dataset 

Our dataset contains 6500 CT slice images. These images are selected 
from AC13, AC16 and AC20 graded asphalt mixtures, where the asphalt 
is base bitumen and the aggregate is limestone. These images were cut 
from original CT images of 516 pixels by 516 pixels. Each slice image is 
144 pixels by 144 pixels for computational resource reasons. The ratio 
between training set, verification set and test set is 12:3:1. 

In order to obtain low-quality CT images, this research randomly 
damage the original image by adding noise, blurring the image and 
adjusting brightness. The degree of adjustment is determined randomly. 
Gaussian additive noise is used for the addition of noise, and its formula 
is described as Eq. (10). 

Fig. 7. CT image of asphalt mixture damaged by different strategies.  
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Fig. 8. The performance of training set and verification set in the training process. (a) Training set loss curve; (b) Training set PSNR curve; (c) Validation set loss 
curve;(d) Validation set PSNR curve. 

Fig. 9. PCA results. (a) Two times trained AMCTEN + model; (b) Twenty times trained AMCTEN+; (c) Zoomed in boxed information of b; (d) Twenty times 
trained AMCTEN. 

Table 2 
Evaluation of performance indicators for different models in test sets.  

Model Total params PSNR SSIM MSE 

Value(dB) Increase rate (%) Value Increase rate (%) Value Decrease rate (%) 

CAE 928,693  25.5  41.9  0.706  − 8.7  234.4  89.3 
FCN 614,475  27.9  55.7  0.793  2.6  150.2  93.1 
AMCTEN 460,617  32.1  79.0  0.890  15.1  54.3  97.5 
AMCTEN+ 477,417  29.9  66.4  0.876  13.3  102.8  95.3 
Damaged images –  17.9  0.0  0.773  0.0  2190.2  0.0  
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F(x, y) = f (x, y)+ (m+N*σ) (10) 

where, N represents random numbers with Gaussian properties, m 
and σ mean gaussian distribution mean and variance, f means original 
image, F means the Image after adding noise. 

Parameters related to damaged images are shown in the Table 1. 
In the table, μ represents the mean value of Gaussian noise, σ rep

resents the variance of Gaussian fuzzy filter, and γ represents the 
parameter of Gamma transform. 

As shown in Fig. 6, this research has divided corruption strategies 
into the following 11 categories: noise, blur, dark, light, blur-dark, blur- 
light, noise-blur, noise-dark, noise-light, noise-blur-dark, noise-blur- 
light. 

The processing results are shown in Fig. 7. Considering that the 
combination of brightening and darkening is equivalent to one or the 
other, this research ignore the strategy containing both brightening and 
darkening. In order to expand the dataset, the above 11 transformations 
for each image in the dataset has been performed. After transformation, 
52,800 images form the final training set. 

4. Experiments and analysis 

In this study, Fully Convolutional Network (FCN) and Convolution 
Auto Encoder (CAE) models were used as the control group (without 
considering the input and output of semantic characteristics). Mean
while, PSNR was selected as the evaluation index of the enhanced 
quality of asphalt mixture CT image. The performance is shown in the 
Fig. 8. 

In general, AMCTEN has the best convergence effect and perfor
mance in both training and validation data sets, and AMCTEN + is the 
second. This shows that considering semantic information simulta
neously can improve the model’s ability to handle multiple image 
enhancement tasks. In addition, AMCTEN performs better than 
AMCTEN +. This is because AMCTEN semantic information is directly 
input, whereas AMCTEN + is trained. The semantic classification ac
curacy of AMCTEN + verification set is about 0.9, indicating that the 
semantic information generated by AMCTEN + contains a little noise. 
This semantic noise causes performance degradation of AMCTEN +. 

To further analyze the semantic features, the word vectors generated 
by the two models are extracted. Through principal component analysis 
(PCA), the first principal component and the second principal 

Fig. 10. The evaluation of each model in different image enhancement tasks in the test set.  
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Fig. 11. Output effects of different image enhancement tasks under different models.  
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component are obtained of the embedded matrix. 
In Fig. 9, three points of different sizes are used to represent different 

types of semantic features. Specially, the largest points represent single 
semantic feature, such as noise; the medium points represent double 
semantic features, such as noise-blur; and the smallest points represents 
multiple semantic features, such as a mixture of noise-blur-light. Fig. 9 
(a) to (c) are the features of AMCTEN + embedding layer, and Figure (d) 
is the features of AMCTEN embedding layer. Observing Fig. 9(a) and (b), 
scattered semantic features gradually form specific semantic space with 
the progress of training. Therefore, the spatial structure of this model 
takes the correlation between different image enhancement tasks into 
account so that the final model can flexibly adapt to different image 
enhancement tasks with satisfactory performance. 

Comparing Fig. 9 (b) to (d), it can be observed that the semantic 
feature distribution of the two models is different. There are two reasons 
for this. The first reason is that even for the same model, gradient 
descent does not converge to the same local optimal solution every time, 
which makes the embedding matrix different. The second reason is that 
the semantic feature input of AMCTEN + is obtained through training, 
which makes the semantic feature input noisy. The network corrects the 
embedding matrix to improve the image output quality. 

However, even though the semantic features have different distri
butions, semantic features still reflect a certain degree of similarity. 
Semantic feature pairs such as (noise, noise-blur), (light, blur light) and 
(noise light, noise blur light) show similar proximity both in AMCTEN 
and AMCTEN +. Semantic features of the same level are separated from 
each other, and semantic features of different levels contain adjacent 
relations. This shows that word embedding can better reflect the inter
relation between semantics than the embedding with One-hot encoding 
directly. 

As shown in Table 2, the test results of the models are compared with 
two widely use models, which are CAE and FCN. Performance indicators 
include PSNR, SSIM, and MSE. 

The increase or decrease rate of each indicator in the table describes 
the change rate of the output with respect to the damaged image. 

The table shows that all the four models have improved the quality of 
CT image of asphalt mixture to some extent. The SSIM of CAE model was 
decreased. The reason is that CAE uses full convolutional connections 
which fails to consider the detailed features of the shallow feature maps, 
resulting in a loss of details. On the test set, the principle of AMCTEN >

AMCTEN+> FCN > CAE can be obviously observed. For example, PSNR 
has increased 79.0 % and 66.4 % for AMCTEN and AMCTEN+, respec
tively, which were compared with 41.9 % (CAE) and 55.7 % (FCN). At 
the same time, both the quantity of parameters and size of the model 
have sequence of AMCTEN < FCN < CAE. This shows that considering 
semantic information when processing a variety of image enhancement 
tasks, AMCTEN and AMCTEN + can obtain higher quality with fewer 
parameters. In addition, the parameters in Table 2 reflect the efficiency 
of the model. Since the parameter quantities are all in the same order of 
magnitude, their inference speeds are roughly equivalent. The calcula
tion speed of each image is about 3 s. 

Moreover, this paper analyzed the stability of the model when 
dealing with different image enhancement tasks, and compared the 
processing results of 11 tasks based on Evaluation metric, as shown in 
the Fig. 10 and Fig. 11. the performance of different models under 
various image enhancement tasks. They all show the law of AMCTEN >
AMCTEN+ > FCN > CAE in the enhancement of quality. This shows 
good stability of AMCTEN in different enhancement tasks of CT image of 
asphalt mixture. The image quality can be improved more effectively 
within the scope of the enhancement task set in this research. 

As shown in the Fig. 12, the study combined FCN neural network to 
further extract aggregate features, and compared the segmentation re
sults before and after enhancement. In the figure, the first column is the 
original image and the enhanced image. The second column is the 
aggregate image extracted by FCN. The third column combines the 
watershed algorithm for post-processing. After comparison, it can be 
seen that a large number of adhesion areas appearing in the segmenta
tion before enhancement are more clearly distinguished after data 
enhancement. This also proves the effectiveness of the proposed 
algorithm. 

5. Conclusion 

To achieve automatically restore asphalt mixture images scanned by 
CT and reduce the experimental cost. This research combines deep 
learning technology to propose a CT image enhancement solution for 
asphalt mixture. The proposed method solves multiple image enhance
ment problems adaptively and improves the quality of the output image. 
The solution combines semantic information to solve multiple image 
enhancement problems at the same time. The main research conclusions 

Fig. 12. Output effects of different image enhancement tasks under different models.  
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are as follows:  

(1) This study proposed two models to solve the CT image 
enhancement problem of asphalt mixture. The first model, 
AMCTEN, takes semantic information as input, and is suitable for 
obtaining higher image quality when image processing schemes 
are known. The second model, AMCTEN+, takes semantic in
formation as the output, which is suitable for situations where the 
semantic information is unknown, and is more convenient to 
process.  

(2) Combined with experiments, it is proved that directly providing 
semantic features in AMCTEN can obtain higher image quality, 
and AMCTEN + has a slight decrease in image quality due to 
semantic loss.  

(3) This paper analyzes the semantic feature space of the model, 
points out the difference and similarity of the semantic feature of 
the model construction. 

(4) Combined with the verification on the test set, the model pro
posed in this paper is stable in performance for different image 
enhancement tasks. 

However, this study provides two models to solve the problems of 
repair effect and repair efficiency, and it still has great research value to 
solve these two problems simultaneously with a single model. In addi
tion, the diversity of datasets also restricts the scope of application of the 
model. In order to better improve image quality and conduct data 
analysis, in the next step, we will continue to improve in three aspects: 
obtaining higher quality original data images, reducing semantic 
learning loss, and realizing end-to-end image enhancement and image 
segmentation process. 
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