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� A study using GPR signals and NINs for pavement distress detection is presented.
� The NIN-based method detected pavement distresses with high precision.
� The NIN stability was not affected by GPR transmitting frequencies.
� The NIN-based method had a distinct superiority in detection effectiveness.
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a b s t r a c t

This study proposes a nondestructive testing technique for pavement distress detection using ground-
penetrating radar and network in networks. Ground-penetrating radar signals are imported into two
network-in-network structure as input data directly. The network in networks are used as deep learning
models to distinguish abnormal signals, recognize distress types, and measure distress locations and
sizes. A database with information from four highways is generated by a ground-penetrating radar with
different transmitting frequencies and numbers of samples per trace. Then, the database is used to train,
validate, and test the network in networks. The results show that the proposed method detects cracks,
water-damage pits, and uneven settlements with 85.17% accuracy, 2.15 mm location errors, and reason-
able stability. The proposed method was superior to other state-of-the-art techniques in terms of classi-
fication accuracy, location error, and stability. Additionally, the results show that this method overcomes
the negative effect of transmitting frequencies in pavement distress detection using GPR data.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Ground-penetrating radar (GPR) has been widely used as a non-
destructive testing (NDT) technique for pavement distress detec-
tion and condition assessment [1,2]. A GPR system transmits
electromagnetic waves with a specific frequency that can pene-
trate pavement structures. A portion of the waves is reflected when
it hits underground pavement distresses such as cracks [3] or
uneven settlements [4], the electromagnetic properties of which
are different from those of the surrounding pavement materials.
Then, the reflected waves are received by an antenna. Abnormal
GPR signals such as hyperbolic-shaped signals from the reflected
waves can be observed. These abnormal GPR signals are used to
analyze pavement distress characteristics such as locations [5,6]
and shapes [7,8].

Traditional pavement distress detection using GPR depends on
four factors: (1) the frequency of an antenna signal; (2) velocity
approximations of the transmitted and reflected electromagnetic
waves; (3) the experience of an analyst in determining the abnor-
mal values of the signals, such as the apex of the diffraction hyper-
bola; and (4) the decision rule how the type and intensity of the
backscattered signal is a function of the shape and size of the
anomalies. In practice, the frequency of a GPR antenna signal
depends on the detection precision and depth. With the develop-
ment of measurement technologies, the velocity approximations
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of the transmitted and reflected electromagnetic waves can be cal-
ibrated with high precision based on the electromagnetic proper-
ties of the pavement materials in different layers of the structure
[9]. However, an analyst may commit an error in determining
the abnormal values of the GPR signals [10,11], not to mention
the distress recognition. The rule selection for determining anoma-
lous signals is also not solved well. In addition, noise data such as
the data generated by the GPR vibration during inspection make
the task more fallible [12,13]. Moreover, because many pavement
distresses occur at one location, the analysis processes become
more complex and challenging [14,15]. The challenge and signifi-
cance of this issue have led researchers to develop many data pro-
cessing techniques to partially replace the human inspection
method.

Many signal processing techniques have been widely used as
unsupervised methods to complete the task. For example, Qiao
et al. [16] proposed a multi-step signal analysis method to detect
buried objects, the location error of which was less than 5.8 cm.
Li et al. [17] utilized the Hough transformation to identify objects
with an accuracy of approximately 80%. Dou et al. [18] proposed
a clustering method to separate the regions of interest from back-
ground signals. Liu et al. [19] used a short-time Fourier transform
to identify the delamination between pavement layers. Rodés et al.
[20] presented a possible analysis of the frequency spectrum of
GPR signals for asphalt pavement assessment. Fernandes and Pais
[21] used an amplitude-based signal processing technique to mea-
sure pavement crack widths. In addition, some coupling methods
combining GPR and other NDT techniques were proposed to detect
pavement distresses [22–24]. Although these methods show
promising performances, they require expert operators who are
familiar with both electromagnetic waves and pavement dis-
tresses. This means that these techniques cannot be widely used
for pavement inspection. Additionally, the stability and transfer-
ability of these techniques are not desirable in practice. For exam-
ple, certain signal processing techniques may offer high precision
for some pavements but low precision for others.

Machine learning, as a supervised method, exhibits good object
detection performance [25,26]. It has achieved remarkable success
in pavement distress detection. There are two primary methods for
pavement distress detection using GPR and machine learning: (1)
Using received GPR signals to directly detect pavement distresses
(e.g., Al-Nuaimy et al. [6] and Maas et al. [27] proposed neural net-
work models to detect buried objects in pavements using GPR sig-
nals; Pasolli et al. [28] and Plati et al. [29] used genetic algorithms
for object detection using GPR signals; Lu et al. [30] detected bur-
ied objects with high accuracy using a support vector machine and
discrete wavelet transform.) However, these methods failed in
some real-world conditions, such as multiple pavement layers
and materials. This indicated that these methods were not stable
in practice. Additionally, these methods only distinguished abnor-
mal signals from normal ones but could not classify different bur-
ied objects and distresses.

(2) Using image-based detection. With the development of
machine learning and GPR technology, GPR images began to be uti-
lized to replace signals for pavement distress detection. For exam-
ple, Tong and colleagues proposed deep-learning models to
recognize, locate, and detect distresses using GPR images [31–
33]. Sha et al. [34] utilized a cascade convolutional neural network
to classify pavement distresses. All these studies showed that this
direction for distress detection was influenced by the transmitting
frequencies of GPR. Generally, the detection precision decreased
drastically with decrement in the transmitting frequencies of
GPR because of the signal to noise ratios and a capable interpreter
for the data interpretation. In pavement inspection, some dis-
tresses reflect GPR signals with a high signal to noise ratio, thereby
complicating data interpretation for these signals. Additionally,
some noises are easily determined as distresses [31].

Motived by the shortcomings of the previous studies [31–33],
we reconsidered the possibility of combining GPR signals and
state-of-the-art deep-learning models to detect pavement dis-
tresses. Therefore, this paper presents an innovative attempt to
use GPR signals and network in networks (NINs) to detect pave-
ment distresses. The contributions and advantages of this study
are summarized below:

(1) The proposed method detected pavement distresses (e.g.,
crack, water-damage pit, uneven settlement) with high pre-
cision. Its stability was not affected by pavement structures
and GPR transmitting frequencies. It overcame the disadvan-
tages of the previous studies [31–33].

(2) Many state-of-the-art techniques in deep learning (e.g., tar-
get dropout, global average pooling, and layer-sequential
unit-variance initialization) were adopted to remarkably
improve the accuracy of the proposed model.

(3) With the assistance of the proposed method, the processes
of pavement distress detection did not require experience
of an analyst specializing in electromagnetic waves and deep
learning; while the proposed model played the role of an
inspector with long-term experience and a good theoretical
knowledge.

The rest of this paper is organized as follows. In Section 2, we
present the experimental details regarding GPR signal collection
and the selection of tested road sections and GPR equipment
parameters. In Section 3, we introduce the NIN-based method for
distress detection, including abnormal-signal recognition,
pavement-distress classification and measurement, and imple-
mentation details. In Section 4, we discuss the performance of
the NIN-based method. Finally, Section 4 summarizes the
conclusions.
2. Experimental details

2.1. Tested road sections

The tested road sections were in the Heilongjiang province in
China, as shown in Fig. 1. GPR inspection was conducted on four
highways that were made of asphalt pavements, and had a total
length of 27,820 m. The four highways had different service lives,
structures, and materials to ensure the integrity of the GPR
database.
2.2. GPR equipment and measurement method

An OKO-2 GPR system was used in this study. Because the
expected detection depths were approximately 0.3–0.6 m, refer-
ring to the study of Annan [35], only the data in the first ten ns
time windows were used in this study. Three transmitting frequen-
cies (300, 600, and 900 MHz) and numbers of samples per trace
(256, 384, and 512) were adopted for scanning the four highways
to guarantee the integrity of the GPR database. The vertical
resolution ranges of the three transmitting frequencies were
0.003–0.005 m, 0.002–0.003 m, and 0.001–0.002 m, whereas
the horizontal resolutions were 0.08–0.1 m, 0.05–0.06 m,
0.04–0.05 m, respectively. The trace-interval distance in this study
was 0.015 m. Considering that the widths of the cracks and other
distresses were generally larger than 0.015 m, the trace-interval
distance and horizontal resolutions were acceptable.



Fig. 1. Distribution, constructions, and materials of tested roads. The map is acquired from Google Earth.

Fig. 2. Typical GPR signals in 600 MHz (A-scanning).
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Fig. 2 presents normal and abnormal GPR signals from a crack, a
water-damage pit, and an uneven settlement. The characteristics of
abnormal signals are different from those of normal signals. How-
ever, two tasks need to be accomplished: (1) Determining a way to
differentiate a normal GPR signal from an abnormal GPR signal—
the characteristics of abnormal GPR signals vary from one distress
to another, and it is difficult for analysts to describe them formally;
(2) Using these abnormal GPR signals to recognize and measure
pavement distresses.

Fig. 3 presents GPR images using B-scanning. The distress types
that are shown in Fig. 3 were determined by core sampling. As
shown in Fig. 3, the feature of each anomalous signal can be related
to a specific type of pavement distresses. This indicates that a set of
GPR signals can be used to detect pavement distresses. Two steps
were designed to detect pavement distresses using GPR signals
and NINs. First, a NIN was designed to differentiate a normal GPR
signal from abnormal ones. Next, another NIN was utilized to clas-
sify and measure the set of abnormal GPR signals.
3. Algorithm for distress detection

In this section, we introduce the NIN model for recognizing
abnormal GPR signals in Section 3.1. Then, we describe the NIN
for classifying and measuring different pavement distresses based
on the abnormal signals in Section 3.2. Finally, Section 3.3 presents
implementation details and the database for the study.
3.1. Recognition of abnormal GPR signals

The first step in detecting pavement distresses using GPR sig-
nals is to recognize abnormal signals in received electromagnetic
waves. The multilayer perceptron [26,27] has been reported to
conduct abnormal signal recognition based on the provided fea-
tures. However, it failed to classify different GPR signals owing to
its shallow structure. From the deep learning perspective, an algo-
rithm can be considered as a deep one if it can extract low-level



Fig. 3. Typical GPR images (B-scanning).

4 Z. Tong et al. / Construction and Building Materials 233 (2020) 117352
features related to the class membership from raw data and inte-
grate them into high-level features for a classification task [36].
However, a multilayer perceptron requires features to be provided
by an analyst. Thus, the structure of a multilayer perceptron is shal-
low. In this study, multilayer perceptrons deepened themselves in a
convolutional-neural-network mode to extract low-level features
and integrate them into high-level features autonomously, as
shown in Fig. 4 and Table 1. This model were called network in net-
work (NIN) and its special layers are called multilayer perceptron
(MLP) layers. Notably, the NIN can be considered as a deep-
learning model because it learned multiple-level features [36].
Fig. 4 indicates that there are two special layers in the NIN:

(1) MLP layer—A Multilayer perceptron with two layers was
used to convolve over the input data in an MLP layer. Each
multilayer perceptron was considered as a nonlinear filter
to extract certain features from the input data as

f 1i;k1 ¼ max w1
k1

� �T
xi þ bk1 ;0

� �

..

.

f ni;k1 ¼ max wn
kn

� �T
f n�1
i;k1

þ bkn ;0
� � ; ð1Þ

where n is the number of layers in the NIN; i is the number of input-
data points; wn

kn and bkn are the weights and bias in the nth layer,
respectively. With n multilayer perceptrons in different MLP layers,
we could acquire various low-, medium-, and high-level features
related to abnormal signals from real-world GPR data. The function
of an MLP layer is similar to that of a convolutional layer in a deep-
learning model, but it performs better.

Compared with traditional deep-learning models, there is no
pooling layer following the MLP layer in the NIN because pooling
layers were replaced by MLP layers with an increased stride as
shown in Table 1. The replacement led to an improvement in accu-
racy that was verified in the study conducted by Springenberg [37].
Fig. 4. Overall structure of network in network to recognize abnormal GPR signals. M
(2) Global average pooling layer—A traditional deep-learning
model vectorizes the features from the last convolutional
layer and feeds it into fully connected layers (FCNs) for clas-
sification [38,39]. However, FCNs may lead to overfitting and
hamper the generalization of the network [39] even with a
target dropout [40]. Referring to the study conducted by
Lin et al. [41], a global average pooling (GAP) layer was uti-
lized to replace the FCNs. Instead of vectorizing features in
the FCNs, a GAP layer took the average of the features and
fed the results into a softmax layer for abnormal signal
recognition.

3.2. Detection for pavement distresses

The second step in detecting pavement distress detection is to
classify and measure the distresses. Considering the sizes and ori-
entations of different pavement distresses as presented in Table 2,
GPR signals in a 1-meter pavement were imported into a NIN for
detecting pavement distresses. Fig. 5 and Table 3 present the
details of the NIN. The NIN used for this step had a similar structure
to the NIN for the first step except for the input and output layers.

(1) In the input layer, GPR signals were labeled as ‘‘0” or ‘‘1” on
the basis of the outputs of the NIN for recognizing abnormal
signals. In the study, ‘‘0” and ‘‘1” represent as ‘‘abnormal sig-
nal” and ‘‘normal signal”, respectively. Then the GPR signals
and labels were imported into the second-step NIN.

(2) In the output layers, we designed a softmax layer for classi-
fication and three regression layers for measurement. As
shown in Fig. 5, the GPR signals and labels passed through
the MLP layers and a GAP layer in sequence. Then, the aver-
aged features were first imported into a softmax layer,
wherein a multi-class output was generated. Once the out-
put indicated that there was at least one type of pavement
distress, the averaged features were imported into one or
more regression layers for distress measurement. For exam-
LP and GAP are multilayer perceptron and global average pooling, respectively.



Table 1
Parameters of network in network to recognize abnormal GPR signals.

Layer number Layer type Input size Multilayer perceptron size Stride

Input Layer 1 Layer 2 Output

L1 Input 128 � 1 – – – – –
L2 MLP 1 128 � 1 10 � 1 10 10 10 � 48 1
L3 MLP 2 119 � 1 10 � 1 10 10 10 � 48 1
L4 MLP 3 110 � 1 10 � 1 10 10 10 � 48 2
L5 MLP 4 50 � 1 8 � 1 7 7 8 � 96 1
L6 MLP 5 43 � 1 8 � 1 7 7 8 � 96 1
L7 MLP 6 36 � 1 8 � 1 7 7 8 � 96 2
L8 MLP 7 14 � 1 6 � 1 7 7 6 � 192 1
L9 MLP 8 9 � 1 6 � 1 7 7 6 � 192 1
L10 MLP 9 4 � 1 4 � 1 7 7 4 � 192 1
L11 GAP 4 � 192 – – – – 1
L12 Softmax 2 � 1 – – – – 1

Table 2
Overall distributions and sizes of different pavement distresses.

Type Orientation Size/m Depth/m

Crack Direction or vertical direction of highways (0.01–0.03) � (0.10–1.00) 0.01–0.60
Water-damage pit Direction and vertical direction of highways (0.05–0.30) � (0.05–0.30) 0.15–0.60
Uneven settlement Direction of highways (0.05–1.00) � (0.05–1.00) 0–0.05
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ple, the global features were imported into a crack regres-
sion layer if the output of the softmax layer indicated that
the GPR signals suggest a crack in the 1-meter pavement.
The features were imported into two or three regression lay-
ers if the GPR signals reflected two or three different dis-
tresses in the 1-meter pavement. Notably, the outputs of
the three regression layers are different, as shown in Fig. 5.
The distress detection was conducted based on the outputs
of the softmax layer and three regression layers.

3.3. Implementation details and database

Four highways with a total length of 27,820 m were inspected
using GPR as introduced in Section 2. To verify the stability of the
NIN-based method, we scanned the 27,820 m pavements using
three transmitting frequencies (300, 500, 900 MHz) and numbers
of sample per trace (128, 256, and 384). Both data ratios of the three
transmitting frequencies and numbers of sample per trace were
1:1:1. We annotated two types of labels for the database. The first
type labels was annotated for each GPR signal to state whether
Fig. 5. Overall structure of network in network to detect pavement distresses. MLP
the signal is normal or not and was used to train the NIN to recog-
nize abnormal GPR signals. The second type of labels was annotated
for each GPR data in a 1-meter pavement to state whether there
was a distress or not and the location information of each distress,
which were used to train the NIN to locate pavement distresses.
Notably, the distress types in the databasewere determined by core
sampling. We selected 16,692 and 5564 1-meter lengths of GPR
data randomly from the database as a training and validation data
set, respectively. The remaining 5564 1-meter lengths of GPR data
were used as a testing data set. We used 1500 GPR signals and
500 m GPR data for the two NINs in each epoch.

Additionally, a stochastic gradient descent [42] and layer-
sequential unit-variance initialization (LSUV) [43] were adopted
in this study to further improve the precision of the two NINs.
The LSUV was used to provide initialized weights for the two NINs,
whereas the stochastic gradient descent was used for training the
two NINs.

The processes in Section 3 were conducted in a Python environ-
ment with a computer with a Core i7 8750H @ 3.4 GHz CPU, 32 GB
of DDR4 memory, and an 8 GB NVIDIA 1080 GPU.
and GAP are multilayer perceptron and global average pooling, respectively.



Table 3
Parameters of network in network to detect pavement distresses.

Layer number Layer type Input size Multilayer perceptron size Stride

Input Layer 1 Layer 2 Output

L1 Input 128 � n – – – – –
L2 MLP 1 128 � n 10 � 1 10 10 10 � 48 1
L3 MLP 2 119 � 1 10 � 1 10 10 10 � 48 1
L4 MLP 3 110 � 1 10 � 1 10 10 10 � 48 2
L5 MLP 4 50 � 1 8 � 1 7 7 8 � 96 1
L6 MLP 5 43 � 1 8 � 1 7 7 8 � 96 1
L7 MLP 6 36 � 1 8 � 1 7 7 8 � 96 2
L8 MLP 7 14 � 1 6 � 1 7 7 6 � 192 1
L9 MLP 8 9 � 1 6 � 1 7 7 6 � 192 1
L10 MLP 9 4 � 1 4 � 1 7 7 4 � 192 1
L11 GAP 4 � 192 – – – – 1
L12 Softmax 8 � 1 – – – – 1
L13 Regression m – – – – 1

Note: n is the GPR signal number in a 1 m pavement, which depends on the distance of the transmitter–receiver positions.m is the number of measurement results relating to
different pavement distresses, which depends on the distress types.
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4. Results and discussion

4.1. Recognition performance

4.1.1. Overall performance
Fig. 6 presents the training, validation, and testing accuracies of

the NIN for recognizing abnormal GPR signals. After the 1000th
epoch, the accuracies of training, validation, and testing were
97.52%, 95.67%, and 95.94%, respectively. Additionally, the accura-
cies were stable between the 1000th and 1500th epochs. The accu-
racy fluctuations between the 1000th and 1500th epochs indicated
that the recognition performance of the NIN was reasonable after
the 1000th epoch. The gap between the validation and testing
accuracies verified that the NIN precisely distinguished abnormal
GPR signals from normal ones. This showed that the NIN had an
acceptable generalization ability for abnormal GPR signal
recognition.

4.1.2. Stability analysis
Two stability analyses were conducted to verify the robustness

of the NIN, including transmitting frequencies (300, 600, and
900 MHz) and pavement structures (G10, G1011, G11, G1211).
The testing data set was divided into different parts based on the
types of GPR data, such as different transmitting frequencies. The
Fig. 6. Training, validation, and testing
NIN was used to recognize abnormal GPR signals in these different
parts.

Fig. 7 presents the confusion matrices of the two stability anal-
yses. Notably, only the testing results were reported in Fig. 7. Fig. 7
(a) showed that the accuracies of the abnormal signal recognition
for different transmitting frequencies were close. This indicated
that the performance of the NIN was not evidently influenced by
the transmitting frequencies. It also verified that the NIN provided
useful abnormal-signal labels for the distress detection in the sec-
ond step when the transmitting frequency for GPR antenna was
higher than 300 MHz. The lowest transmitting frequency could
meet the demands of the pavement inspection. Fig. 7(b) showed
that the performance of the NIN in different pavement structures
and materials was similar. This indicated that the pavement struc-
tures did not influence the performance of the NIN.

Fig. 8 presents the error distribution for different depths of
abnormal signal points. The error distribution was uniform for dif-
ferent depths. This indicated that the depth of the distress had a
limited effect on the abnormal signal recognition. However, con-
sidering the horizontal resolutions in the three transmitting fre-
quencies, the accuracy was affected by the sizes of the distresses.
For example, it was difficult for the GPR and the proposed model
to recognize cracks whose widths were less than 0.001 m. There-
fore, the NIN accuracy may be further improved by utilizing trans-
accuracy of the recognition NIN.



(a) Transmitting frequency (b) Pavement structures

Fig. 7. Confusion matrixes of stability analyses for the recognition NIN (Unit: %). ‘‘A” and ‘‘N” stand abnormal and normal signals, respectively.

Fig. 8. Error distribution vs depths of abnormal signal points.
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mitting frequencies with higher resolutions. However, the increase
of signal frequencies does not always result in a better ability to
detect a crack because an anomalous signal is often given by
diffraction hyperboles, which is created when the size of the object
is smaller than the wavelength of the GPR signal.

4.2. Classification performance

4.2.1. Overall performance
Compared with the NIN for abnormal signal recognition, there

were two aims for the NIN for distress detection. The first one
was to classify distress classes using GPR signals from a 1-meter
pavement. The average accuracy was used to evaluate the NIN per-
formance for this purpose. The second one was to locate the dis-
tresses in a 1-meter pavement, as shown in Fig. 5. The average
loss, shown in Eq. (2), was used to evaluate the performance of
the NIN for this purpose as

Average loss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n �m � l

Xn
i¼1

Xm
j¼1

Xl

k¼1

xijk � x0ijk
� �2

vuut ð2Þ
where i is the number of the GPR data in an epoch; j is the number
of characteristics of a certain distress as shown in Fig. 5; and l is the
number of distresses in the GPR data. xijk and x0ijk are the true value
and the predicted value by the NIN.

Fig. 9 presents the training, validation, and testing accuracies
and losses of the NIN for detecting pavement distresses. After
12,000 iterations, the accuracies for training, validation, and test-
ing were 89.02%, 86.49%, and 85.17%, while the losses were
1.86 mm, 2.08 mm, and 2.15 mm, respectively. The classification
accuracies and location errors met the demands of pavement
inspection [44]. The losses were close to the GPR resolution. This
indicated that the NIN errors were not the primary factors influ-
encing the precision of the distress measurements, but the GPR
errors were. Additionally, the accuracies and losses were stable
between the 10000th and 12000th epochs. The accuracy and loss
fluctuations between the 10000th and 12000th epochs indicated
that the detection performance of the NIN was reasonable after
10,000 epochs. The gap between the validation and testing results
verified that the NIN could classify and measure different dis-
tresses. This showed that the NIN had an acceptable generalization



Fig. 9. Training, validation, and testing accuracy of the detection NIN.

Fig. 10. Examples of pavement distress detection. The distresses in green, yellow, and orange boxes are cracks, water-damage pits, and uneven settlement. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(a) Transmitting frequency (b) Pavement structures

(c) Numbers of samples per trace

Fig. 11. Confusion matrixes of stability analyses for the detection NIN. BG, RC, WP, US are background, crack, water-damage pit, and uneven settlement, respectively.

Table 4
Losses of the NIN for pavement distress detection (Unit: mm).

Transmitting frequency/MHz Sweep sampling number/Hz Pavement structures

300 600 900 256 384 512 G10 G1011 G11 G1211

Loss 2.26 2.17 2.02 2.54 2.08 1.83 2.18 2.09 2.20 2.13

Z. Tong et al. / Construction and Building Materials 233 (2020) 117352 9



Table 5
Average accuracies and losses in a comparative study.

Factors NIN Faster R-CNN GA and SVM

Accuracy Loss Accuracy Loss Accuracy Loss

Transmitting frequency/MHz 300 84.28 2.26 78.90 4.07 67.25 11.43
600 85.36 2.17 81.42 3.52 74.82 10.42
900 85.87 2.02 83.43 2.13 76.21 10.10

Pavement structure G10 85.24 2.54 81.08 3.47 73.26 10.35
G1011 85.62 2.08 81.37 3.19 71.05 10.91
G11 84.79 1.83 81.25 3.31 72.63 10.37
G1211 85.03 2.18 81.30 2.99 74.10 10.97

Sweep sampling number/Hz 256 81.39 2.09 77.24 4.51 66.28 11.59
384 85.23 2.20 82.19 3.10 75.02 10.24
512 88.89 2.13 84.32 2.11 76.98 10.21

Note: Units of accuracy and loss are % and mm.

(a) NIN

(b) 

Faster 

R-CNN

(c) GA 

and 

SVM

Fig. 12. Examples of a comparative study. The distresses in green, yellow, and orange boxes are cracks, water-damage pits, and uneven settlement, respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ability for distress detection in general. Some of the detection
results are shown in Fig. 10. In Fig. 10, cracks, water-damage pits,
and uneven settlement were precisely detected by the NIN.

4.2.2. Stability analysis
Three stability analyses were conducted to verify the robustness

of the NIN, including transmitting frequencies (300, 600, and
900 MHz), numbers of samples per trace (256, 384, and 512 Hz),
and pavement structures (G10, G1011, G11, and G1211). The test-
ing data set was divided into different parts based on the types of
GPR data, such as different transmitting frequencies. The NIN was
used to detect pavement distresses in these different parts.

Fig. 11 presents the confusion matrixes of the three-stability
analyses for classification accuracies. Only the testing results are
reported in Fig. 11. Fig. 11(a) shows that the accuracies of distress
recognition in different transmitting frequencies were close. This
indicated that the NIN performance was not influenced by the
transmitting frequencies when the transmitting frequencies of
the GPR antenna were higher than 300 MHz. Considering the pen-
etrability of the 300 MHz electromagnetic waves in asphalt pave-
ments, the lowest transmitting frequencies in this study met the
demands of the pavement inspection [36]. Fig. 11(b) shows that
the NIN performances in different pavement structures and
materials were similar. This indicated that the pavements did not
influence the performance of the NIN. However, Fig. 11(c) shows
that the classification accuracies varied for different numbers of
samples per trace. This was because the GPR acquired more signals
in 1-meter pavements with the increment in the numbers of sam-
ples per trace. One-meter GPR data with a higher number of signals
provided more information about pavement distresses for the NIN.
However, Fig. 11(c) demonstrates that even the classification accu-
racy of the lowest number of samples per trace in the study was
still reasonable for pavement inspection. Thus, the number of sam-
ples per trace did not influence the accuracy of the method if that
number was greater higher than 256.

Table 4 presents the losses of the three-stability analyses for the
distress location. The losses in the NIN were not influenced by the
pavement structures and transmitting frequencies, but they were
affected by the number of samples per trace. However, even the
loss with the lowest number of samples per trace was still reason-
able for pavement inspection [36].

4.3. Comparative study

The NIN-based method was compared with state-of-the-art
methods to verify its effectiveness. Because the disadvantages of
unsupervised algorithms for distress detection using GPR data
have been verified in previous studies [24], two supervised algo-
rithms were selected in this study. The first one [26] was a method
using a faster regional convolutional network (Faster R-CNN) and
GPR images, while the second one [22] was based on GA and
SVM using GPR signals.

Table 5 presents the average accuracies and losses of the three
methods. Fig. 12 presents some results of the comparative study.
The results showed that the precision and stability of the NIN-
based method were optimal, which produced a high accuracy
and low loss in various real-world conditions, including different
transmitting frequencies, numbers of samples per trace, and
pavement structures. However, the accuracy and loss of the Faster
R-CNN were unstable in different transmitting frequencies and
numbers of samples per trace, which was the same was reported
in our previous study [26]. This was because the GPR images were
easily affected by the resolutions and noise ratios of the GPR
equipment. Unfortunately, the accuracy and loss of the method
based on GA and SVM were unreasonable in real-world conditions.
Therefore, the comparative study showed that the NIN-based
method was superior in pavement distress detection using GPR
signals.
5. Conclusions

A study using GPR signals and NINs for pavement detection is
presented in this paper, and the following conclusions can be
drawn:

(1) The NIN-based method detected pavement distresses such
as cracks, water-damage pits, and uneven settlements with
85.17% precision and 2.15 mm location errors in real-world
conditions for different pavement structures and materials,
transmitting frequencies, and number of samples per trace.
Thus, the proposed method can be regarded as an autono-
mous NDT method.

(2) The NIN for abnormal GPR signal recognition achieved an
average accuracy of 95.94% in the testing. The accuracy of
the NIN was not influenced by transmitting frequencies
and pavement structures. The distress depths had a limited
effect on the abnormal signal recognition, whereas the NIN
accuracy was affected by the sizes of the distresses because
of the resolutions of different transmitting frequencies. Thus,
the NIN accuracy may be further improved by utilizing
transmitting frequencies with higher resolutions.

(3) The NIN for distress recognition and location achieved an
85.17% average classification accuracy and 2.15 mm location
errors in the testing. The accuracy of the NIN was not influ-
enced by transmitting frequencies, pavement structures, and
the distress depths. Thus, the NIN can recognize and locate
pavement distresses using GPR signals in real-world
conditions.

(4) The comparative study showed that the NIN-based method
had a distinct superiority in the effectiveness of distress
recognition, location, and measurement. Additionally, the
study showed that this method overcame the negative influ-
ence of low transmitting frequencies in pavement distress
detection to some degree.

(5) A more advanced deep-learning model must be developed to
improve the stability of the proposed method for different
cases of number of samples per trace using GPR signals,
and this will be the focus of our future research.
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