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a b s t r a c t

Deep learning has achieved state-of-the-art performance on signal and image processing. Due to the
remarkable success, it has been applied in more challenging tasks, such as ground-penetrating radar
(GPR) testing in civil engineering. This paper reviews methods involving deep leaning and GPR for civil
engineering inspection and provides a classification based on the data types that they exploit. Based
on the results of a comparison study, we conclude that methods using A-scan data slightly surpass the
models using B- and C-scan data, though C-scan data is maybe the most promising in the further thanks
to its complete space information. Two current limitations of deep learning exploiting GPR are its depen-
dence on big data and overconfident decision-making. Therefore, benchmark GPR data sets and cautious
deep learning are required.
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1. Introduction

Recent advancements in nondestructive testing (NDT) have
made safety inspection in civil engineering more effective and pre-
cise than ever. So far, there are many types of NDT devices for
structural health monitoring (SHM), mainly including infrared
thermography, ultrasonic testing, ground-penetrating radar
(GPR), and industrial radiography. Compared with other tech-
niques for SHM, GPR is considered as one of the most powerful
because of its desirable reliability and effectiveness.

The increasing precision of GPR data encourages the research
community to exploit this richer data for solving several SHM
tasks, such as defect recognition, location, even 3D reconstruction.
Fig. 1 presents a generic pipeline for processing a group of GPR
data. Structure Scan data contain thousands of signals and/or
points. Thus, some preprocessing methods are applied to reduce
noises and/or restructure data, such as Gaussian filter [1] and
KD-trees [2]. Following, feature extractors (e.g., convolutional
operator [3] and Sobel operator [4]) are adopted in order to identify
features related to the inspection task. After acquiring related fea-
tures, recognition, location, feature point regression, and segmen-
tation are conducted using highly nonlinear mapping, such as
neural networks [5] and support vector machines [6]. In addition,
feature points and segmentation results provide the possibility of
3D buried object reconstruction, such as structural cracks. In sum-
mary, traditional GPR inspection depends on two factors: (1) pre-
Fig. 1. Generic pipeline for proc
cision of GPR devices; (2) effectiveness of feature extractors and
nonlinear mapping algorithms. Precision of GPR devices has been
improved remarkably with the development of measurement tech-
nologies [7]. However, errors from feature extractors and nonlinear
mapping algorithms are still inevitable, owing to their shallow
structures.

Until recently, the breakthrough from the work of Krizhevsky
et al. [8] tremendously changed the landscape of the GPR detection
in civil engineering. Deep learning (DL) models, especially deep
neural networks, now dominate on almost defect detection tasks
using GPR devices, leading many NDT groups to redesign their sys-
tems. Although the concept of neural network has been proposed
for a long time, the evolution of general processor units and the
availability of large datasets make the main contribution to its
recent tremendous success [9,10].

In pace with the dominance establishment of DL in 1D and 2D
data processing, it was soon adopted to combine with GPR tech-
niques for SHM tasks. Motivated by this evolution, this paper sur-
veys the main studies and presents an overview of existing DL
models for civil engineering inspection tasks via GPR. Section 2
provides related works of GPR technologies in civil engineering
to make the paper more self-contained, followed by a introduction
to the conception of deep learning and the architectures used so far
in the problems of GPR data processing in Section 3. Afterward, the
advances of DL with GPR as the main body of this paper is pre-
sented in Section 4. Finally, conclusions are discussed in Section 5.
essing a group of GPR data.



Z. Tong et al. / Construction and Building Materials 258 (2020) 120371 3
2. Ground-penetrating radar in civil engineering

In this section, we start from a brief recall of GPR principles and
main configurations so far in civil engineering in Section 2.1. Fur-
ther, we review the traditional methods for GPR data processing
in Section 2.2, including signal-based processing (Section 2.2.1)
and image-based processing (Section 2.2.2). Finally, the current
trends of GPR data processing are discussed in Section 2.3.
2.1. GPR principles and main configurations

GPR, as a geophysical inspection technique, transmits electro-
magnetic waves that can penetrate building structures. The trans-
mitted electromagnetic waves are reflected by subsurface
boundaries at which there are electrical property contrasts. Then,
the reflected waves are received by an antenna and used for SHM.

There are mainly two types of GPRs used in the field of civil
engineering based on their antenna configurations. A GPR system
that uses a short wavelength pulse signal with ultra-wide band-
width in the frequency domain is called pulsed radar, while the
one transmits impulses with individual frequencies is named
stepped frequency continuous-wave radar. In general, the applica-
tions of GPR in civil engineering is mostly related to the use of
pulsed radar because of its major easiness of usage and data inter-
pretation. Furthermore, pulsed radar can be classified into two
groups: ground-coupled and air-coupled. In the first group, the
GPR antenna directly contacts with the ground, while the antenna
kept a constant height with the surface in the second case.

The selection of antenna frequency, as another main configura-
tion, can be considered as a compromise between the maximum
detection depth and the expected object resolution. Expected
object resolution means the minimum visible size of an object that
a GPR can detect. Fig. 2 provides a rough overview. Generally,
Fig. 2. A compromise between penetrations depth a
higher frequencies can give a higher resolution but can penetrate
a medium shallower than lower frequencies. In addition, the selec-
tion of the frequency range also should take the attenuation effects
in various mediums into account.

2.2. Data processing techniques in GPR

From the first utilization of GPR in tunnel investigation in the
1970s [11], the GPR applications have extended to the assessment
of damage conditions [12,13], the evaluation of structure thickness
[14], the detection of buried objects and defects [15,16], the anal-
ysis of soil characteristics [17,18], even novel perspectives of the
possible to characterize mechanical properties of structures and
materials based on their reflected electromagnetic waves [19,20].
Data processing techniques are the key of the GPR data interpreta-
tion for these applications. The traditional techniques can be clas-
sified into two parts: signal-based methods and image-based
methods. In this section, we present a recall of the two parts.

2.2.1. Signal-based processing
In the signal-based methods, researchers focus on reducing the

effects of background noise and interference phenomenon owing
to inhomogeneous mediums. The processed data are used to inter-
pret A-scan data. The signal-based methods can be classified into
band-passing filtering [21,22], time-varying gain [23,24], and reso-
lution improvement [25,26].

However, these methods with promising performance always
require desirable knowledge of both electromagnetic waves and
SHM. It leads these methods cannot be widely used in SHM. For
example, Li et al. [27] utilized Hough transformation to recognize
objects with approximately 80% accuracy, but the operators are
required to be familiar with the effects of object sizes and orienta-
tion on the randomized Hough transform algorithm.
nd the target resolution for a frequency range.
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2.2.2. Image-based processing
In the image-based methods using B-scan data, researchers

trend to image the received waves by background removal [28]
and velocity analysis [29]. For example, Chang et al. [30] tried to
remove the backgrounds in the GPR images to locate reinforcing
steel bars in concrete. The extended common midpoint method
based on the velocity analysis, proposed in [29,31], processes the
B-scan data collected by an air-coupled antenna array to measure
the thicknesses of asphalt pavements.

Image-based methods have also been applied to C-scan data, in
which a series of 2D grid GPR images are transformed into 3D data.
Compared with B-scan data, C-scan data can provide more space
information about buried objects. However, the complexity of pro-
cessing C-scans exceeds those for B-scans since the background in
C-scan data is more complex [32]. For example, Kle�sk et al. [33]
proposed a fast analysis of C-scan data via 3D Haar-like features
with the application to landmine detection. Jing and Vladimirova
[32] presented a feature-based algorithm for building 3D images
of buried objects using GPR signals.

Although the imaging techniques in GPR have been calibrated
with high precision based on electromagnetic properties of build-
ing materials, the utility of GPR systems still mainly depends on
human experiments. For example, Tong et al. [34] proved that
the traditional methods with no human assistance could not han-
dle the complexity background in GPR images under various real-
world conditions. Therefore, It is necessary to improve these meth-
ods to handle the background in GPR data and requires little expe-
rience in electromagnetic waves.
2.3. Current trend

From the literature review of the two types of the data process-
ing techniques, a gradual transition from unsupervised-based
models (e.g., rule-driven methods) to supervised-based methods
(e.g., data-driven methods) has been observed during the last few
years, even though rule-driven and unsupervised studies are still
important to fully understand GPR. Since 2012, more and more
works are reported to address tasks involving signal processing
(e.g., Jiang et al. [35]) and image processing (e.g., Higuchi et al.
[36] and Tong et al. [37]) via supervised-based methods, especially
DL. The combination of DL and GPR has been the current trend in
SHM.

Recently, a few review papers have indicated that it is feasible
to utilize DL to process signals and images theoretically [38–41].
In the review of Deng [39], the DL models are divided into three
categories (generative architectures, discriminative architectures,
and hybrid architectures) and their applications in signal and
image are reviewed. In the work of Guo et al. [40], the architectures
of convolutional neural networks (CNNs), restricted Boltzmann
machines (RBMs), autoencoders, and sparse coding and their appli-
cations in signal and image are reviewed. Additionally, the timeline
from artificial neural network to deep neural network is conducted
by Schmidhuber [41].
Fig. 3. A typical CNN arch
Despite there are rich publications cited in the previous para-
graph providing their overviews on DL, all of them present current
developments of the classic issues about 1D and 2D data but do not
consider any GPR case. This paper contributes to this void by
reviewing the set of solutions that are based on a DL framework
and providing the current issues on the set.
3. Background on deep learning

DL, as a subset of machine learning, attracts more and more
attention after its first remarkable winning in the 2012 ImageNet
challenge [8]. So far, some DL models have been constantly
reported state-of-the-art performance on signal and image pro-
cessing. In general, the DL architectures used in GPR detection
can be classified to two categories based on their outputs [39]: dis-
criminative and generative methods. Discriminative models com-
pute a probability distribution when given an input, while
generative architectures establish an input–output joint distribu-
tion. In the application of GPR, CNNs and recurrent neural net-
works (RNNs) are the most popular discriminative methods,
while autoencoders and deep belief neural (DBNs) are two typical
examples of generative methods.

3.1. CNNs

CNNs, first proposed by LeCun et al. [42], are the most widely-
used DL models in GPR and have achieved tremendous success in
several fields. Fig. 3 presents a typical architecture of CNN, whose
hidden layers are a combination of three main layers: convolution
layers, pooling layers, and fully connected layers. A convolutional
layer consisting of several filters is utilized to convolve the input
data or the previous layer’s output. The outputs of the layer then
pass through a nonlinear activation layer (e.g., ReLU [43] and sig-
moid [44]) and a pooling layer (e.g., stochastic pooling [45] and
fractional max-pooling [46]) in sequence. The outputs of the con-
volutional and pooling layers stack are mapped to a high-
dimension space by one or more FC layer. The mapped outputs
are then imported into a classifier or a regressor layer to generate
a response to the initial input data. Specific weights in each convo-
lutional and FC layer are learned by feedforward algorithms (e.g.,
stochastic gradient descent [47]).

Convolutional layer is the most important structure in CNNs
because of its weight sharing. It denotes that each filter is
employed to convolve each patch of the input data or the previous
layer’s output and not just in a specific location as it happens in a
traditional neural network, which reduces the model’s storage
requirements and improves its invariant to translation. In a GPR
task, there are main two convolutional filters as shown in Fig. 4.
Traditional convolutional filters (illustrated in Fig. 4a) are mainly
used in the image processing, such as GPR B-scan images [34,37],
while another type of filters, named one-dimension convolutional
filter (illustrated in Fig. 4b), are mainly used in the processing of
GPR signals [48,49], which can be regarded as a specific form of tra-
itecture for GPR [37].



Fig. 4. Examples of two main convolutional filters: (a) traditional convolutional filter [50] and (b) one dimension convolutional filter.
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ditional convolutional filters. As implied by their name, the dimen-
sion of one-dimension convolutional filters is 1. In addition, their
principle is the same as traditional convolutional filter.

Recently, more and more state-of-the-art techniques have
reported to improve the performance of CNNs. For example, a
novel convolutional layer termed as Network in Network [51]
achieved state-of-the-art results in several classic classification
tasks, such as CIFAR-10 and CIFAR-100. Generalizing pooling func-
tions [52], layer-sequential unit-variance initialization [53], all
convolutional networks [54], and so on have also been reported
to improve the performance of CNNs. Unfortunately, there is little
study employing these techniques for GPR systems. Thus, transfer
applications of these techniques for GPR systems will be a trend to
improve the performance of CNNs in future. It will be further dis-
cussed in Section 4.4.

3.2. RNNs

RNN is another widely-used DL architecture for processing
sequential data (e.g., signals [55] and sounds [56]). Each RNN con-
sists of three weight matrices (input-to–hidden, hidden-to–hidden,
and hidden-to-output) and three bias vectors (hidden, output, and
the initial bias vector) [57], as shown in Fig. 5. RNNs can be thought
of as a series of networks linked together, such as three networks
in Fig. 5. They often have a chain-like architecture, in which the
outputs of a network are imported into the next one. Thus, the next
network outputs depend on both its inputs and the outputs of its
previous network. Compared to CNNs whose inputs and outputs
are independent of each other, RNNs have a ‘‘memory” which
remembers all information about what has been calculated.

The remarkable performance of RNNs benefits from their
‘‘memory” capacity of iterating weights based on new information
and updating the outputs. The capacity has been employed well in
the processing of signal data in civil engineering. For example,
Pathak et al. [58] utilized an RNN and IRT for air leakage detection
in residential homes and the reported results showed the method
could be used to estimate different A/C usage characteristics with
0.85 F-measure. Zhang et al. [59] present a method for pixel-
level pavement crack detection via long short term memory
(LSTM) and 3D NDT data. Recently, the applications of RNNs on
the image domain have been reported and showed promising
results [60,61], and some advanced RNNs have also been used in
the domain, such as LSTM [62,63], ReNets [64], and gated RNNs
[65–68]. However, there is little study employing these RNNs for
exploiting GPR data. Thus, transfer applications of these techniques
for GPR systems may be a trend in the further years.

3.3. Autoencoders

Autoencoder [70] is a type of generative models. An autoen-
coder consists of two parts: encoder and decoder, as shown in
Fig. 6. The function of a encoder is to map the input data to a hid-
den form via weight matrixes, biases, and a nonlinear activation
function (e.g., logistic sigmoid), while the decoder is used to map
the hidden code back to the input data resulting in a reconstruction
version. The optimal weight matrixes and biases are adjusted by



Fig. 6. A typical autoencoder architecture [71].

Fig. 7. A typical DBN architecture [80].

Fig. 5. A typical RNN architecture [69].
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minimizing the reconstruction error, whose performance is always
evaluated by a cross-entropy loss.

Autoencoders have been used for denoise and data reconstruc-
tion in the signal and image processing tasks. For example, Huang
et al. [72] employed autoencoders to improve the quality of porta-
ble ultrasonic B-mode images from 32 channels to 128 channels.
The simulation results revealed that the utilization of autoencoders
improved the system performance, making superiority to the con-
ventional CNNs and RNNs. Picetti et al. [73] presented a convolu-
tional autoencoder for landmine detection and reported state-of-
the-art and robust results of a wide variety of targets. Interestingly,
Tong et al. [74,75] generalized fully convolutional networks into
autoencoders in the NDT for carbon fiber distribution characteriza-
tion in cement-based composites. Until recently, a large number of
variants of autoencoders have been reported, such as sparse
autoencoder [76], denoising autoencoder [77], and contractive
autoencoder [78]. These variants show their potential in denoise
and data reconstruction in the application of GPR data in civil
engineering.

3.4. DBNs

DBN [79], as a type of generative models, is the first proposed
DL model and have the potential to address several NDT tasks,
especially in the processing B-scan data. DBNs consists of multiple
layers of stochastic hidden variables [39], as shown in Fig. 7. All
layers in a DBN interact with directed connections except for the
top two, which form an undirected bipartite graph.
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As the first DL method, DBNs have been widely used in the pro-
cessing of GPR signals and images. For example, Becker et al. [81]
proposed a false alarm rejection method in forward-looking GPR
images. The results indicated the probability of exploiting both
the L-band and X-band using DBNs. Timothy et al. [82] used DBNs
in forward-looking explosive hazard detection. The DBNs showed
an 85% improvement in the overall detection and classification
method. As learning in densely connected [83], the performance
of DBNs in the NDT tasks is not as reasonable as the performance
of CNNs and RNNs, though a layer-by-layer training method
[84,85] was proposed for solving the problem in some degree.
4. Advances in deep learning with GPR

After the huge popularity of DL in several data processing tasks,
DL has been employed to exploit signal and image data in GPR sys-
tems and achieved tremendous success. In order to review this suc-
cess and existing issues, we divide the existing approaches into
three groups, conduct an experimental comparison among the
three categories, and provide current issues: (i) The first group
includes approaches using 1D raw signal data as input to the DL
models (Section 4.1); (ii) The models in the second category exploit
GPR images generated from raw data (Section 4.2); (iii) Deep archi-
tectures have access to exploit the 3D data form the third group
(Section 4.3); (iv) State-of-the-art DL models for GPR data process-
ing are compared (Section 4.4); and (v) The current issues of the
combination between DL and GPR are discussed (Section 4.5).
4.1. DL architectures exploiting A-scan data

A-scan data, as 1D amplitude-time GPR records, are the funda-
ment of the GPR inspection. In the DL architectures exploiting A-
scan data, a common practice is to approximate the low-level rep-
resentations of the latent concepts related to an inspection task,
then provide them as input to a deep neural network (DNN) to
map useful high-level representations.

He et al. [86] extract low-level representations from the time–
frequency distribution of A-scan data to represent the high-level
representations related to the buried regions in the tunnels. More
specially, 1200 GPR point data was first transformed by Wigner
distribution to get the map of the time–frequency joint distribu-
tion. Afterward, the joint distribution was adopted to approximate
the tunnel-region representations by the processing of several con-
volutional and pooling layers. The representations were provided
as input data to a DNN for assigning the data into one of the buried
region types. Experiments demonstrated the proposed method’s
superior performance in comparison to the support vector
machine-based and DBN-based methods indicating that the high-
level representations generated by the DNN are more informative
and discriminative. Besides, it also implied that the CNN-based
method was better than the DBN-based method in the processing
of the complex background and noise in the A-scan data. In the
work of Wang [87], a stacked denoising autoencoder was adopted
to extract the high-level representations under imbalanced sample
conditions by a layer-by-layer greedy training method. The outputs
from the first and second hidden layers of the autoencoder can be
considered as the middle- and high-level representations. After-
ward, the final high-level representations were imported into a
classifier for human detection in the buildings. Regularization
restrictions and dropout technology were also adopted. The
autoencoder was considered as an unsupervised algorithm and a
dimensionality reduction method. Therefore, it was compared to
other unsupervised methods like the k-nearest neighbor algorithm
and the J48 decision tree. The experiment results demonstrated
that the extracted high-level representations from the autoencoder
are more discriminative than the representations provided by
humans, leading to top enhanced recognition performance.

DL architectures also have the capacity of object measurement
using A-scan data. In the work of Tong et al. [88], a variant of
CNN, named Network in Network [51], was adopted to measure
the pavement defects using A-scan data. In the architecture, multi-
layer perceptron layers were considered as extractors to represent
low-, middle-, and high-level features related to the defect shapes.
The experiment results indicated that the proposed model
achieved a 2.15 mm measurement error and had a distinct superi-
ority in the effectiveness of the defect measurement. Further, Gian-
nakis et al. [89] proposed a GPR forward solver based on DNN and
A-scan, and its novelty and computational efficiency were evalu-
ated in the application on determining the locations and diameters
of reinforcement bars in concrete. More specially, the solver was
made up of two sections, with each section further divided into
40 steps. The first section was used to predict the first principal
axis for A-scan using neural networks. Each step could be consid-
ered as a representation of the principal component. The first sec-
tion final generated a full set of predicted principal components
after the 40 steps. Then the second section was designed to estab-
lish a causal relationship between the errors in the predicted val-
ues concerning the actual principal axes and the parameters of
the model. Through the numerical and real experiments, working
for full-waveform inversion, it showed that the solver estimated
the radius of the rebars with a maximum error of � 6mm for the
given antenna and the obtained position of the rebar and the water
content of the concrete.

4.2. DL architectures exploiting B-scan data

Compared with the DL architectures exploiting A-scan data, the
DL models exploiting B-scan data have become more popular in
the last few years. It benefits from the development of the DL
frameworks (e.g., Caffe [90] and TensorFlow [91]) in the field of
image processing. In general, there are mainly three directions of
the DL architectures exploiting B-scan data in civil engineering:
patch-based models, region-based models, and autoencoders.

In the first direction, GPR images or other B-scan data are
cropped into small patches with a fixed size, which are provided
as input data for a DL model in a classification task. Xiang et al.
[92] adopted an improved CNN, named AlexNet, to detect rebars
using small patches of GPR images. The experiment results demon-
strated that AlexNet achieved a higher level of accuracy in recog-
nizing the rebar in actually constructed facilities, though the
accuracy heavily depended on the patch sizes. In the work of Tong
et al. [34], a cascade CNN was proposed to recognize pavement
subgrade defects using cropped GPR images. A cascade connection
was used to distinguish low-resolution images from high-
resolution ones. The low- and high-solution images were classified
by two different CNNs. The two CNNs were trained by the low- and
high-resolution datasets, respectively. The experiment results indi-
cated the strategy using a cascade connection improved the
robustness of defect recognition in low-resolution images obtained
at low transmitting frequencies, though this problem was still not
solved well. A deep learning-based architecture, called deep dic-
tionary learning, was proposed to detect buried objects [93]. Each
basic dictionary deep learning model was designed to calculate a
Euclidean distance between a pattern and a dictionary, then all
of the distances were used as representations for classification.
The computation of the Euclidean distance provided a novel think-
ing to solve a shortcoming of the application of DL and GPR in civil
engineering, and it will be discussed in Section 4.5. In addition, in
the studies of Lameri et al. [94] and Ishitsuka et al. [95], the desir-
able performances of patch-based methods for detecting charac-
teristic hyperbolic signatures were reported. In general, the DL
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architectures have desirable performance in the classification tasks
using small patches of B-scan data.

The second direction, named region-based approach, generates
a region of interest (ROI) from a GPR image and assigns it into one
of the classes. Compared to the first direction using cropped
images with a fixed size, ROI areas in a region-based approach
are flexible. As a flexible ROI is a rectangle box trying to describe
an object location by its center coordinates and size, the second
direction can detect objects in B-scan data more precisely than
the first direction. The primary algorithms for generating an ROI
are rule-driven methods. For example, in the work of Dinh et al.
[96], a ‘‘match filter” was developed to generate potential areas sur-
rounding rebar peaks in B-scan images and the potential areas
were classified by a well-trained CNN. The results of its application
on the rebars detection in twenty-six concrete bridge decks
demonstrated the excellent performance of the method with an
accuracy greater than 95.75%. Besaw et al. [97] extracted ROIs from
the GPR B-scans by using a 2D median filter and a zeros score com-
ponent analysis. The extracted ROIs were classified by a deep CNN
for the buried explosive hazard detection. The reported results
indicated that, given meaningful ROIs, a CNN had the capacity of
classifying complex signatures contained in GPR B-scans.

With the development of deep learning, data-driven approaches
raised to generate ROIs. One of the successful cases is Faster Region
Convolutional Neural Network (Faster R-CNN) [98], in which a
region proposal network (RPN) is designed to generate potential
ROIs, and a CNN is used to classify them. Notably, the RPN and
the CNN share the convolutional and pooling layers to avoid the
repeating computation and reduce the running time. For example,
Lei et al. [99] employed a Faster R-CNN to identify potential hyper-
bola regions. More specially, a Faster R-CNN with a data augmen-
tation strategy was used to detect rectangle regions containing
traces of buried objects. Then those regions were transformed into
binary images, and hyperbolic signatures in the regions were sep-
arated. Finally, downward opening hyperbola fitting was carried
out using those signatures, and their respective peaks were
obtained. The experiment results demonstrated that the Faster R-
CNN had the desirable performance on extracting ROIs from the
GPR B-scan autonomously and efficiently, which had the potential
in the analysis of synthetic and on-site GPR data sets. Xu et al.
[100] improved the Faster R-CNN framework by feature cascade,
adversarial spatial dropout network, and soft-nonmaximum sup-
pression for the railway subgrade defect detection. Feature cascade
means that the low-, middle-, and high-level representations are
combined to form newmultisized features. It has been proved use-
ful for detecting small objects [101]. The adversarial spatial drop-
out network can be considered as a learning strategy for
generating hard positive samples to reduce the unbalance in the
B-scans dataset. In the soft-nonmaximum suppression, the confi-
dence levels of bounding boxes are reduced according to their
overlapping area instead of directly suppressing the boxes whose
confidence levels are higher than a threshold. The detecting results
showed that the improved Faster R-CNN achieved an mAP of 83.6%
for subgrade defect detection, which was higher than the mAP of
the baseline Faster R-CNN. In addition, a comparison study demon-
strated the superiority of the proposed model on the robustness to
the baseline Faster R-CNN thanks to the three improvements. In
the work of Pham et al. [102], the success of a Faster R-CNN on bur-
ied objects detection using GPR images is also reported.

In general, we find that the data-driven algorithms for region-
based models outperform the rule-driven algorithms. This is
because the rules provided by humans for ROI extraction are
always not as complete as the knowledge summarized from a big
dataset by a data-driven algorithms. Unfortunately, as the work
principles of data-driven algorithms (e.g., neural network) are still
described as a ‘‘black box”, these knowledge cannot be summarized
as some forms easy for humans to understand. The development of
the explanation of ‘‘black box” [103] may be helpful to generate the
understandable rule to identify hyperbola regions. In the future, it
is potential to transform this knowledge into rules to facilitate the
GPR system, even promote the development of the use of Fresnel
law, which governs EM wave reflection and refraction.

The third direction based on autoencoder is to map GPR B-scan
data to more clear descriptions, in which the objects are easier to
be interpreted and detected. Alvarez and Kodagoda [104] proposed
an autoencoder network to interpret the real shapes and locations
of the buried objects based on the B-scan data of synthetic aperture
radars. The architecture of the proposed network can be divided
into two part: (a) an encoder used to downsample and compress
the B-scan data to the latent representations, and (b) an decoder
designed to transform the representations to sub-surface permit-
tivity maps, in which the shapes and locations of the buried objects
can be interpreted easily. The evaluation results indicated that the
autoencoder network achieved a 0.7782 structural similarity index
between the network outputs and the ground truths. Structural
similarity index is a widely-used metric for measuring the pixel-
level difference between two images [105]. Besides, the compar-
ison results demonstrated the autoencoder’s superiority in the
effectiveness and simplicity over other state-of-the-art deep learn-
ing architectures, such as conditional adversarial network and U-
net. In the work of Picetti et al. [73], three different autoencoder
architectures were developed to provide a novel description of B-
scans, in which landmine trances were considered as anomalies.
The three architectures N1 �N3 are symmetric but have different
convolutional filters. In the experiments, the receiver operating
characteristic (ROC) curves, representing the probability of correct
and false detection by spanning all possible values of a threshold C,
were used to compare the performance of N1 �N3. The ROC
results demonstrated that optimal architecture N1 can represent
the landmine areas as an anomaly.
4.3. DL architectures exploiting C-scan data

C-scan GPR data, obtained from a multichannel GPR system, can
be considered as a space combination of several B-scan data.
Although C-scan data are more informative, there are only a small
number of studies exploiting C-scan data using DL owing to the
complexity of the C-scan GPR data and the limitation of the DL
architectures exploiting 3D data [80].

Kim et al. [106] proposed a DL-based method for underground
object classification using C-scan GPR data. More specially, 3D
GPR signals collected by a multichannel GPR system are first
cropped by a 3D window box. Then, B-scan and C-scan images
are extracted from the cropped 3D data. These B-scan images
and C-scan slides are transformed into a 2D orthogonal grid map,
which is used as input data for a deep CNN for buried object clas-
sification. In the experiment of the field data collected from urban
roads, the performance of the proposed method was better than
the traditional methods only using B-scan data in the classification
of cavities, pipes, manholes, and subsoil background. It indicated
that the C-scan GPR data contained more information concerning
the class membership than the B-scan data. Similarly, in the work
of Tong et al. [37], 3D GPR data was transformed into 2D data, and
a CNN-based model used these 2D data for feature point extrac-
tion. These feature points were used to describe the contour pro-
files of pavement cracks for its 3D reconstruction. It can be found
that the main idea of these methods is to transform the 3D data
into 2D data. The transformation always leads to information
losses. Thus, the utilization of the state-of-the-art DL architectures
exploiting 3D data directly can be a way to solve the problem.
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4.4. Overview and comparison of the DL architectures

In the past decade, DL models have been designed and success-
fully applied to three types of GPR data. In order to further under-
stand these models, the works described in Section 4.1–4.3 are
compared using a pavement GPR dataset. The dataset was col-
lected from four highways in China using two transmitting fre-
quencies 300 MHz and 1.2 GHz. Two types of pavement defects
(cracks and uneven settlements) are labeled. Complete information
can be found in Data Availability. The comparison study only pre-
sents a fair competition of these DL architectures in the pavement
defect detection. More works can be performed in the future to
compare the performance of these DL architectures in the entire
field of civil engineering. Table 1 summarizes typical cited works,
classifies them into the types of the input data, and presents the
DL architectures along with some necessary details. Two metrics,
classification accuracy and intersection over union (IoU), are used
to evaluate the performance of deep-learning models in pavement
defect detection. Classification accuracy is the percent of defects in
a GPR dataset that are correctly classified, while IoU is to take the
ratio of the intersection between predicted results and ground
truth labels over the union between these two sets. Thus, classifi-
cation accuracy and IoU are used to evaluate the performance of
the deep-learning models in defect recognition and location,
respectively. From Table 1, we can find:

� Compared with the architectures exploiting B- and C-scan, the
ones exploiting A-scan have a slight advantage in defect class
recognition and location computation. It is because some neces-
sary pre-processing (e.g., filtering and information compress) is
conducted on GPR data for the utilization of B- and C-scan as the
input. These pre-processing procedures sometimes lead to fea-
ture and information loss. In the DL architecture using A-scan
data, the raw GPR signals are directly used as inputs, which
reserve all useful and useless information. Considering the
DL’s powerful capacity of filtering features not related to the
detection task, the useless information in the input has limited
effects on the final performance.

� We should also consider the integrity of scanning information
when choosing DL algorithms. For example, the information
retrieved from A-Scans is localized while C-Scans provide a
three-dimensional map, even though the DL architectures
exploiting A-scans trend to use several sequent signals to
Table 1
A Comparison Study of DL Architectures Exploiting GPR data.

Input Method Deep model

A-scan He et al. [86] CNN
Wang et al. [87] Autoencoder G
Tong et al. [88] CNN

Giannakis et al. [89] DNN PP
Has�im et al. [55] RNN

B-scan Xiang et al. [92] CNN
Umut and Levent [93] DBN

Lameri et al. [94] CNN
Kyle and Sarath [104] Autoencoder
Francesco et al. [73] Autoencoder

Kien et al. [96] CNN N
Besaw and Stimac [97] CNN

Gao et al. [107] Faster R-CNN
Pham and Sébastien [102] Faster R-CNN

Xu et al. [100] Faster R-CNN
Pau et al. [108] RNN

C-scan Tong et al. [37] CNN Fe
Kim et al. [106] CNN

Here: PPCA = predictive principal component analysis technique, FDTD = Finite-Differe
IoU = intersection over union.
improve their representativeness. Thus, DL architectures
exploiting C-scan are the most promising, though their perfor-
mances now are not as desirable as the performance of the
architectures exploiting A-scan. Compared with A- and B-scan
data, C-scan data contains complete space information of con-
cealed defects in the pavements. It means more representations
and features can be extracted from C-scan data than A- and B-
data, which are essential to further improve the performance
of DL architectures exploiting GPR data. Unfortunately, to our
best knowledge, now no DL architectures use C-scan data with-
out pre-processing procedures. The state-of-the-art DL architec-
tures [80] should be considered to exploit C-scan data directly
in the future.

� RNNs outperform CNNs and autoencoders in the use of A-scan
data because of their temporal dynamic behavior. This indicates
that RNNs can take the input data sequence into account, while
CNNs and autoencoders are not. The sequence of input data,
especially A-scan data, is an essential feature of GPR data.

� Some techniques are useful and essential for improving the pre-
cision and generalization of DL architectures exploiting GPR
data. The first is data augmentation, including cropping, rotat-
ing, and flipping input images. It can reduce overfitting and
improve the generalization of DL architectures because it can
be considered as noises in the training. A gradient descent algo-
rithm tends to balance the negative effects of the noise to min-
imize the overall error. In practice, this type of noise is common,
such as object incline, rotation, and angulation. Another is prior
knowledge, such as hand-crafted features and transfer learning.
It can increase the training effectiveness because the pre-
training phase is compressed. We also find that data-driven fea-
tures from transfer learning work better than hand-crafted fea-
tures because the prior knowledge learning from a desirable
data set is better than the one provided by humans. In addition,
dictionary learning and spatial dropout also have positive
effects on DL’s performance.

4.5. Current issues

From the literature review and the comparison study, we find
two inherent defects of DL limiting its application on exploiting
GPR data: (a) the dependence on the big data for training a desir-
able DL model, and (b) the arbitrary decision-making of DL model
for classification tasks.
Key techniques CA/% IoU

Wigner distribution 82.43 0.8212
reedy learning Regularization restrictions 83.67 0.8320
Network in network Cascade connection 85.17 0.8404
CA training method GPR dataset from FDTD 84.26 0.8512

Long short-term memory 84.26 0.8626

AlexNet 76.28 0.6755
Dictionary learning 80.31 0.6962
Hand-crafted feature 80.76 0.7233

DSSIM loss 77.32 0.7148
Undercomplete convolutional layer 78.46 0.6882

ormalized cross correlation Thresholding 75.69 0.6420
Hand-crafted feature 76.42 0.6682
Data augmentation 82.57 0.8491

Transfer learning GPR dataset from FDTD 80.43 0.8002
Data augmentation Feature cascade 81.62 0.8134

Long short-term memory 81.62 0.8332

ature point extraction Cascade connection 78.43 –
Grid transformation 80.12 –

nce Time-Domain, DSSIM = structural dissimilarity; CA = classification accuracy;
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4.5.1. Dependence on big data
It has been widely known that the performance of a DL model

heavily depends on the quality of its learning dataset. Insufficient
sample number, sample unbalance among the class membership,
and label corrosion always lead a poor capacity of a DL model, such
as overfitting, low generality, and unacceptable robustness. Unfor-
tunately, GPR datasets for training a DL model are not as ample as
the benchmark datasets for developing a DL model to solve classic
issues, such as the CIFAR-10 [109], ImageNet [110], and ‘‘For Music
Analysis” [111] datasets. Many previous studies mentioned in Sec-
tion 4.1–4.3 reported that their DL models were trained by a small
number of GPR-data samples, less than 104. To make matters
worse, the unbalance in these GPR datasets is inevitable because
some data are not easy to collect in practice.

Now, there are main three solutions to the issue. The first solu-
tion is the use of transfer learning in the pre-training phase. Trans-
fer learning is a technique applying the knowledge acquired while
solving one issue to a different but related problem. In the work of
Bralich et al. [112] and Reichman et al. [113], the prior knowledge
learning from the CIFAR-10 dataset was transferred to the CNN
model for buried target detection in the pre-training phase. Then
the pre-trained CNN model is fine-tuned by a small GPR dataset.
In the study of Enver and Yüksel [114], the learned weights in
the imagenet-matconvnet-vgg-f model trained on the Imagnet
Large Scale Visual Recognition Challenge (ILSVRC 2012) data
[115] was transformed to a CNN for buried wire detection. Unfor-
tunately, a transfer learning strategy can only help a DL model
learn some low-level representations from these benchmark data-
sets, such as lines and gray scales. This is because the latent
middle- and high-level representations related to the class mem-
bership in these benchmark datasets are very different from the
targets in GPR data, such as outlines and waveforms. In addition,
there are commonly two different and distinct phases in the train-
ing of DL: pre-training and fine-tuning. Schwartz-Ziv and Tishby
[116] indicated that the fine-tuning phrase could be considered
as compressing the internal representations under the training
error constraint, which is mainly responsible for the absence of
overfitting in DL. Thus, we can conclude that transfer learning in
the pre-training phase has limited help for the problem because
the procedure of compressing low-level representations to
middle- and high-level representations in the fine-tuning phase
still raises overfitting owing to the lack of training samples.

The second solution is semi-supervised learning. It means that
humans provide some hand-crafted representations before train-
ing a DL-model. For example, Malof et al. [117] proposed to con-
struct a CNN architecture that closely emulates successful hand-
crafted feature designs for GPR buried object detection. The exper-
iment results indicated the feasibility and effectiveness of this
approach for training a DL-model. However, the problem is that
it is not easy for humans to summary all useful representations
related to the buried object detection formally, especially high-
level representations.

The third approach is to enlarge the dataset using simulation
data or data augmentation. In the works of Pham et al. [102] and
Sonoda and Kimoto [118], thousands of GPR images were gener-
ated using finite-difference-time-domain simulation. Veal et al.
[119] proposed a generative adversarial network-based method
to impute new data based on limited and class imbalance GPR data.
These works reported improvement of accuracy and robustness
because of the reduction of class and condition unbalance in the
training datasets. Unfortunately, a problem still exists that the
developed DL model has undesirable stability on noises and back-
grounds. This is because the simulation conditions are simpler than
the real-world conditions, especially noise patterns and electro-
magnetic properties and distributions of the mediums. In addition,
data augmentation, as a widely-used technique to avoid overfitting
[120], is also used to reduce the dependence of big data in the GPR
DL architectures, such as the study of Reichman et al. [113], though
it has limited help to solve the problem of the class imbalance.

In summary, from the findings of this section, we can conclude
that the dependence of big data in the training of DL architectures
exploiting GPR data is still not solved well because of the limita-
tions of the three solutions. As a large number of the publications
reported their well-developed CNN for exploiting GPR data, we
think the optimal solution for the problem is to share the data from
the GPR researchers in the world to build a benchmark GPR data-
set. The similar works are standard in the field of deep learning
[109–111], even computer science, but cannot be found in the field
of NDT. As a pioneer, we provide our GPR dataset of pavement
defect inspection used in Section 4.4. It is the first step for our pro-
posed solution.

4.5.2. Arbitrary decision-making of DL models
As for the second inherent defects of DL, we would like to

explain it starting with defining DL as a prediction function
bF : X # Y with a minimum error

P
Yi–bF Xið Þ

E Yi; bF Xið Þ
� �

;

i ¼ 1; . . . ;n, once given a learning set v ¼ X1;Y1ð Þ; . . . ; Xn;Ynð Þf g,
where X is a p-dimension representation space Rp;Y is a assign-
ment space y1; . . . ; ykf g with k class; and EðÞ is a cost function.
For a new sample with an input-label pair x; yð Þ, a DL model
describes the new sample as an estimate of a conditional distribu-

tion bF xð Þ ¼ p1 y1 j xð Þ; . . . pk yk j xð Þf g and assign it to class ya with
a ¼ maxj¼1;...;kpj yj j x

� �
. This often results a hubristic bias: overconfi-

dence in the assignment of a definite class [121]. Exactly, a DL
model is forced to assign the new sample to one of the k classes,
even though its input x includes some conflict and confusing infor-
mation. For example, x provides confusing information indicating
the DL model should classify the sample to y1 or y2 but cannot
make a precision decision between the two classes. However, no
existing DL can perform it. Additionally, conflict information exists
if the sample includes two or more classes, such as a B-scan GPR
image with two types of pavement distresses. However, traditional
DL models ignore conflict information and make a arbitrary
decision.

This problem should not be neglectful in the applications of DL
in GPR for civil engineering. As discussed in Section 4.5.1, the
observations in a GPR dataset usually are concentrated on a small
volume. Still, a DL architecture is expected to provide definite pre-
dictions for the entire space. For instance, some buried objects are
made of different materials but have the same shape, which are
difficult to distinguish from GPR images as their signatures look
very similar. The same object buried in different soils shows differ-
ent signatures in a GPR image. In addition, some detection objects
usually exist in the same area, which means an abnormal signal in
A-scan data or a hyperbolic signature from a B-scan image may
contain information representing more than one object. Therefore,
the hubristic bias raises a problem of arbitrary decision-making.

One approach to solve this problem is to fuse the data from dif-
ferent sources to make a decision. In the work of Sakaguchi et al.
[122], three strategies for fusing data from L-band and LIDAR
GPR were proposed. The first strategy is data-level fusion, where
the two types of data are stacked and used as input data, while
the second one is also data-level fusion, which is realized by con-
catenating the side of the images by the side. The final one is
feature-level fusion, in which the output features from two CNNs
were concatenated one by one for classification. The experiment
results indicated that the second strategy achieved the best perfor-
mance for the buried object detection, while the worst perfor-
mance was from the third one. The authors imputed it to the
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poor optimization owing to the additional parameters in the third
model. However, we believe that the third strategy is promising if a
desirable fusion method is adopted instead of the simple concate-
nation, such as Dempster-Shafer theory [123] and contextual reli-
ability evaluation [124].

Another approach is to design cautious or evidential classifiers
for exploiting GPR data. A cautious or evidential classifier means
it can provide imprecise and ambiguous classification, such as
assigning a sample to a multi-class set y1; y2f g or making a rejec-
tion decision, while a traditional DL algorithm can only make a pre-
cise classification. The assignment to a multi-class set y1; y2f g
means that a classifier believes a sample belongs to class y1 or y2
but do not know which one, while rejection indicates that the clas-
sifier does not know which class the sample belongs to. Yotam
et al. [125] proposed cautious deep learning allowing for ambigu-
ous rejection by replacing p yj j x

� �
with p x j yj

� �
since

p yj j x
� � ¼ p x j yj

� �
p yj
� �

=p xð Þ the prediction involves the balance

between p yj
� �

and p x j yj
� �

; j ¼ 1; . . . ; k. More specially, the method
first finds an estimate bp x j yj

� �
of p x j yj

� �
and an appropriate scalar

bty. Then the method assigns the sample x to class yj iff

C xð Þ ¼ yj j maxj¼1;...;kpj yj j x
� �

> bty
n o

. Otherwise, the method makes

ambiguous rejection. In practice, only in the special case that all of
the k classes have the same probability p yj

� �
in the real-world con-

ditions, the negative effects of p yj
� �

on p yj j x
� �

can be ignored.
However, in the GPR detection for civil engineering, the frequen-
cies of different buried objects are obviously different. For exam-
ple, the number of cracks is much more than the number of
uneven settlements in a pavement. Thus, p yað Þ are different from
p ybð Þ for ya and yb 2 y1; . . . ; ykf g. Therefore, there are significant
advantages to use p x j yj

� �
to build a DL classifier for exploiting

GPR data by taking p yj
� �

into account and tieing the prediction of
an observation x with the likelihood of observing that class.

Tong et al. [126] proposed a distance-based DL allowing for
ambiguous rejection, called ConvNet-BF classifier or evidential
DL. In the method, the distances between a pattern x and some
prototypes are computed and used to build mass functions based
on Dempster–Shafer theory. The mass functions are used for
assigning the sample to one of the classes or rejecting based on
an evidence-theoretic rule [127]. Interestingly, ConvNet-BF classi-
fiers can make set-valued assignments [128], which are a subclass
of imprecise classification. A set-valued decision is defined as
assigning a sample to one of the non-empty subsets in the assign-
ment space y1; . . . ; ykf g. For example, a ConvNet-BF classifier has
capacity of assigning a sample to set y1; y2f g if conflict information
exists in the sample. It seems to have the generalized potential to
solve the problem of the arbitrary decision-making of DL models.
From the view of the GPR detection for civil engineering, the pro-
posed method can perform multi-class prediction when two or
more detection objects exist in the same area. Multi-class predic-
tion is a assignment to a non-empty subset whose cardinality is
larger than one. ConvNet-BF classifier can also indicate the uncer-
tainty from GPR data (e.g., the same object buried in different areas
showing different signatures in GPR data) using its additional out-
put mass functions m Xð Þ. The conflicts in GPR data can be charac-
terized by two near values of output mass functions (e.g., two
different types of the buried objects with similar signatures from
GPR data). The maximal conflict corresponds to
m yif gð Þ ¼ m yj

� �� � ¼ 0:5. For complete introduction, readers are
invited to refer to Denœux’s original work [129] and its extension
to DL [126]. However, little has been done to combine recent tech-
niques of cautious and evidential DL with GPR data. It will be an
important issue for the combination of GPR and DL for civil
engineering.
5. Conclusions

The progressive evolution of GPR techniques with desirable
capabilities poses unique chances, as well as new challenges, to
NDT for civil engineering. DL managed to revolutionize many clas-
sification and regression tasks achieving or even exceeding the
human-level precision, and it currently began to be employed in
the field of GPR. Even though GPR devices provide precise and
stable representations of buried objects and backgrounds, its intri-
cate data structure leads the exploitation using DL architectures
not easy. In this survey, we divided DL architectures exploiting
GPR data into three groups from the view of the scanning types
of GPR. In general, the experiment results indicated a slight advan-
tage of DL architectures exploiting A-scan data for the GPR detec-
tion in comparison to those using B-scan images. The recent
works managed to achieve promising performance utilizing C-
scan data; however, more complex architectures or pre-
processing procedures were required.

The dependence of big data, a current research issue of combin-
ing DL and GPR for civil engineering detection, is currently attract-
ing a lot of interest. There are three directions to reduce the
dependence, transfer learning, semi-supervised learning based on
hand-crafted representations, and enlargement a dataset using
simulation data or data augmentation. However, the possibility
of overfitting and low generalization are still not solved well owing
to a small volume of the real observations in a GPR dataset. The
optimal solution for the problem is to share the data from the
GPR researchers in the world to build a benchmark GPR dataset.
Another current research problem is the arbitrary decision-
making of DL models raised by its overconfidence in assigning a
GPR sample to a definite class. Fusing data from different types
of GPR devices, even other NDT techniques, is an effective solution.
In addition, novel evidential DL has the generalized potential to
solve the problem. From the view of the GPR detection for civil
engineering, an evidential DL architecture can provide a multi-
class and imprecise prediction when conflict and uncertainty exist
in GPR data. However, little has been done to combine evidential
DL techniques with GPR data. It will be an essential issue for the
application of DL on GPR detection for civil engineering.
6. Data availability

All GPR data used in Section 4.4 in the form of B-scan are avail-
able in Google Drive via Developing GPR data set
(https://drive.google.com/drive/folders/1PEWiBtmGDlSu1HH_
lKAENcCPaDN-DHpG).
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