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Subgrade defects originate below the base of an asphalt pavement and they contribute significantly to
pavement damage. The detection of subgrade defects is considered challenging because the recognition
of defects is difficult. Therefore, the utilization of ground penetrating radar (GPR) to detect subgrade
defects has attracted significant interest in recent years. However, the use of manually processed GPR
images for classifying defects is inefficient and inaccurate. Thus, in this study, we applied convolutional
neural networks (CNNs) to GPR images for automatically classifying subgrade defects (e.g., uneven settle-
ment, sinkholes, and subgrade cracks). Two CNNs called multi-stage CNN and cascade CNN with different
structures were established to accomplish the tasks automatically. The main difference between the two
CNNs is that the cascade CNN is a classifier 2, which is for recognition and trained only using hard sam-
ples. Each CNN was developed in training, validation, and testing processes. Based on the training and
testing results, sensitivity analysis was performed to verify the stability of the CNNs. We compared
state-of-the-art methods for defect detection and the CNN-based method in order to verify the superior
performance of the CNNs. Finally, we tested an application of the CNN-based method to show that it is
transferrable to other asphalt pavements. The training results indicated that the cascade CNN classified
subgrade defects with 97.35% accuracy during training and 96.80% in validation, while the multi-stage
CNN classified subgrade defects with 91.35% accuracy during training and 90.45% in validation. The sen-
sitivity analysis results showed that the cascade CNN exhibited the expected stability in terms of the
transmitting frequency, i.e., the frequency of a high-frequency electromagnet wave from the transmitting
antenna of the GPR, and different highway structures, whereas the multi-stage CNN did not. In addition,
compared with Sobel edge detection and K-value clustering analysis, the CNN-based method obtained
more robust performance at subgrade defect detection under various conditions using raw images.
These results indicate that the CNN-based method performs well and it can classify subgrade defects
in realistic situations.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The subgrade of an asphalt highway is an important component
and the main part responsible for bearing loads on the pavement,
including the pavement’s weight and the vehicle load [1]. Due to
the stress state of the subgrade, some defects are inevitable such
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as uneven settlement, sinkholes, and subgrade cracks [2]. Subgrade
cracks always occur in the subgrade before propagating to the sur-
face but these subgrade defects cannot be observed directly. How-
ever, these defects always lead to pavement stresses and they
affect the performance of highways. If effective measures are taken
early to detect these defects in the subgrade, then the formation of
pavement distress may be prevented. However, the detection of
these defects is very challenging, mostly because they are located
below the pavement.

In recent years, several innovative technologies have been used
to detect subgrade defects, such as ground penetrating radar (GPR)
technology [3–5], X-rays [6], and ultrasonic flaw detection [7]. GPR
technology has some advantages such as its high efficiency, safe
operation, nondestructive operation, and high anti-interference
level. Therefore, GPR has been used widely to detect and evaluate
highway structures. Significant progress has been made in the uti-
lization of GPRs for detecting defects in subgrade structures, but
this technology has several obvious disadvantages, i.e., its depen-
dency on other auxiliary instruments for damage recognition, com-
plicated data preprocessing requirements, and the difficulty of
automatic defect recognition [8]. For example, Dong et al. [9] used
a novel vehicle-mounted GPR to estimate the thicknesses of high-
way structure layers and to detect defects. The estimated results
showed that the system and methods obtained satisfactory accu-
racy. This method must be assisted by a global positioning system
and filtering algorithms. Khamzin et al. [10] used an air-launched
GPR system comprising two truck-mounted GSSI antennae driven
at near-highway speeds to assess highway structures and defects,
but defects must be classified manually based on GPR data in this
process. Szymczyk et al. [11] utilized an innovative S-
transformation and successfully re-constructed GPR signals into
three-dimensional models by using a complex conversion process.
Yuri et al. [12] used the common offset and common midpoint
method based on GPR data to analyze the composition of soil. Tosti
and Benedetto [13] predicted pavement pumping using GPR,
although this method can only recognize pavement pumping. In
general, highway detection, especially subgrade defect detection,
demands the development of an automatic defect recognition sys-
tem that can use GPR data or images directly.

The methods described above partially address the aim of using
GPR data or images but the following problems remain: (1) com-
plex foreground, background, and feature information related to
subgrade defects in GPR data cannot be handled easily; (2) the
robustness of the algorithms can be affected by variable real-
world situations (e.g., transmitting frequency of the GPR and the
highway structure); and (3) human assistance is required to recog-
nize the defects in images or data. Therefore, it is important to
develop an automatic subgrade defect recognition system with
sufficiently robust performance in variable real-world situations
and under the influence of GPR noise.

Developments in machine learning have led to deep learning,
especially convolutional neural networks (CNNs), which obtain
good performance in the field of object recognition [14,15]. Lecun
et al. [16,17] proposed the CNN as a type of artificial neural net-
work with a structure where shared weights reduce the complexity
of the network model. The structure is similar to that of biological
neural networks [18–20]. Detailed information about CNNs can be
found in previous studies [21–27]. In general, robustness is an
attractive property of CNNs in civil engineering, where this robust-
ness is evident in terms of their high stability at recognizing differ-
ent objects such as humans and animals in different conditions.
This property is important for defect recognition in GPR images
where it is necessary to handle complex foreground, background,
and defect features. Therefore, CNN can be utilized to classify dif-
ferent subgrade defects. In the last two years, CNNs have been used
to detect highway defects, where Tong et al. [28] and Cha et al. [29]
employed CNNs to detect pavement cracks, while Cha et al. [30]
used a fast CNN to detect multiple visual damage types in struc-
tures. The results of these three studies demonstrate that CNNs
exhibit good stability in this field compared with conventional
detection algorithms. Tong et al. [8] also used CNNs for the recog-
nition, location, measurement, and three-dimensional reconstruc-
tion of concealed cracks based on GPR images. However, this
CNN system could only distinguish concealed cracks from other
types of distress, and thus it cannot be regarded strictly as defect
recognition. Therefore, in the present study, we developed an
application where we combined CNN with GPR images for defect
detection in order to obtain highly accurate detection results based
on an efficient detection procedure.

In this study, we aimed to employ CNNs to obtain appropriate
models for automatically classifying subgrade defects using GPR
images of asphalt pavements. The main advantages of the pro-
posed CNN-based method are that it exhibits good stability with
different transmitting frequency (300, 500, and 900 MHz), highway
structures (five highways with different structures in Zhejiang Pro-
vince, China), and various type of GPR noise (e.g., foreground and
background). The remainder of this paper is organized as follows.
In Section 2, we summarize the main approaches employed in this
study, including the methods used for generating datasets for
CNNs, building the CNN structures, training and testing the CNNs,
and analyzing the stability and performance of the CNNs. The per-
formance of the CNNs is discussed in Section 3, including the train-
ing and testing performance, stability analysis, and comparative
studies. In Section 4, we present an application of a well-
developed CNN in Zhejiang, China. We give our conclusions in
Section 5.
2. Research approaches

Fig. 1 shows the main research procedure followed in this study.
A collection method that employed an air-coupled GPR and a
method for confirming different types of defects using core sam-
ples were utilized to prepare the datasets for our CNNs. Two CNNs
were developed with different architectures based on GPR datasets
to recognize subgrade defects. Fig. 2 shows the general develop-
mental flow for the two CNNs. The two CNNs were implemented
based on Caffe with an Intel (R) Core (TM) i7-6700 CPU, 8.00 GB
random access memory (RAM), and an Nvidia GeForce GTX 1060
6 GB GPU.
2.1. Generating datasets for CNNs

The first step in the development of CNNs for recognizing sub-
grade defects was the generation of datasets. The complete dataset
included training samples, testing samples, and their correspond-
ing target samples.

A high-quality GPR dataset of subgrade defects was required to
establish CNN models. The quality of a GPR dataset is often influ-
enced by the acquisition equipment and pavement structures. An
air-coupled GPR called OKO GPR was employed to capture GPR
images. Three shielding antennae were utilized with 300, 500,
and 900 MHz high-frequency electromagnet waves, where their
vertical resolution ranges were 0.30–0.47 cm, 0.15–0.27 cm, and
0.09–0.13 cm, respectively. The vertical resolutions of the three
shielding antennae met the engineering requirements [31]. The
time sampling rate was 1024 scans/s and the distance sampling
rate was 10 samples/cm. The height of the air-coupled antenna
to the ground is 0.2 m.

A key factor that affects the image quality is the collection
method employed, where the optimal collection method should
consider both efficiency and precision. Detailed information about



Fig. 1. Flow chart illustrating the CNN development process.

Fig. 2. Flow chart illustrating the detection of subgrade defects.
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the scanning process can be found in a previous study [8]. The
antenna was activated to record an abnormal subgrade defect
while its position is moved from location 1 to location 2. The dis-
tance between locations 1 and 2 was 4 cm, thereby ensuring that
the GPR scanned and recorded more than four echo signals from
the topmost point of a subgrade defect in order to obtain precise
GPR images. The speed of the air-coupled GPR connected to a vehi-
cle was 60 km/h to ensure the efficiency of GPR image acquisition.
Denoising, wavelet analysis, and the detection of GPR images were
performed automatically using LTD-2000 systems based on the
GPR data collected. In total, 312 raw GPR images were acquired
with different transmitting frequency (i.e., 267 images at 5120 �
3072 pixel resolution for training and 45 images at 5120 � 3072
pixel resolution for testing). Four GPR images are shown in Fig. 3.
Clearly, the collection method could acquire GPR images contain-
ing subgrade defects with high efficiency and precision. In each
of the 312 GPR images, the distance and the depth covered in a sin-
gle GPR image were 25 m and 1 m, respectively.

The 267 images were cropped into small images each with a
pixel resolution of 256 � 256. The smaller images were manually
annotated as containing no defect, uneven settlement, sinkhole,
or subgrade crack. The basis of the annotations for the core sam-
ples is shown in Fig. 3. Sinkholes were confirmed based on the
pavement conditions and core samples. Uneven settlement and
subgrade cracks were confirmed based on core samples. Excava-
tion was performed to confirm detection if the defects could not
be determined based only on the core samples.

A target dataset was also used for developing the CNNs, which
contained different types of defects with their corresponding GPR
images. In this study, the four conditions present in the GPR images
comprised subgrade with no defect, uneven settlement, sinkhole,
and subgrade crack. Considering that quadrature encoding had
advantages in terms of its high precision and fast response speed
[28], these types of defects were quadrature encoded as [1000]0,
[0100]0, [0010]0, and [0001]0 to represent ‘‘subgrade with no
defect,” ‘‘uneven settlement,” ‘‘sinkhole,” and ‘‘subgrade crack,”
respectively.
2.2. CNN

In this section, we explain the overall architectures of the two
CNNs, including the details of each layer. The two CNNs were cre-
ated using multiple layers, which mainly comprised the input, con-
volution, pooling, and output layers, and we explain the differences
between the two CNNs in the following. Other important functions



Fig. 3. Typical GPR images and core samples.
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and parameters used for network learning are described in
Section 2.2.2.

2.2.1. Architecture description
The architectures of the two CNNs called the multi-stage CNN

and cascade CNN are shown in Fig. 4. In general, a neural network
is a mechanism for machine learning based on an input layer, mul-
tiple hidden layers, and an output layer. Each layer comprises sev-
eral neuron nodes. A CNN is a type of the neural network with two
special layers called the convolution layer and pooling layer. In this
study, two CNNs were employed to classify GPR images.

(1) Architecture of the multi-stage CNN

The sizes of the sub-images and sequence of layers were based
on previous studies [21,29]. The convolutional layer and pooling
layer allow GPR images to be used directly where the input and
feature maps are acquired in the convolutional layers. Several fea-
ture maps comprised the convolutional layers, as shown in Fig. 4
(a). We used specific sizes and numbers of kernels in the convolu-
tional layers, as explained in our previous studies [28,32,33]. A fea-
ture map represented a special type of feature of subgrade defects
based on the convolution operation with different kernels. A kernel
can be regarded as a convolution filter that represents a small set
of connection weights in a general neural network. As shown in
Fig. 4(a), the multi-stage CNN had five kernels in C1 and 10 kernels
in C2. The 15 kernels were initialized with random values and
given the final values by network training. Each convolution result
formed an element of the feature map in the next layer. The con-
nections between the two layers were established in this manner.
The procedure described above can be represented by Eq. (1):

Ij ¼ sigmoid
Xn
i¼0

xi �wij þ bj

 !
ð1Þ

where xi denotes the ith feature map from the previous layer or the
input image from the input layer, wij and bj denote the weights and
bias of the jth kernel, respectively, and sigmoid(x) is a function given
by the following equation.

sigmoidðxÞ ¼ 1
1þ e�x

ð2Þ

Pooling layers are another key feature of CNN where they
reduce the spatial size of feature maps in a process known as
downsampling or pooling. Some studies [29,34] have shown that
the max pooling performance with image data sets is better than
that of other pooling methods. Thus, max pooling was utilized in
the CNN architecture in this study. Max pooling takes the max val-
ues from a feature map, and an example of max pooling as shown
in Fig. 5.

After the convolution and pooling operations, a layer is required
to classify the input data based on the feature maps. Softmax is the
main method used to classify input data. The procedure followed
by the softmax layer in our multi-stage CNN can be represented
by Eq. (3):

Pðyi ¼ 4 xi;Wj Þ ¼

pðyi ¼ 1 xi;Wj Þ
pðyi ¼ 2 xi;Wj Þ
pðyi ¼ 3 xi;Wj Þ
pðyi ¼ 4 xi;Wj Þ
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where P(yi = 4|xi;W) denotes the probabilistic expression for the ith
training sample and WT

jx
(i) are the inputs for the softmax layer. The

inputs for the softmax layer are the feature maps obtained from the
pooling layers. The sum of the right-hand side is always 1 because
the function always normalizes the distribution. Thus, Eq. (3)
returns the probabilities of each input’s individual classes.

(2) Architecture of cascade CNN
Hard samples have always been a problem for deep learning

[34]. In the field of subgrade detection using GPR images, hard
samples comprise those samples with low resolution. Samples
with low resolution are collected using a low transmitting fre-
quency and Tong et al. [32] showed that the accuracy of CNNs
decreases with the transmitting frequency. However, a low trans-
mitting frequency is sometimes used to collect subgrade informa-
tion from a great depth. It is difficult for the network to converge
when these types of samples are present. Thus, identifying these
samples and training them individually is a good solution. There-
fore, as described in a similar study [33], the multi-stage CNNs
were cascaded as a new CNN called a cascade CNN, as shown in
Fig. 4(b).

As shown in Fig. 4(b), a hard sample is selected based on its
transmitting frequencies. In this study, a hard sample was defined
as an image collected using a transmitting frequency below 500
MHz. Low transmitting frequencies yield images with low resolu-
tion so it is difficult to determine whether the defects in GPR
images are sinkholes or subgrade cracks with only one classifier.
These images were regarded as hard samples. After identifying
the hard samples, two classifiers with the same structure as the
multi-stage CNN were trained individually until the recognition
accuracy exceeded a threshold. The main difference between the



Fig. 4. Structures of the two CNNs.

Fig. 5. Example of max pooling.
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multi-stage CNN and the cascade CNN is classifier 2, which has the
same structure as the multi-stage CNN but it is only trained using
hard samples.
2.2.2. Network learning
The aim of network learning is to minimize the distance

between the outputs of the CNNs and the target samples by adjust-
ing the connecting weights and bias. As mentioned above, the ini-
tial values of the weights and bias were randomly assigned before
training. The outputs of the CNNs and the target classes did not
coincide, and the difference was calculated with Eq. (4):

L ¼ 1
m

Xm
i¼1

Xn
j¼1

1fyi ¼ jg log eW
T
j xiPn

l¼1e
WT

i xi

" #
þ k
2

Xn
j¼1

W2
j ð4Þ
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where 1{yi = j} is a logical expression that always returns either
zeros or ones; in particular, if an output for the ith GPR image is
true for j class, then the term returns ones; otherwise, zeros are
returned; and k

2

Pn
j¼1W

2
j is a regularization term to prevent overfit-

ting [36].
To narrow the deviations, the backpropagation algorithm was

utilized for training. The connecting weights and bias were opti-
mized using Eqs. (5) and (6), respectively,

Wijðpþ 1Þ ¼ WijðpÞ � az
@L

@Wijðpþ 1Þ þ b WijðpÞ �Wijðp� 1Þ� � ð5Þ

bjðpþ 1Þ ¼ bjðpÞ � aj
@E

@bjðpþ 1Þ þ b bjðpÞ � bjðp� 1Þ� � ð6Þ

where p � 1, p, and p + 1 denote the p-1th, pth, and p + 1th itera-
tions during training, respectively, az and aj are the learning rates
with a range of [0, +1], and b is a damping coefficient.

The procedure used for network learning with the backpropaga-
tion algorithm in our study is as follows.

Step 1. Give the stochastic connecting weights and bias to the ini-
tial CNNs.

Step 2. Select 500 training samples randomly for each iteration
and then input them into the CNNs.

Step 3. Calculate L for 500 training samples.
Step 4. Adjust parameters Wij and bj with Eqs. (5) and (6).
Step 5. Select another 500 stochastic training samples and repeat

steps 2–4 until L meets the requirement.
Step 6. Test the trained CNN with the testing dataset.

2.3. Stability and performance analysis

2.3.1. Stability analysis
The L results from training can only reflect the average accura-

cies of the two CNNs. As mentioned above, sensitivity analysis was
required to verify the stability of the CNNs in different real-world
conditions, including different transmitting frequency and high-
way structures.

(1) Sensitivity analysis with different transmitting frequencies.

The effects of different GPR transmitting frequencies were con-
sidered. In this study, three different transmitting frequencies, i.e.,
300, 500, and 900 MHz, were used to verify the sensitivity of the
CNNs. In the testing dataset, 45 GPR images were divided based
on their transmitting frequency. There were 15 GPR images for
each transmitting frequency. These images were cropped to obtain
small images with 256 � 256 pixel resolution. These small images
were then inputted into the two CNNs and the results were used to
verify the sensitivity of the CNNs to the transmitting frequency.

(2) Sensitivity analysis with different structures

The effects of different highway structures were also consid-
ered. We collected 45 GPR images from five highways in Zhejiang
Province, China, and their structures are shown in Table 1. There
were 15 GPR images for each type of highway structures. These
images were inputted into the two CNNs and the results were used
to verify the sensitivity of the CNNs to the highway structures.

2.3.2. Comparisons with state-of-the-art methods for defect detection
We compared the performance of the CNN-based method with

the state-of-the-art methods for detecting subgrade defects, where
three different images from the testing dataset collected with dif-
ferent highway structures and transmitting frequencies were used.
We selected two well-known methods comprising Sobel edge
detection and K-value clustering analysis for the comparisons.
The results obtained using the three methods were employed to
verify the superior performance of the CNN-based method. A pre-
vious study showed that Sobel edge detection obtained unsatisfac-
tory results with digital images [29] but GPR images have different
characteristics compared with digital images of highways. For
example, GPR images contain a large amount of background noise
information due to the properties of GPR, which may have negative
effects on object recognition. Thus, Sobel edge detection was
employed to show that CNN performed better as dealing with
background noise information.
3. Results and discussion

3.1. Training and testing results

Unlike other image-based methods for detecting subgrade
defects, we performed automatic feature extraction using network
learning by adjusting the weights and bias of the kernels. Fig. 6
shows the training and validation results. The ratio of the number
of training images relative to validation images was 4:1, and a total
of 10,000 features were acquired from the 267 images with 5120
� 3072 pixel resolution. Thus, the training and validation accura-
cies were calculated as 8000 and 2000, respectively. As shown in
Fig. 6, the network learning performance was exceptional. The final
training and validation accuracies of the cascade CNN were 97.35%
at the 144th iteration and 96.80% at the 145th iteration, respec-
tively. The final training and validation accuracies of the multi-
stage CNN were 91.35% at the 134th iteration and 90.45% at the
132nd iteration, respectively. The training and validation accura-
cies of the two CNNs satisfied the demands for subgrade assess-
ment in China [31].

Fig. 7 shows images of the 1st field visualization (C1) for the
multi-stage CNN and classifier 1 in the cascade CNN for a GPR
image. As mentioned above, the multi-stage CNN and classifier 1
in the cascade CNN had the same structure and they were trained
using the same dataset. Thus, they had the same kernels in the con-
volutional layers. The visualizations of each receptive field were
regarded as feature maps of subgrade defects, where they could
indicate whether the network needed more training and the types
of features recognized by the well-trained CNNs [29]. In particular,
the 1st field visualization (C1) for the multi-stage CNN and classi-
fier 1 in the cascade CNN had five receptive fields, as shown in
Fig. 4. Considering that sinkholes should produce a hyperbola in
GPR images and that uneven settlement should produce no hori-
zontal reflections, then features 2 and 3 were probably sinkholes
and uneven settlement, respectively. Cracks (in the pavement or
subgrade) should not affect the GPR image greatly, as shown by
Lu et al. [35,37], so the shapes of concealed cracks in GPR images
comprised a scattered hyperbola with symmetrical left and right
sides. Feature 1 in Fig. 7 was probably a subgrade crack. In general,
the two CNNs learned the features of defects via automatic train-
ing. Thus, the two CNNs had the capacity for automatic feature
learning. In addition, the feature maps contained smooth patterns
with some noisy features due to the complex and arbitrary patters
of the asphalt highway structures. These noisy features may
explain the erroneous assessments.

Training the multi-stage CNN with a GPU (Nvidia GeForce GTX
1060 6 GB) and a CPU (Intel (R) Core (TM) i7-6700 CPU) required
about 10 s for one iteration and the approximate estimated run-
ning time on only one CPU was about 144 s. Similar times were
required for training the cascade CNN. Therefore, the use of a
GPU boosted the training speed. The two well-trained CNNs were
used for sensitivity analysis to verify their stability.



Table 1
Highway structures.
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3.2. Sensitivity analysis results

The average accuracies of the two CNN reflected their overall
performance. As mentioned above, sensitivity analysis was
performed to verify the stability of the CNNs in different condi-
tions, including different transmitting frequency and highway
structures.
3.2.1. Recognition accuracy with different transmitting frequency
The 45 GPR images in the testing dataset were divided based on

their transmitting frequency (i.e., 300, 500, or 900 MHz). There
were 15 GPR images for each transmitting frequency. These images
were cropped to obtain small images at 256 � 256 pixel resolution.
The 10,800 small images were inputted into the two CNN. The clas-
sification accuracy rates are shown in Figs. 8 and 9.



0 20 40 60 80 100 120 140 160

86

88

90

92

94

96

98

A
cc

ur
ac

y(
%

)

Iteration

 Training of the cascade CNN (max: 97.35% @ 144th iteration)
 Validation of the cascade CNN (max: 96.80% @ 145th iteration)
 Training of the multi-stage CNN (max: 91.35% @ 134th iteration)
 Validation of the multi-stage CNN (max: 90.45% @ 132th iteration)

Fig. 6. Accuracy for each iteration.

76 Z. Tong et al. / Construction and Building Materials 169 (2018) 69–82
Fig. 8 shows that the classification accuracies obtained by the
multi-stage CNN with transmitting frequencies of 300, 500, and
900 MHz were 78.87%, 92.33%, and 95.28%, respectively. Detailed
information about the recognition rates is shown in the confusion
matrices. The confusion matrices demonstrate that the recognition
rates varied significantly, thereby showing that the classification
results were influenced by transmitting frequencies using the
multi-stage CNN. Thus, we can conclude that the multi-stage
CNN exhibited instability that depended on the transmitting fre-
quencies. The low transmitting frequencies had a negative influ-
ence on the performance of the multi-stage CNN because less
detail of the subgrade defects was present in the GPR images as
the transmitting frequencies decreased. Thus, some defect features
could not be acquired after the convolution operation and negative
changes also occurred at the edges of defects. Due to this loss of
important feature information, the results obtained by the softmax
layer deviated from the actual results. Super-resolution solutions
such as regularized deconvolution [38] may be used to address this
loss of important feature information. If these methods are utilized
in GPR with a low transmitting frequency, such as 300 MHz, then
the accuracy of the multi-stage CNN may be improved. However,
the improvement might not be significant if the transmitting fre-
quency is high. The utilization of super-resolution solutions to
improve the accuracy of the multi-stage CNN should be addressed
in future research.

Fig. 9 shows that the classification accuracies of cascade CNN
with transmitting frequencies of 300, 500, and 900 MHz were
95.36%, 95.78%, and 95.89%, respectively. Detailed information
about the recognition rates is shown in the confusion matrices.
According to the confusion matrices in Fig. 9, the recognition rates
did not differ greatly, thereby demonstrating that the classification
results obtained by cascade CNN were not influenced significantly
Fig. 7. Learned
by the transmitting frequency. Thus, we can conclude that cascade
CNN exhibited stability with the transmitting frequency, and clas-
sifier 2 in cascade CNN, which was only trained using hard sam-
ples, could improve the robustness of object recognition with
various transmitting frequencies.

In general, cascade CNN performed better in terms of both the
accuracy and its robustness to different transmitting frequencies
compared with multi-stage CNN. Therefore, cascade CNN was used
for the sensitivity analysis in order to verify its stability with differ-
ent highway structures.

3.2.2. Recognition accuracy with different highway structures
We collected 45 GPR images from five highways in Zhejiang

Province, China, and their structures are shown in Table 1. There
were 15 GPR images for each highway structure. The testing
images obtained at 900 MHz were utilized to verify the stability
of cascade CNN with different highway structures. The results of
the classification accuracy rates are shown in Fig. 10.

Fig. 10 shows that the classification accuracy rates using cas-
cade CNN with highway structures 1–5 were 96.61%, 95.69%,
96.25%, 95.67%, and 95.23%, respectively. Detailed information
about the recognition rates is shown in the confusion matrices.
According to the confusionmatrices in Fig. 10, the recognition rates
did not vary greatly, so the classification results obtained by cas-
cade CNN were not influenced by the different highway structures.
Thus, we conclude that cascade CNN exhibited stability with differ-
ent highway structures. Therefore, cascade CNN was used to
demonstrate its superior performance compared with the state-
of-the-art methods for defect detection.

3.3. Comparative studies

In order to compare the performance of the CNN-based method
using cascade CNN with the state-of-the-art methods for detecting
subgrade defects, we used three images from the testing dataset
with different highway structures and transmitting frequencies.
We selected two well-known methods comprising Sobel edge
detection [39] and K-value clustering analysis [40] for the compar-
ison. The results obtained using these three methods were
employed to verify the superior performance of the CNN-based
method.

The first image from Highway 1 had a resolution of 5120 �
3072 pixels and a transmitting frequency of 900 MHz, as shown
in Fig. 11(a). The CNN-based method achieved accurate subgrade
crack recognition and localization, as shown in Fig. 11(b). Sobel
edge detection and K-value clustering analysis obtained some
information about the subgrade crack, as shown in Fig. 11(c) and
(d), but they could only recognize part of the information about
the subgrade defects.

The second image from Highway 4 had a resolution of 5120 �
3072 pixels and a transmitting frequency of 300 MHz, as shown in
Fig. 12(a). Similar to the first image, the CNN-based method
achieved accurate uneven settlement recognition and localization,
as shown in Fig. 12(b). However, Sobel edge detection and K-value
clustering analysis obtained little information about the subgrade
features.
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Fig. 8. Confusion matrices based on the testing dataset for the multi-stage CNN with different transmitting frequency, i.e., 300, 500, and 900 MHz. The X-axis labels are the
ground truth labels and the Y-axis labels are the predicted labels.
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defect because the performance of these methods is highly depen-
dent on the image quality, whereas the CNN-based method was
affected little by the quality of the image.

The third image from Highway 3 had a resolution of 5120 �
3072 pixels and a transmitting frequency of 500 MHz. This image
contained two defects comprising uneven settlement and a sink-
hole, as shown in Fig. 13(a). The CNN-based method achieved accu-
rate recognition and localization for the two defects, as shown in
Fig. 13(b), but Sobel edge detection and K-value clustering analysis
only obtained some information about the defect types. Thus, the
CNN-based method could detect different defects, whereas Sobel
edge detection and K-value clustering analysis could not. The
CNN-based method with different kernels could detect different
defect features, as shown in Fig. 7, but Sobel edge detection and
K-value clustering analysis could only detect one feature. In addi-
tion, the CNN-based method could detect the defects in each small
image with a resolution of 256 � 256 pixels, as shown in Fig. 2,
whereas Sobel edge detection and K-value clustering analysis
could only detect global defects in an image.

According to these comparative studies, the CNN-based method
using the cascade CNN exhibited more robust performance at sub-
grade defect detection under various conditions based on the raw
images compared with Sobel edge detection and K-value clustering
analysis.
4. Application of the CNN-based method

To verify its transferability to other asphalt pavements, the
CNN-based method using cascade CNN was employed to detect
subgrade defects in practical cases according to the processes
explained in Sections 2 and 3. Four highways in Zhejiang, China,
were observed and 50 raw images were acquired from each road
according to the collection method explained above. The 50 images
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Fig. 9. Confusion matrices based on the testing dataset for cascade CNN with different transmitting frequency, i.e., 300, 500, and 900 MHz. The X-axis labels are the ground
truth labels and the Y-axis labels are the predicted labels.
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were imported into cascade CNN and defects were detected in
small images at a resolution of 256 � 256 pixels. The results are
shown in Table 2, where they demonstrate that the CNN-based
method could classify different defects with 95.36% accuracy.
Fig. 14 shows a GPR image after recognition using the CNN-based
method. Table 2 and Fig. 14 demonstrate that the CNN-based
method could detect subgrade defects with high accuracy in prac-
tical tests.

According to the defect recognition results obtained using the
CNN-based method, suggestions can be made regarding the main-
tenance of the four highways. Thus, the efficiency of subgrade
detection can be improved by saving the time taken to classify
the types of defects in GPR images by using cascade CNN.
5. Conclusions

In this study, we described the application of CNN using GPR
images for recognizing subgrade defects and we give the following
conclusions.

(1) Cascade CNN classified subgrade defects with accuracies of
97.35% during training and 96.80% in the validation process.
The multi-stage CNN classified subgrade defects with accu-
racies of 91.35% during training and 90.45% in the validation
process. The accuracies of the two CNNs according to the
training and validation results satisfy the requirements for
subgrade assessment in China.
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(a) Raw image (b) CNN-based method

(c) Sobel edge detection (d) K-value clustering analysis

Fig. 11. Subgrade crack with a transmitting frequency of 900 MHz. Note: The green box shows a small image at 256 � 256 pixel resolution including a subgrade crack. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(c) Sobel edge detection (d) K-value clustering analysis

Fig. 12. Uneven settlement with a transmitting frequency of 500 MHz. Note: The red box shows a small image at 256 � 256 pixel resolution including uneven settlement. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(2) Cascade CNN exhibited stability with respect to variations in
both the transmitting frequency and highway structure,
whereas the defect recognition performance of multi-stage
CNN was unstable when using images obtained with differ-
ent transmitting frequency. The strategy using classifier 2 in
cascade CNN, which was trained only using hard samples,
improved the robustness of object recognition in images
obtained at different transmitting frequencies.
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Fig. 13. Two defects with a transmitting frequency of 500 MHz. Note: The red box shows a small image at 256 � 256 pixel resolution including uneven settlement. The blue
box shows a small image at 256 � 256 pixel resolution including a sinkhole. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Table 2
Confusion matrices obtained for the test application.

Accuracy Sinkhole Uneven settlement Subgrade crack No defect

Sinkhole 95.30% 1.33% 1.00% 1.70%
Uneven settlement 1.07% 94.93% 1.37% 2.17%
Subgrade crack 1.7% 1.13% 96.33% 1.23%
No defect 1.93% 2.60% 1.30% 94.90%

Fig. 14. Recognition results.
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(3) The CNN-based method using cascade CNN exhibited highly
robust subgrade defect detection performance under various
conditions using the raw images compared with Sobel edge
detection and K-value clustering analysis. The CNN-based
method recognized most of the information in the GPR
images and its performance was robust irrespective of the
image quality. In addition, the CNN-based method could
detect different defects in raw images.

(4) A more advanced CNN needs to be developed to allow three-
dimensional reconstruction in order to describe subgrade
defects in greater detail, and this will be the focus of our
future research.
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