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� Project presents an application of convolutional neural networks (CNN) in cracks.
� Different CNNs are established by the processes of structure design, training and testing.
� The crack feature points are extracted by feature extraction CNN to establish 3D model.
� CNN is able to recognize concealed cracks from other damage in GPR images with zero error.
� CNNs could be accurately used for the recognition, location of concealed crack of asphalt pavement.
a r t i c l e i n f o

Article history:
Received 1 December 2016
Received in revised form 26 March 2017
Accepted 12 April 2017

Keywords:
Asphalt pavement
Concealed cracks
Convolutional neural networks (CNNs)
Ground penetrating radar (GPR)
Image measurement
a b s t r a c t

Concealed cracks in asphalt pavement are the cracks that originate below the surface of the pavement.
These cracks are a major contributing factor to pavement damage, in addition to being a major contribut-
ing factor to the formation of reflection cracks. The detection of a concealed crack is considered
challenging because the location of the crack is, by definition, difficult to find. Therefore, the research
on the utilization of ground penetrating radar (GPR) to locate concealed cracks has gained significant
interest in recent years. However, the manually processed GPR image used for the recognition, location,
and measurement of concealed cracks is inefficient and inaccurate. This project presents an application
of convolutional neural networks (CNNs) to GPR images that automatically recognizes, locates, measures,
and produces a 3D reconstruction of concealed cracks. In this project, three different CNNs (recognition,
location, and feature extraction) were established to accomplish the aforementioned tasks automatically.
Each CNN is developed through processes of structural design, training, and testing. The recognition CNN
was designed to distinguish concealed cracks from other types of damage in a GPR image, the location CNN
determined the location and lengthmeasurement of concealed crack images based on the results provided
by the recognition CNN, and crack feature points were extracted by the feature extraction CNN to establish
the 3D reconstruction models of the concealed cracks. The 3D reconstruction models were then used to
calculate crack volume and predict the growth tendency of cracks. The results indicated that the recogni-
tion CNN is able to distinguish concealed cracks from other types of damages in 6482 GPR images with
zero errors. In addition, the length recognition results calculated from the location CNN possess a
0.2543 cmmean squared error, a 0.978 cmmaximum length error, and a 0.504 cm average error in the test
samples. Meanwhile, the feature extraction CNN is able to provide feature points for a 3D reconstruction
model. The results of this study suggest that the CNNs could be accurately used for the recognition,
location, and 3D reconstruction of concealed cracks in asphalt pavement in real-world applications.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The semi-rigid base in an asphalt pavement structure is themost
popular structure in Chinese highways because of its two main
advantages: low investment cost and straightforward manufactur-
ing process. Therefore, more than 950,000 km of highway were
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built using semi-rigid base in China until 2015, which perfectly
meets the status of China’s economic capability, which is that of a
developing country. After decades of operation, a consensus has
been reached in China, that the cracking of semi-rigid base struc-
tures is inevitable. Reflection cracks are the most common cracks
in semi-rigid bases in China, and they always occur in either the
semi-rigid base itself or in sub-bases before propagating to the sur-
face. The formation of these cracks is the result of dry environments
and temperature decrease in the semi-rigid bases and sub-bases.
Reflection cracks can be visually observed, unlike concealed cracks.
To prevent highway reflection cracks, it is necessary to detect them
before they propagate to the surface. The cracks that occur in semi-
rigid bases or sub-bases but have not yet transitioned into reflection
cracks are called concealed cracks. Therefore, concealed cracks are
the intermediate states of reflection cracks. If effective measures
are taken to detect concealed cracks early, the formation of reflec-
tion cracks may be prevented. However, the detection of concealed
cracks has proved to be very challenging, mostly because of their
location below the pavement.

Ground penetrating radars (GPRs) have advantages such as high
efficiency, safe operation, nondestructive operation, and high anti-
interference [1–4], and therefore, are widely used in highway
detection. In recent years, significant progress has been made in
the utilization of GPRs for detecting concealed cracks in semi-
rigid base and sub-base structures. However, there are several
obvious disadvantages to this technology; namely, its dependency
on other auxiliary instruments for damage recognition, compli-
cated data preprocessing requirements, the difficulty in location
automatically, and complicated 3D reconstruction operations
[5–9]. Solla et al. [5] used GPR images to detect concealed cracks
and successfully extracted their geometric features, but this
method requires the assistance of infrared thermometers. In addi-
tion, Lu et al. [6] completed the recognition and location of con-
cealed cracks in asphalt pavements, but the data preprocessing
required to do so is complex. Xu et al. [7] successfully detected
voids and cracks under the pavement using GPR, while the pro-
cesses of category, location, and feature extraction of different
types of damage all rely on artificial. Gracia et al. [8] analyzed
GPR reflected waves to extract information on damage characteris-
tics. Because different cracks have different specificities, the analy-
sis workload is significant. Szymczyk et al. [9] used an
S-transformation to successfully develop a three-dimensional
reconstruction of GPR signals by using a complex conversion pro-
cess. Obviously, these methods may not be able to automatically
detect concealed cracks efficiently for their complex manual pro-
cesses. Therefore, concealed crack detection should focus on the
development of an automatic damage analysis system in GPR.
The combination of GPR images and CNNmay provide a potentially
novel method for concealed crack detection.

The convolutional neural network (CNN) has advantages in the
field of image recognition [10–13]. The CNN can be considered a
type of highly nonlinear mapping that outputs the target features
in a specified form based on the input image. The CNN is a type
of artificial neural network whose structure of shared weights
reduces the complexity of the network models, and the structure
is similar to that of biological neural networks [14,15]. Images
are used as the input data, which directly avoids the complex tra-
ditional recognition algorithm used in feature extraction and data
reconstruction. The network structure has high invariance in the
transformation of translation, scaling, tilting, and so on. This prop-
erty can be used to analyze the complex shape changes of pave-
ment cracks or voids [16–18]. Therefore, the introduction of CNN
to the field of the concealed crack detection, combined with the
use of GPR images instead of manual measurements, significantly
improves the accuracy of the detection results and the efficiency
of the detection processes. This is achieved without the use of
high-performance hardware and personnel requirement, thereby
reducing the associated costs.

In this research, attempts have been made to employ CNN to
provide appropriate models for the automatic recognition, loca-
tion, length measurement, and 3D reconstruction of concealed
cracks in batches using GPR images of asphalt pavements. The
technical outline of this study is organized as shown in Fig. 1.
The preparation section presents the acquisition method of the
GPR damage images. The experimental section details features of
the proposed method, including the recognition CNN, the location
and length CNN, and the feature extraction CNN. Then, the exper-
imental results and discussions are presented.
2. Acquisition and preprocessing of GPR images

2.1. Collection device and method

A high-quality GPR image of a concealed crack is required to
establish CNN models. However, the image quality is often influ-
enced by the acquisition equipment and pavement structure. There-
fore, the antenna type and frequency used should be selected
according to the pavement structure to be examined. In this study,
a LTD-2000 GPR (made in China) was adopted to capture images.
The parameters of the LTD-2000 GPR include a 500 MHz shielding
antenna (size: 30 cm � 30 cm � 14 cm), and a 20 cm transmitting-
receiving antenna distance. The vertical and horizontal resolution
ranges of the 500 MHz antenna were 0.15–0.27 cm and 3.0–
5.2 cm, respectively, which were slightly influenced by the dielec-
tric constants of the highway materials. The vertical resolution of
the 500 MHz antenna could meet the engineering demands [19],
but the horizontal resolution could not. Therefore, the widths of
the concealed cracks could not be correctly reflected in the GPR
images, and a revision should bemade to calculate the actual values
of the crack widths in the follow-up work for feature extraction.

The GPR image collection method also has an effect on image
quality, especially the sharpness. The optimal collection method
should utilize a reasonable detection point distance in order to
guarantee high-quality images of damage. Therefore, the distances
between checkpoints should be chosen based on the geometric fea-
tures of the highway damage. Generally, the width of a concealed
crack is less than 8 mm [20–22]. Based on the research of Lu et al.
[6], a concealed crack can be detected by at least four echo signal
records. Therefore, the checkpoint distances were selected to be
4 cm (L/5) apart in this research. A 4 cm (L/5) distance can guaran-
tee that the GPR scans and recordsmore than four echo signals from
topmost point of the crack The scanning and recording of one echo
signal is shown in Fig. 2. The antenna is activated to record an
abnormal crack signal as its position is moved from location 1 to
location 2. The distance between locations 1 and 2 was L/5. One
effective concealed crack image included the four previously men-
tioned records. Then, denoising, wavelet analysis, and the detection
results of GPR images were performed automatically by LTD-2000
systems based on the collected GPR data. Considering the influence
of electromagnetic wave scattering and the origination point of the
concealed cracks in the sub-bases, only the ranges from sub-bases
to upper layers remained in the GPR images. Thismeets the require-
ments for highway detection [19]. In this method, the influence of
all types of damage described previously were shown in the GPR
images. The core sampling method shown in Fig. 3 was used to
determine the types of disasters that occurred after GPR scanning.
2.2. GPR datasets

A typical GPR image of a concealed crack gathered using the
above method is shown in Fig. 4a. The shape of the concealed crack



Fig. 1. Preprocess GPR images.

Fig. 2. One echo signal scanning and recording.

(a) Facilities for sampling core  (b) Core with a concealed crack  (c) Pavement damage after coring

Fig. 3. Core sampling method.
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is a scattered hyperbola with symmetrical left and right sides. Typ-
ical GPR images of subgrade settlements and cavities in the
roadbed are shown in Fig. 4b and c, respectively. The quantity of
different types of damage shown in different images is listed in
Table 1, the features of different highway structures are listed in
Table 2, and the relative dielectric constants of different highway
materials are listed in Table 3.

The color information in the images increased the difficulty of
feature detection and recognition. Regarding the condition of algo-
rithm difficulty, the color information was removed and images
were saved as grey-scale maps.

Five hundred grey-scale maps were divided into 256 � 256
sized pixel images to be equal to the size of the CNN input layers.
In addition, 6832 images with damage were acquired as the data-
set of the CNN. Then, 2200 divided images, including 1000 divided
images of concealed cracks, 500 divided images of subgrade settle-
ment, 500 divided images of cavities in the roadbed, and 200
divided images without damage were selected from the dataset
as the training samples for the CNNs. To ensure the integrity of
the sample, all crack lengths should be included in the training
samples. The rest of the 6832 images were used as testing samples.

3. Convolutional neural networks

A CNN is a type of deep neural network structure. Lecun et al.
introduced this structure and utilized it in the image recognition
field. Now, CNNs are mainly used to recognize 2D and 3D images
[23,24]. The CNN has high robustness in order to overcome the
transformation of translation, tilt, and displacement of an object
[25,13]. This property was used to overcome the problems associ-
ated with structuring diseases that had irregular sizes and outlines
Three CNNs with different functions were designed to perform
automatic recognition, location, length measurement, and 3D
reconstruction of concealed cracks in batches using GPR images.
The process of developing one CNN is shown in Fig. 5. The process
mainly involves the structure, training, and testing of of CNN. If the
result of testing cannot satisfy the demand [19], the CNN should be
re-structured and re-trained. The processes were realized based on
Caffe, using a computer equipped with an Inter(R) Core(TM) i7-6700
CPU, 8.00 GB RAM, and NVIDIA GeForce GTX 1060 6GB GPU.

3.1. The recognition CNN

3.1.1. Design approach for the recognition CNN
The development of the recognition CNN includes the following

steps:
Fig. 4. GPR images of typi
(a) Preparation of training samples and test samples

As shown in similar studies on number classification and image
classification [10,26,27], the typical sizes of a training sample and
testing sample for recognition were approximately 100–1000
images for each object. Values within this range of typical sizes
were used in our research on recognition. The dataset mentioned
above was generated using 2200 images. This set of images
included 1000 images of concealed cracks, 500 images of subgrade
settlement, 500 images of roadbed cavities, and 200 images with-
out damage. This dataset was randomly selected from the 6842
images mentioned in the preparation section, and was used as a
training sample. The types of damages corresponding to these
2200 images were the target sample and were quadrature encoded
as concealed crack ½1 0 0 0�0; subgrade settlement½0 1 0 0�0; cavities
½0 0 1 0�0, and no damage½0 0 0 1�0:. The rest of the 6832 images
were used as testing samples to test the damage recognition capa-
bility of the recognition CNN.

(b) CNN structure

The structural design step aimed to confirm the basic structure
of the CNN. The damage recognition CNN was composed of two
convolutional layers (C1 and C2) and two subsampling layers (S1
and S2), followed by two full connection layers (F1 and F2) and
the output layer. The details of the CNN are shown in Fig. 6. The
size of input layer was 256 � 256. Because the size of input layer
was equal to the size of the images, the input layer was selected
based on two principles. First, the size of images should include
an entire crack at least. Second, the sizes of the images should
not be too large, in order to avoid dramatically increasing the com-
putation load. Similar CNNs for number classification and image
classification as shown in Refs. [10,26,27] were referred, and con-
tained images sizes that were approximately in the ranges of
32 � 32 to 300 � 300. Considering these two conditions and simi-
lar CNNs for classification, 256 � 256 was selected as the image
size for recognition. The function of C1 and C2 was to extract image
features. The images were executed convolutions and reappeared
as feature matrixes based on the activation function sigmoid after
they were inputted C1 or C2 layer. The activation function sigmoid
is shown in formula (1). Because C1 and C2 consisted of 6 and 14
convolution kernels respectively, and each convolution kernel
has different weights and biases, different feature matrixes were
acquired. Then, the function of S1 and S2 was to create aggregate
statistics based on different feature matrixes to avoid excessive
useless information being input into later calculations, which
cal highway damage.



Table 1
Quantity of different types of damage in GRP images.

Concealed crack Subgrade settlement Cavities No damage

Highway 1 11 12 23 12
Highway 2 34 32 27 21
Highway 3 76 23 32 35
Highway 4 45 16 6 16
Highway 5 34 17 12 18
Total 200 100 100 100

Table 2
Highway structures.

Surface Base Subbase Roadbed

Highway 1 9 cm AC-13 12 cm ATB-25 24 cm 4% water stability macadam Soil matrix
Highway 2 9 cm AC-13 18 cm ATB-25 18 cm 2% water stability macadam Soil matrix
Highway 3 9 cm AC-13C 18 cm ATB-25 18 cm graded crushed stone Soil matrix
Highway 4 9 cm AC-13C 18 cm ATB-25 18 cm graded crushed stone

(Geotechnical pattern room)
Soil matrix

Highway 5 9 cm AC-13C 18 cm ATB-25 18 cm 4% water stability macadam Soil matrix

Note: AC-13 = Asphalt concrete, 13 is the Max. diameter of particle in aggregates, mm.
ATB-25 = Asphalt-treated base, 25 is the Max. diameter of particle in aggregates, mm.

Table 3
Relative dielectric constants of highway materials.

AC-13 AC-13C ATB-25 Graded crushed stone Water stability macadam

Permittivity 5.11–5.13 5.08–5.29 5.09–5.23 8.58–13.56 9.36–18.76

Fig. 5. Process of developing a CNN.
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would result in overfitting. The operating principle of S1 and S2 is
shown in formula (2). The function f() in formula (2) is calculated
in formula (3). Remarkably, down(.) is a pooling function and the
max-pooling function was used in this study. Finally, the function
Fig. 6. Structure of the dam
of F5 and F6 was to establish a mapping relationship between fea-
ture matrices after the pooling function was used and the different
types of damage were quadrature encoded.
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xlj = Feature matrices;
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ij = Weight of convolution kernels in i line and j row;
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j = Bias of convolution kernels or max-pooling operation;

bl
j = Multiplicative bias of max-pooling operation;

f(x)= Activation function.
age recognition CNN.
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(c) CNN training

An important property of a CNN is its learning ability. This abil-
ity was employed to determine the mapping between input data
(2200 images) and target data (the damage types corresponding
to images). The mapping was realized by the training of the CNN.
The main purpose of the training was to confirm the weights and
bias in the CNN. A feed-forward algorithm was used to train the
CNN.

The mechanism of the feed-forward algorithm involves the use
of the forward-and-back error propagation theory to decrease the
error between the CNN output and the target data [28]. Recogni-
tion CNN training using the feed-forward algorithm was designed
to decrease the damage type error between the CNN output and
the target data. The flowchart that describes the feed-forward algo-
rithm is shown in Fig. 7. The feed-forward algorithm begins by con-
firming initial random values for weights and biases. After
importing 100 randomly selected input images from the training
sample, the feed-forward algorithm produced the CNN output.
Then, the errors between the target data and the CNN output were
calculated. From the error of the feed-forward algorithm in the
CNN, the weights and biases were modified by formula (4). The
first term is the mean squared error reflecting the gap between
output values and target values, while the second is the regulariza-
tion term used to reduce the range ability of weights and bias to
prevent over fitting. The gradient of W and b were calculated using
formulas (5) and (6), respectively. In addition, the derivative of the
activation function is shown in formula (7).
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where

W and b represent the weights and biases of the CNN,
respectively.
(x(m), y(m)) = Greyscale images;
e = Tradeoff control parameter.
Fig. 7. Flow chart of feed-forward algorithm.
Each process described above was a named iteration. After each
iteration is completed, 100 images were imported to the CNN again
to evaluate the last iteration. The accuracy rate was used to evalu-
ate each iteration. Based on highway performance assessment
standards (JTG H20-2007) [19] and our experience, the training
was considered complete if the accuracy rate was more than 0.95
and stable. Correspondingly, the next iteration should be made
on the CNN if these requirements are not met.

(d) CNN test

In the training, the accuracy rate satisfying the requirements
implied that the recognition CNN produced a good output for the
training samples. However, it was not sure whether the CNN has
a precise recognition capacity. Therefore, the rest of the 6842
images were imported into the CNN for testing. The result of test-
ing was evaluated by mean squared error (MSE) using formula (8).
The recognition CNN had a precise recognition capacity if the accu-
racy rate was greater than 0.95.

MSA ¼ 1
n

Xn
i¼1

ðtarget � predictedÞ2 ð8Þ

All images with concealed cracks were used as a dataset for the
location and feature extraction CNNs.
3.1.2. Performance of recognition
The results of each iteration are shown in Fig. 8. The results of

iterations were evaluated by the error rate of classification. The
horizontal axis represents the number of the iteration. The total
number of iterations needed to train the recognition CNN was
30. The vertical axis represents the error rate of the CNN. Pre-
dictably, the accuracy rate improved from 0.09 to 0.998. Mean-
while, the accuracy rate was 0.981, in response to the request
after the 14th iteration. In order to avoid the influence of individual
differences, the number of iterations was prolonged until the accu-
racy rate was stable. As shown in Fig. 8, the accuracy rate was
stable during the 15th–30th iterations, which met all require-
ments. The result indicated that the recognition CNN distinguished
concealed cracks from other damage in 2200 GPR images with no
error. After training, the testing sample was imported to the CNN
and found no error in recognition. Therefore, the CNN has a precise
recognition capacity for concealed cracks. Then, all images with
concealed cracks were used as a dataset for the location CNN and
the feature extraction CNN.
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Fig. 8. Damage recognition accuracy rate.
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3.2. Location CNN

3.2.1. Design approach for the location CNN
Convolutional neural networks are also used for local pedestri-

ans and traffic signs in images [29–31]. This property can be
expanded to local concealed cracks in GPR images and in turn,
measure their length by calculating the length of the EdgeBox as
shown in Fig. 9. The development of the location CNN is described
by the steps shown in Fig. 9.

(a) Preparation of training samples and test samples

A labeled database was needed to complete training and testing
for location CNN. 2256 concealed crack images identified by the
recognition CNN were divided into 5233 64 � 64 images. As shown
in similar location studies on pedestrians, traffic signs, and slab
information [30–32], the typical sizes of training and testing sam-
ples for locating were in the range of approximately 2000–20,000
images. Values within this range of typical sizes were used in our
research on location. 4000 64 � 64 images were selected from
5233 images to manually label with the locations for concealed
cracks. These images were to be used as training samples. Because
the GPR images were numbered based on stake marks in a lane by
the LTD system, we located the cracks simply by locating cracks in
the GPR images. To locate concealed cracks, we designed edged
boxes as shown in Fig. 9, whose top edges were coincident with
the tops of concealed cracks and whose lateral margins were coin-
cident with the sides of concealed cracks at the bottom of the
64 � 64 images. Regarding the difficulty associated with determin-
ing crack lengths using core samples in a certain position, the
lengths of concealed cracks were calculated based on GPR images
and origination points in sub-bases. For the vertical resolution of
the 500 MHz antenna (0.15–0.27 cm) to meet the requirement of
detecting the crack geometry [19], lengths of cracks in surfaces
were acquired from GPR images. Because the origination points
are located in the sub-bases, the lengths of cracks in bases and
sub-bases were equal to the thicknesses of the bases and sub-
bases. Therefore, the total lengths of the cracks could be calculated
by adding the lengths of the cracks in the surfaces, bases, and sub-
Fig. 9. Pipeline of the
bases. So, 4000 labeled images were used as the training samples,
and the rest of the 5233 images were used as test samples. Because
all of the images were created by the LTD-2000 GPR and the
500 MHz shielding antenna, the concealed crack length in images
has a fixed ratio to their actual length.

(b) CNN structure

The location CNN had a similar structure to the recognition
CNN. It was composed of two convolutional layers (C1 and C2)
and two subsampling layers (S1 and C2), followed by two full con-
nection layers (F1 and F2) and the output layer. The details of the
CNN are shown in Fig. 10. The size of input layer was 64 � 64.
Because the size of input layer was equal to the sizes of the images,
it was selected based on the two principles mentioned earlier. Sim-
ilar CNNs used for locating pedestrians, traffic signs, and slab infor-
mation [30–32] were referred to, and these references utilized
images sizes that were in the range of 32 � 32–128 � 128. Consid-
ering the two principles and similar CNNs for location, 64 � 64 was
selected as the image size for the location.

(c) CNN training

The feed-forward algorithmmentioned in Section 3.1.1 was also
used to train the location CNN. However, the training had two
goals, as shown in Fig. 8: measurement of crack location and length
recognition. The errors in crack location and length recognition
were calculated. The crack location errors were measured as the
deviation in the coordinates of the edge box between the CNN out-
put and the labeled box edge. The crack length errors showed a
long deviation between the CNN output and the actual length.
The deviations of the location and length measurement CNN were
evaluated by MSE. MSE was calculated using formula (8). Based on
the highway performance assessment standards (JTG H20-2007)
[19] and our experience, the training was considered completed
when the MSE was less than 0.95 and stable. Correspondingly,
the next iteration was to be made in case the CNN did not satisfy
the requirement. The rest of the process was the same as that used
for the recognition CNN.
proposed method.



Fig. 10. Structure of the location and length recognition CNN.
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(d) CNN test

The previously mentioned test samples were used to test the
location and length measurement capability of the CNN after train-
ing was completed. All 5233 cracks images were used as the data-
set for the feature extraction CNN in the follow-up work.

3.2.2. Performance of the location CNN
The location CNN was trained using the labeled dataset. It was

evaluated by the MSE of the edge box coordinates and the con-
cealed crack length. Fig. 11a shows part of the results of the loca-
tions in three concealed crack images. Fig. 11b shows the MSE of
the location CNN. The broken dotted line is the MSE of the edge
box coordinates and the broken line with squares is the MSE of
the length. The result indicated that the CNN located concealed
cracks correctly and recognized the length of concealed cracks with
a 0.2543 cm MSE. Notably, after the 120th iteration, the two MSEs
were stable.
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Fig. 11. Results of location
Then, the previously mentioned test samples were used to test
the location and length measurement capability of the CNN after
training was completed. The rest of the 5233 crack images were
used as test samples for this testing. The MSE of the edge box
and length was 0.327 cm and 0.732 cm, respectively. The maxi-
mum length error in the test samples was 0.978 cm, and the aver-
age length error was 0.504 cm, which met the requirement for
highway engineering detection. Finally, all 5233 cracks images
located were used as a dataset for the feature extraction CNN.

3.3. Feature extraction CNN

3.3.1. Design approach for the feature extraction CNN
A large amount of information on damage features is desired for

highway maintenance. To acquire additional information on con-
cealed cracks, an attempt was made to extract crack features from
GPR images of concealed cracks. The CNN is widely used to extract
facial features [33–37]. This capability can be extended to extract
) 
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feature points in GPR concealed crack images, and these feature
points can be used for 3D reconstruction. Therefore, a feature
extraction CNN was designed to perform this work. The develop-
ment of the feature extraction CNN is described by the following
steps.
(a)
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Fig. 12. Results of featu

Fig. 13. Process of chan
(a) Preparation of training samples and test samples

Another labeled dataset was required to complete this process.
As shown in similar feature exaction studies on abnormal behavior
detection and facial feature detection [29,38], typical training and
 

120 140 160 180 200 220
tion

 Point coordinates

) 

re point extraction.

ging x-coordinates.



784 Z. Tong et al. / Construction and Building Materials 146 (2017) 775–787
testing sample sizes for exacting features were in the range of
approximately 2000–20,000 images. Values within this range of
typical sizes were used in our research on feature exaction. All
5233 64 � 64 images with located concealed cracks were acquired
by the location CNN. Four thousand images were selected ran-
domly to manually label different geometric feature points. There-
fore, these 4000 labeled images were used as the training samples,
and the rest of the unlabeled images were used as test samples.

(b) CNN structure

The feature extraction CNN had the same structure as the loca-
tion CNN, but the number of output neurons was seven, which rep-
resented seven shape coordinates for feature points.

(c) CNN training

The feed-forward algorithmmentioned in Section 3.1.1 was also
used to train the feature extraction CNN. However, this time the
Fig. 14. Process of 3D

Table 4
Road structures.

Roads Highway 1 Highw

Road
structures

Surfaces Upper layers 4 cm
SBS Modified Asphalt
Concrete (AC-16C)

5 cm A
(AC-16

Middle layers 7 cm
SBS Modified Asphalt
Concrete (AC-20C)

6 cm
Asphal
(AC-20

Lower layers 8 cm
Asphalt Concrete
(AC-25C)

8 cm
Bitumi
Macad

Seal coats Modified asphalt synchronized cru

Bases Upper bases 8 cm Bituminous
Stabilized Macadam
(ATB-30C)

32 cm
Cemen

Lower bases 40 cm
Cement stabilized
gavels

Sub-bases 24 (25) cm
Natural gravel

20 cm
Cemen
gavels

Note: AC-13 = Asphalt concrete, 13 is the Max. diameter of particale in aggregates, mm.
ATB-25 = Asphalt-treated base, 25 is the Max. diameter of particale in aggregates, mm.
SMA-13 = Stone mastic asphalt, 13 is the Max. diameter of particale in aggregates, mm.
training was to designed to extract sharpness features. Errors in
feature extraction were recognized as coordinate deviations
between the CNN output and the labeled feature points. The rest
of the training process was the same as that for the recognition
CNN.

(d) CNN test

The deviations in the feature extraction CNN were evaluated by
MSE. MSE was calculated by using formula (4). The previously
mentioned test samples were used to test the feature extraction
capability of the CNN after each iteration was completed.

3.3.2. Performance of the feature extraction CNN
The feature extraction CNN was trained by the labeled dataset.

It was evaluated by the MSE of the coordinates deviation between
the CNN output and the labeled feature points. Fig. 11a shows the
results of feature extraction in eight concealed crack images.
Fig. 12b shows the MSE of the CNN. The horizontal axis represents
reconstruction.

ay 2 Highway 3 Highway 4

sphalt Concrete
C)

4 cm
Asphalt Concrete (AC-16C)

4 cm
Stone mastic asphalt
(SMA-13)

t Concrete
C)

6 cm
Asphalt Concrete (AC-20C)

7 cm
SBS Modified Asphalt
Concrete (AC-20C)

nous Stabilized
am (ATB-30C)

9 cm
Asphalt Concrete (AC-25C)

8 cm
Asphalt Concrete
(AC-25C)

shed stone seal layers

t stabilized gavels
32 cm
Cement stabilized gavels

41 (42) cm
Cement stabilized
gavels

t stabilized natural
20 cm
Cement stabilized natural
gavels

22 (24) cm
Cement stabilized
natural gavels
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the number of the iteration, and the vertical axis represents the
MSE of the CNN for the corresponding iteration. The result indi-
cated that this CNN extracted feature points correctly, which met
the demand for highway engineering detection.

3.3.3. Design approach for 3D reconstruction
To realize 3D reconstruction of concealed cracks, the crack

widths need to be measured. However, because the crack widths
are smaller than half of the first Fresnel zone diameter, they cannot
be measured by GPR directly [6,39]. Therefore, the width distance
Table 6
Confusion matrix.

0–2 cm 2–4 cm 4–6 cm 6–8 cm

0–2 cm 69
2–4 cm 2 15 1
4–6 cm 1 23 2
6–8 cm 3 43
8–10 cm 2
10–12 cm
12–14 cm
14–16 cm
Total 71 16 27 47
Error 2 1 4 4

Note: Row heading stands for crack lengths in actual measurement.
column heading stands for crack lengths in CNN calculation.

Table 5
Relative dielectric constants of highway materials.

Structures Types of highway materials

Surfaces AC-16C AC-20C

5.04–5.23 4.96–5.25
Bases ATB-30C Cement stabilized gave

4.85–4.98 8.92–14.37

Fig. 15. Results of r
between feature points is not the real width of the crack. Guo et al.
[40] found that there was an approximate linear relationship
between the crack widths and the scattering wave at the top of
crack. Therefore, the x-coordinates of the feature points were mod-
ified based on formula (9). The process of modification is shown in
Fig. 13. Then, 3D reconstruction is realized based on the new coor-
dinates of the feature points, as shown in Fig. 14. Based on the
points in each image, an outline of a crack was drawn. Then, these
outlines were smoothly superimposed into the sequence of pave-
ment stake marks. All of the details of concealed crack can be seen
8–10 cm 10–12 cm 12–14 cm 14–16 cm

3
54
4 15 3

1 54 1
2 38

61 16 59 39
7 1 2 1

AC-25C ATB-30C SMA-13

4.78–5.16 4.87–5.12 5.17–5.21
ls Cement stabilized natural gavels

8.65–15.12

oad detection.



Table 7
Quantity of different crack images.

Crack1 Crack2 Crack3 Crack4 Crack5 Crack6 Crack7 Crack8 Crack9 Crack10

Volume/cm3 1027.40 681.8 235.76 345.75 532.46 236.24 367.89 523.45 410.02 108.97
Roads Highway1 Highway1 Highway1 Highway2 Highway3 Highway3 Highway3 Highway4 Highway4 Highway4
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in the 3D model; for instance, the volume was acquired. The vol-
umes of these two cracks were based on 3D models. The results
were 1027.40 cm3 and 681.8 cm3. A more advanced CNN should
be developed in future work to obtain a greater number of points
to describe the concealed cracks in greater detail.

Ez ¼ 1200x ð9Þ
where

Ez = Peak value of electric field intensity at the top of crack,
mV/mm;
x = Crack width, mm.

4. Application in pavement

All three CNNs were used to measure concealed cracks in prac-
tice after the processes mentioned in Section 3. Four highways in
Shanxi, China were observed. Fifty images from each road were
acquired by following the above-mentioned collection method,
and the total number of GPR images was 200. The highway struc-
tures and relative dielectric constants of the highway materials are
listed in Table 4 and Table 5, respectively. First, 200 images were
transformed into grey-scale maps and divided into 256 � 256 pixel
images. Second, 3200 256 � 256 pixel grey-scale maps were
imported into the recognition CNN and classified based on the
types of distress. Third, greyscale maps with concealed cracks were
inserted into the location CNN and the feature extraction CNN.
Finally, the results from the location CNN and the feature extrac-
tion CNN were used to locate and rebuild concealed cracks.

The detection results showed that the recognition CNN can dis-
tinguish concealed cracks from other types of damage with zero
error. Eighty-two images with concealed cracks were acquired
and divided into 336 64 � 64 pixel images. All 64 � 64 pixel
images were imported into the location CNN and the feature
extraction CNN. The calculation results for the location CNN are
presented in Table 6. It can be seen from the table that the maxi-
mum length error was less than 1 cm and the average length error
was 0.587 cm. The representative results of location and feature
extraction are shown in Fig. 15. Finally, 10 cracks were selected
to calculate volume, and the results are shown in Tab.7. All of
the results showed that the CNN system met the demand for high-
way engineering detection.

From the results obtained from the three CNNs for concealed
cracks, several suggestions could be made regarding the mainte-
nance of the four highways. For example, detection efficiency could
be improved by saving time when classifying the types of dis-
tresses in GPR images by using the recognition CNN. In addition,
predictions for when concealed cracks would change to reflection
cracks could be made based on the length of the concealed cracks.
The filler volumes for grouting the 10 cracks could be calculated
based on crack volumes shown in Table 7.
5. Conclusions

In this study, the application of CNN for the automatic recogni-
tion, location, length measurement, and 3D reconstruction of con-
cealed cracks (in batches) using GPR images was performed. The
following conclusions can be drawn from the results.
1) The recognition CNN was designed to distinguish concealed
cracks from other pavement damage in GPR radar images. In
testing, it demonstrated the ability to distinguish concealed
cracks from other pavement damage in 6842 GPR images
with no error.

2) The location CNN located and measured the length of con-
cealed cracks in images obtained from the results generated
by the recognition CNN. The CNN can recognize concealed
cracks with a 0.2543 MSE. The maximum length error in
5233 test samples was 0.978 cm, and the average length
error was 0.504 cm. Both measuring errors satisfied the
demand for highway engineering detection.

3) The feature point extraction CNN was used to extract crack
shape properties for 3D reconstruction. However, the output
of coordinates cannot be directly used in 3D reconstruction.
A change in width coordinates should be conducted based
on an empirical formula.

4) A more accurate formula should be developed to obtain
more accurate width coordinates. In addition, a more
advanced feature point extraction method should be devel-
oped to obtain a greater number of points, from which the
concealed cracks can be described in greater detail.

5) A more advanced CNN should be developed to obtain a
greater number of points to describe the concealed cracks
in greater detail. This should be the focus of future work.

6) Some suggestions about highway maintenance could be
made based on the results obtained from the three CNNs,
such as crack growth trends and filler volumes for grouting.
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