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Many data processing technologies have been utilized for pavement distress detection (e.g., reflection
cracks, water-damage pits, and uneven settlements) using ground penetrating radar (GPR). However,
the various real-world conditions have resulted in challenges of the accuracy and generalization ability
of these techniques. To overcome these challenges, we proposed a deep-learning method, called faster
region convolutional neural network (Faster R-ConvNet), to complete the task. The 30 Faster R-
ConvNets were trained, validated, and tested using 2,557, 614, and 614 GPR images, respectively. The
optimal anchor size and ratio were determined based on the validation results. The stability, superiority,
real-time of the optimal Faster R-ConvNet were verified based on the test results. The results demon-
strated that the optimal Faster R-ConvNet achieved 89.13% precision and 86.24% IoU. The stability of
the model in different pavement structures was desirable. The comparative study indicated that the opti-
mal Faster R-ConvNet outperformed other supervised learning methods in distress detection.
Additionally, a real-time detection using optimal Faster R-ConvNet was conducted with acceptable
accuracy.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Asphalt pavement distresses are an inevitable issue in pave-
ment structure inspection and condition assessment. The detection
of some distresses has proved to be challenging owing to their
location in the pavement, such as reflection crack and water-
damage pit [1]. For example, reflection cracks are the most com-
mon cracks in semi-rigid bases in China, and they always occur
in either the semi-rigid base itself or in sub-bases before propagat-
ing to the pavement [2]. These distresses are not visual during their
developing stages. However, it is essential to detect them before
they propagate to the pavement surface to guarantee the highway
performance.

In the past decade, several innovative technologies have been
introduced to detect pavement distresses, mainly including ground
penetrating radar (GPR) [2,3], ultrasonic testing [4,5], radio exam-
ination [6,7], and thermal image/infrared [8,9]. Compared with
other technologies, GPR has superiority in high efficiency and pre-
cision, reasonable anti-interference capacity, and wide detection
ranges. For example, Fernandes et al. [10] proposed a method to
detect cracks with different widths using GPR. Ahn et al. [2]
inspected the pavement subsurface distress severity and its distri-
bution using GPR. However, there were still two problems remain-
ing using GPR to detect pavement distresses: (a) complicated data
preprocessing technologies should be utilized to extract pavement
distress features; and (b) the human assistance is required to han-
dle the complex background and foreground in the GPR data. For
example, Solla et al. [11] presented a GPR-based method to detect
pavement concealed crack and their features. The main disadvan-
tage of this method was that an infrared thermometer was
required for auxiliary analysis. Szymczyk et al. [12] proposed a sig-
nal transformation method to reconstruct GPR data to detect
underground defects, but the conversion processes were complex.
Xu et al. [13] presented a GPR detection method to locate pave-
ment voids and cracks, but the distress classification should be
realized by humans. In summary, the applications of GPR for pave-
ment distress detection have been limited by the two problems. It
is essential to develop a method to process GPR data autonomously
or semi-autonomously, which has the capacity of handling the
complex background and foreground in the GPR data.
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Many data processing technologies have been implemented for
completing the tasks to partially replace human-assistance inspec-
tions, such as support vector machine (SVM) and S-transform. For
example, Zhou et al. [14] used SVMs to classify different pavement
distresses using GPR data. The imported data for SVMs were fea-
tures acquired by clutter suppression and area-of-interest extrac-
tion. 3D S-transform [12] was proposed to process GPR data to
look for sinkholes, but it required human assistance during the
processes. Xue et al. [15] proposed an extension evaluation method
by combing GPR and falling weight deflectometer to detect pave-
ment voids. Tosti and Benedetto [16] recognize pavement pumping
based on the GPR signal, although this method was only suitable
for the certain object. Generally, these data-processing technolo-
gies detected or recognized some pavement distresses using GPR.
However, there was still a problem remaining: complex distress
and background features still should be extracted by humans
because the shapes, grayscale, and other features of distresses were
various in different GPR images. The problem led to the precisions
of existing methods were varied from one real-world condition to
another. Therefore, it is necessary to develop a detection method to
extract distress features automatically, whose precision is stable in
different real-world conditions.

With the explosive development of deep learning and its appli-
cation, it has shown the significant advantages in pattern recogni-
tion [17,18], 3D object retrieval [19], object location [20,21], and
regressive calculation [22,23]. Notably, deep-learning methods
have been used in pavement distress detection. For example, Cha
et al. [24] used convolutional neural networks (ConvNet) to recog-
nize pavement cracks in real-world conditions with high precision.
Sha et al. [25] proposed a ConvNet-based method to recognize dif-
ferent pavement distresses. Tong and colleagues [26,27] developed
a series of deep-learning models to recognize, locate, three-
dimension reconstruct pavement distresses. Although the recogni-
tion results in the two studies [26,27] were reasonable, the pave-
Fig. 1. Different Structur
ment detection results were not accurate owing to the deep-
learning structures. Ali and Cha [28] proposed a novel combination
of deep learning and uncooled micro-bolometer for the detection
of a steel bridge, achieving 96% accuracy and 97.79% specificity.
Beckman et al. [29] designed an advanced deep learning approach
integrated with a structural surface fitting algorithm for automatic
volumetric damage quantification using a depth camera. The
reported average precision and mean precision error were 90.79%
and 9.45%, respectively. In summary, there are two attractive prop-
erties for the deep-learning method and its application in civil
engineering fields. First one is stability, which indicates that the
model has a great tolerance for translation and distortion of the
detection objects [29,30]. In this study, stability means that the
model is stable to detect distresses, though the features of dis-
tresses and background are various. The second one is automation,
which indicates that the model can learn low-, medium-, high-
features related to detection objects automatically [31–33]. In this
study, automation means that the model has the capacity for learn-
ing a mass of features related to pavement distresses without
human assistance. Therefore, it is feasible to utilize deep learning
to detect pavement distress using GPR data.

Motivated by the drawback of the pavement distress detection
in the previous study [26,27], we proposed Faster Region ConvNets
(Faster R-ConvNets), which was a type of modified deep-learning
models, to detect pavement distresses using GPR image. The main
advantage of the method was that it required no human assistance
to detect pavement distresses with high precision and recall. Addi-
tionally, the performance of the model was stable in different
pavement structures and materials. Thus, it can be regarded as
an automatic nondestructive testing method to replace traditional
pavement inspection technologies, such as some unsupervised
algorithms (e.g., S-transform and Sobel edge detection) and super-
vised algorithms proposed before the wide adoption of deep learn-
ing (e.g., artificial neural network and support vector machine).
es of four highways.
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Compared to existing Faster R-CNN models, the proposed models
can be considered as its modification. There are two parts of the
modification: hyperparameter optimization to adapt the detection
task and algorithm improvement to improve its accuracy. The first
one is the optimization of anchor ratios and sizes. The aim is to
make the bounding boxes desirable to detect pavement distresses
using GPR data. The second one mainly includes the adoption of
stochastic pooling and layer-sequential unit-variance initialization,
both of which have been verified to improve the algorithm accu-
racy but not adopted in the existing Faster R-CNN. The rest of this
paper is organized as follows. We present our research approaches,
including the method for acquiring GPR images, the design of the
Faster R-ConvNets, and implementation details in Section 2. This
is followed by a discussion of the performance of the Faster R-
ConvNets based on the validation and testing results in Section 3.
The performance discussion includes the training and testing
results, a stability analysis, a comparative study, and real-time
detection. Our conclusions are summarized in Section 4.
(a) Reflection crack (b) Water-da

Fig. 2. Typical GPR images o

Fig. 3. An example of co
2. Research approaches

In this section, we first present the method for inspecting pave-
ment distress using a GPR in Section 2.1. Then we provide a
detailed description of the Faster R-ConvNets in Section 2.2. At last,
the database and implementation details are shown in Section 2.3.

2.1. Acquisition GPR images

A high-quality GPR image database was required to develop Fas-
ter R-ConvNets for detecting pavement distresses autonomously.
The quality of GPR images was influenced by transmitting frequen-
cies of GPR andpavement structures. Thus, GPR images under differ-
ent conditions (transmitting frequencies and pavement structures)
were collected to guarantee the integrality of the database.

In this study, an LTD-2000 air-coupled GPR was used to capture
pavement distress images. The parameters of the LTD-2000 GPR
has been introduced in a similar work Ref. [26]. The sweep speed
mage pit (c) Uneven settlement

f pavement distresses.

nvolution operation.



Fig. 4. Examples of three pooling operations.

Fig. 5. Flow chart of a Fast R-ConvNet.

Table 1
Detailed parameters of a Fast R-ConvNet.

Layer number Type Input size

L0 Input 512 � 512 � 1
L1 Convolution 512 � 512
L2 Pooing 246 � 246 � 96
L3 Convolution 123 � 123 � 96
L4 Pooing 55 � 55 � 192
L5 Convolution 27 � 27 � 192
L6 Convolution 24 � 24 � 384
L7 ROI Ran. � Ran. � 192
L8 ROI pooling 192
L9 Fully connected 1024
L10 Fully connected 256
L11 Fully connected 4
L12 Output
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and time window during the pavement GPR image collection were
128 Hz and 5 ns, respectively. To guarantee the integrality of the
GPR database, three different transmitting frequencies (300, 500,
900 MHz) were utilized to collect GPR images in the same pave-
ments. The vertical resolution ranges of the different transmitting
frequencies were 0.30–0.47 cm, 0.15–0.27 cm, and 0.09–0.13 cm,
while the horizontal ranges were 3.0–5.2 cm, 1.3–2.9 cm, and
1.0–1.4 cm. Notably, the vertical resolution of the transmitting fre-
quencies could meet the engineering demands, but the horizontal
resolution could not meet the detection demand of reflection
cracks [34], which led that the crack widths in GPR images were
not their real width. However, as shown in the study of Guo
et al. [35], the peak location of a reflection crack in a GPR image
was the same as its real location in the pavement. Therefore, the
horizontal resolution had limited influence on the detection of
reflection cracks. Additionally, GPR images from four highways in
Shanxi Province, China were acquired using the three transmitting
frequencies to guarantee the integrality of the GPR database. Fig. 1
presents the structures of the four pavements.

Typical GPR images of a reflection crack, a water-damage pit,
and an uneven settlement are presented in Fig. 2. The distress
annotations in all the GPR images were determined by a field
Filter size Number Stride

– – –
21 � 21 96 2
– – 2
14 � 14 192 2
– – 2
4 � 4 384 1
4 � 4 384 1
– – –
– – –
– – –
– – –
– – –
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investigation to guarantee its reliability. As shown in Fig. 2 and the
study of Tong [36], different pavement distresses showed different
characteristics in GPR images, but these characteristics were vari-
ous in the real-world conditions and not easy to summarize and
extract by humans. For example, the shapes of reflection cracks
were a scattered hyperbolic, but their symmetry of left and right
sides was varied from one to another. Thus, the core sampling
shown in Fig. 2 was used to determine the types of distresses that
it occurred after GPR scanning once an abnormal wave was shown
in a GPR image.
Fig. 7. Flow chart of a

Fig. 6. Flow char

Table 2
Detailed parameters of an RNP.

Layer number Type Input size

L0 Input 512 � 512 � 1
L1 Convolution 512 � 512
L2 Pooing 246 � 246 � 96
L3 Convolution 123 � 123 � 96
L4 Pooing 55 � 55 � 192
L5 Convolution 27 � 27 � 192
L6 Convolution 24 � 24 � 384
L7 Anchor 21 � 21 � 384
L8 Fully connected 256
L9 Output
2.2. Region-based deep learning

To detect pavement distresses (e.g. reflection cracks, water-
damage pits, and uneven settlements) using GPR images, the Faster
R-ConvNet models were developed, which were a type of modified
deep learning models. We start with some necessary fundamental
concepts of deep learning briefly in Section 2.2.1. Then the Fast R-
ConvNet and region proposal networks (RNPs), as two key parts of
the Faster R-ConvNets, are described in detailed in Section 2.2.2
and Section 2.2.3, respectively. At last, the combination model of
Faster R-ConvNet.

t of an RNP.

Filter size Number Stride

– – –
21 � 21 � 1 96 2
– – 2
14 � 14 � 96 192 2
– – 2
4 � 4 � 192 384 1
4 � 4 � 384 384 1
4 � 4 � 384 256 1
– – –
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an RPN and a Fast R-ConvNet, called Faster R-ConvNet, are pre-
sented in Section 2.2.4.

2.2.1. Fundamental concepts
Prior to the development of the Faster R-ConvNets, the funda-

mental concepts of deep learning are briefly recalled in this section
as following:

(1) Convolutional layer. The function of a convolutional layer is
to extract low-, medium-, or high-features from input data
using a large number of kernels, whose procedures are called
convolution operation. There are three steps in a convolution
operation as shown in Fig. 3. Firstly, an element-by-element
multiplication is conducted between a subarray of an input
array and a kernel. Secondly, the multiplied values are
summed, and bias is added to the summed values. Lastly,
Fig. 8. Database examples with the labels and bounding boxes. RF, WP, and US st

Fig. 9. Validation IoUs of the

Fig. 10. Validation precisions, recalls an
the result in the second step is active by an active function,
such as ReLU. The weights and bias of a kernel are given by
training using gradient descent algorithms (e.g. stochastic
gradient descent).

(2) Pooling layer. The function of a pooling layer is to reduce the
spatial size of an input array to avoid overfitting and reduce
computation. There are mainly three different pooling
options, max pooling, mean pooling, and stochastic pooling,
as shown in Fig. 4. The study of Zeiler & Fergus [37] showed
that the stochastic pooling was a more effective method for
regularizing ConvNets than the other two. Thus, all the pool-
ing layers for this study were stochastic pooling layers. A
stochastic pooling layer samples from one of an input array’s
subarrays based on a probability distribution.

(3) Fully connected layer. The function of fully connected layers
is to map the arrays acquired by convolutional layers and
ands for reflection crack, water-damage pit, uneven settlement, respectively.

30 Faster R-ConvNets.

d IoUs of the 30 Faster R-ConvNets.
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pooling layers to a target space. The outputs of the final fully
connected layer are used to classify and regress in output
layers.

(4) Output layers. There are two types of output layers for
detecting pavement distresses using GPR images. The first one is
Fig. 11. Examples of

Table 3
Precisions, recalls, and IoUs of No. 10 Faster R-ConvNet (Unit: %).

Object Precision Recall IoU

Reflection cracks 88.31 89.04 86.53
Water-damage pits 90.56 89.68 87.26
Uneven settlements 88.51 91.04 84.93
Overall 87.13 89.92 86.24
a softmax layer, which is used to predict the distress class, and
the second one is a regression layer, which is used to compute
the location of the distress in a GPR image. Detail information of
the two layers is introduced in the next Section.
2.2.2. Fast R-ConvNet
Fig. 5 and Table 1 present the flow chart and parameters of the

Fast R-ConvNet in this study. The Fast R-ConvNet consisted of con-
volutional layers, pooling layers, a region of interest (ROI) layer, an
ROI pooling layer, and two output layers. The ROI and ROI pooling
layers were the key to detect pavement distresses, whereas a con-
ventional ConvNet could only recognize distresses in images but
could not locate them [27]. The function of the ROI layer was used
to randomly select local features from feature maps generated by
convolutional layers and pooling layers. These local features were
testing results.
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imported into fully connected layers and output layers in sequence
to determine whether a distress was shown in their corresponding
parts in the GPR image or not. However, there was a problem that
the sizes of local features are random. Thus, an ROI pooling layer
was utilized to normalize these local features to fit the input size
of the first fully connected layer.

A probability P (P0, P1, P2, P4) and four parameters (x, y, h, w)
were generated by the softmax and regression layers based on
the normalized local features, respectively. P0, P1, P2, P4 were the
probabilities of no distress, reflection crack, water-damage pit,
and uneven settlement. � and y were the center coordinates of a
distress, while h and w were the height and width of the distress.

Considering the initial weights and bias in each layer were
given randomly, there were gaps between the outputs of the two
output layers and the ground truths. A training strategy, named
mini-batch gradient descent, was employed to reduce the gaps.
In a mini-batch gradient descent epoch, 3 GPR images and 192
local features were chosen randomly. The gaps, also called the loss
of the Fast R-ConvNet, were computed by the combination of the
deviation from the two output layers as Equation (1). Then weights
and bias in each layer were adjusted using Equation (2) until the
outputs were closed to the ground truths,

Loss output ¼ Lsoftmax þ 0 P0 ¼ 0f g � Lregression ð1aÞ

Lsoftmax ¼ 1

1þ e� Poutput�Pground truthj j ð1bÞ
Fig. 12. Confused matrices of precision results in different transmitting frequencies. RC
background.

Fig. 13. Confused matrices of recall results in different transmitting frequencies. RC, W
background.
Lregression ¼ 1
2N

X192

i¼1

k uoutput � uground truth k22 ð1cÞ

weightiþ1 ¼ weighti þ a � @Loss output
@weighti

ð2aÞ

biasiþ1 ¼ biasi þ a � @Loss output
@biasi

ð2bÞ

where 0{P0 = 0} was a logical expression, which returned 0 if a pre-
dicted class was no distress, returning 1 otherwise. uwas a vector of
(x, y, h, w). a was learning rate during the training. a was 0.002 in
this study.

2.2.3. Region proposal network
In the Fast R-ConvNet, the ROI layer generated local features

randomly. It led to unnecessary computation during training and
testing. Additionally, it also led to the loss of some important local
features. In this study, region proposal networks (RNPs) were used
to generate local features to replace the random selection. The flow
chart and parameters of an RPN used in this study are presented in
Fig. 6 and Table 2. There were three steps for an RNP to generate
local features as following:

(1) Feature maps were acquired by convolutional and pooling
layers;
, WP, US, and BG are reflection cracks, water-damage pits, uneven settlement, and

P, US, and BG are reflection cracks, water-damage pits, uneven settlement, and
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(2) Nine rectangular boxes, called anchors, with three different
widths and heights were used to generate possible local fea-
tures. Possible local features were feature maps might
include a pavement distress in this study.

(3) Possible local features were imported into the softmax layer
and regression layer. The softmax layer was used to deter-
mine whether a possible local feature included a partial or
whole pavement distress. The regression layer was used to
reduce the deviation between an anchor and the ground
truth. The detailed procedures for reducing the deviation
have been introduced in the study of Ren et al. [38].

As shown in the three steps, the key issue was to design suitable
anchors to generate possible local features. We expressed an
anchor as (xi, yi, hij, wij), i = 1, 2. . .,9, j = 1, 2, 3. xi and yi were the
center of an anchor, while hij and wij were the height and width
of the anchor. To guarantee the rationality of the sizes and ratios
of the nine anchors, 15 combinations of seven different ratios
(0.3, 0.4, 0.7, 1.0, 1.3, 1.6, and 1.9) were utilized in this study, while
2 combinations of sizes (16, 32, 48, 64, 128, and 192) were
selected. Therefore, we designed 30 RNPs to produce possible local
features. The performance of the 30 RNPs were evaluated by the
validation performance of the 30 corresponding Faster R-
ConvNet. Finally, the optimal RNP and its Faster R-ConvNet were
chosen to detect pavement distresses for the testing data set.

2.2.4. Region proposal network
As shown in Tables 1 and 2, the 30 RPNs had the same convolu-

tion layers and pooling layers (L1-L4) as the Fast R-ConvNet. Thus,
the two model were combined by sharing the L1-L4, which saved
time in the both training and testing. The combination model, as
shown in Fig. 7, was named Faster R-ConvNet. Referring a study
Fig. 14. Confused matrices of precisions in different highways. RC, WP, US, and BG
are reflection cracks, water-damage pits, uneven settlement, and background.
of transfer learning [39], there were four steps to train the 30 Fas-
ter R-ConvNets as follows.

Step 1. An RNP was given the weights with layer-sequential
unit-variance initialization [40] and trained until the RNP could
distinguish GPR images with pavement distresses from normal
GPR images.

Step 2. The learned weights in L1-L4 were given to the Fast R-
ConvNet.

Step 3. The RPN was used to generate a large number of local
features as the training data set for the Fast R-ConvNet.

Step 4. The local features were used to fine tune the Fast R-
ConvNet, whose initial weights were given in the Step2.

Each RPN and the Fast R-CNN network were trained with a
learning rate of 0.002, a momentum of 1.0, and a weight decay of
0.0010 for 60,000 and 30,000 iterations, respectively.
2.3. Database and implementation details

A database including 3785 GPR images with a pixel resolution
of 512 � 512 was generated by the method introduced in Sec-
tion 2.1. The ratios of three transmitting frequencies (300, 500,
900 MHz) and four highways were 1:1:1 and 1:1:1:1, respectively.
Three pavement distresses (reflection crack, water-damage pit, and
uneven settlement) were included in the database. We annotated
the labels and bounding boxes of pavement distresses in a Python
environment as shown in Fig. 8.

A training and validation data set were generated by randomly
selecting GPR images from the database. The training and valida-
tion data set included 2557 and 614 GPR images, respectively.
The training and validation data set had GPR images under three
transmitting frequencies from four highways. The rest images were
used as a testing data set.
Fig. 15. Confused matrices of recalls in different highways. RC, WP, US, and BG are
reflection cracks, water-damage pits, uneven settlement, and background.
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The produces in Section 2.2 were conducted in a Python envi-
ronment on a computer with a Core i7 8750H @ 3.4 GHz CPU,
32 GB of DDR4 memory, and an 8 GB NVIDIA 1080 GPU.
3. Results and discussion

3.1. Training and testing results

The four steps in Section 2.2 were conducted to train the 30 Fas-
ter R-ConvNets, whose aim was to find the optimal one with rea-
sonable anchor sizes and ratios. The intersection over unions
(IoUs) of the three distresses and mean IoU in the validation were
used to evaluate the performance of the 30 Faster R-ConvNet dur-
ing the training. The IoUs of the three distresses were computed by
Equation (3) as

ð3Þ

In this study, the mean IoU was the average of the IoUs of the
reflection cracks, water-damage pits, and uneven settlements.

Fig. 9 presents the IoUs of the three pavement distresses and
mean IoU. The maximum IoU in the 30 Faster R-ConvNets was
88.34% in No. 11 case. However, the 85.24% IoU of uneven settle-
Fig. 16. Detection results of the three me
ments in No. 11 case was not acceptable, though the IoUs of reflec-
tion cracks and water-damage pits were 86.49% and 93.27%,
respectively, which were desirable. Considering the task of the Fas-
ter R-ConvNet was to detect all the three distresses, it was neces-
sary to select a Faster R-ConvNet whose all IoUs of the three
distresses were acceptable and balanceable. Compared with No.
11 case, the average IoUs of the three distresses in the No. 10 Faster
R-ConvNet were balanceable, which were 86.97%, 87.98%, and
89.99%. Therefore, the No. 10 case was considered as the optimal
one, whose ratios were 0.3, 0.7, and 1.6 and sizes were 16, 64,
and 128.

Recall and precision were also used to further evaluate the
trained Faster R-ConvNets as

ð4Þ

ð5Þ
thods in PY Highway and 900 MHz.
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The validation recalls and IoUs were computed by Eqs. (4) and
(5). Fig. 10 presents mean average precisions, recalls, and IoU of
the 30 Faster R-ConvNets. The recall and precision of the No 10
case were 89.13% and 89.09%, respectively.. It indicated that the
No. 10 Faster R-ConvNet was a reasonable and balanceable one,
though its precision, recall, and IoU were not the best among the
30 cases. Therefore, the No. 10 case was regarded as the optimal
one.

The testing data set mentioned in Section 2.3 was used to test
the trained No. 10 Faster R-ConvNet. Table 3 presents the preci-
sions, recalls, and IoUs of the No. 10 Faster R-ConvNet in the test-
ing. Fig. 11 shows some testing results. We could find that the
testing performance of the No. 10 Faster R-ConvNet was closed
to the validation performance. It indicated that the No. 10 Faster
R-ConvNet had a great generalization and out-of-sample ability.
We could also find that the testing performance in different dis-
tresses was similar. It indicated that the No. 10 Faster R-ConvNet
could detect reflection cracks, water-damage pits, and uneven set-
tlements well. Thus, we concluded that the No. 10 Faster R-
ConvNet could detect asphalt pavement distresses in various
real-world condition. The No. 10 Faster R-ConvNet was well-
trained in general.

3.2. Stability analysis

In the pavement inspection engineering, it is important to guar-
antee the model to work well in pavements with different struc-
Fig. 17. Detection results of the three me
tures. Thus, a stability analysis based on the testing results was
conducted to verify the stability of the model in different real-
world conditions, including different transmitting frequencies
and highway structures.

(1) Different transmitting frequencies

The testing data set was divided based on the transmitting fre-
quencies including 300, 500, and 900 MHz. The ratio of GPR images
in the three transmitting frequencies was 1:1:1. The confused
matrices shown in Fig. 12 and Fig. 13 present the precisions and
recalls of the No. 10 Faster R-ConvNet in different transmitting fre-
quencies. We found that the precisions and recalls of the No. 10
Faster R-ConvNet decreased with the decrease of the transmitting
frequencies, though the precisions and recalls in 300 MHz was still
acceptable. For example, the recalls of the water-damage pits in
900 MHz and 300 MHz were 93.25% and 86.82%, respectively. Fur-
ther, the IoUs in 300, 500, and 900 MHz were 84.35%, 86.27%, and
88.10%, respectively. It indicated that a low transmitting frequency
had a negative influence on the detection accuracy of the model
because less detail of the pavement distresses was collected and
shown in the GPR images in a low transmitting frequency condi-
tion. Therefore, some necessary features related to the distresses
were not acquired by the convolutional and pooling layers, which
led to a deviation of the outputs of the softmax and regression
layer. The cascade ConvNet system [41] may be a solution to the
problem.
thods in PY Highway and 600 MHz.
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(2) Different highway structures

The testing data set was divided based on the four highways
shown in Fig. 1. The ratio of GPR images in the four highways
was 1:1:1:1. The confused matrices shown in Figs. 14 and 15 pre-
sent the precisions and recalls of the No. 10 Faster R-ConvNet in
different highways. The precisions and recalls of the No. 10 Faster
R-ConvNet in four highways were similar. For example, the preci-
sions of reflection cracks in the four highways were 87.14%, 89.21%,
87.95%, and 88.94%, respectively. Additionally, the IoUs of the four
highways were 86.03%, 86.27%, 86.34%, and 86.32%, respectively. It
indicated that the pavement structures and materials had limited
influence on the precision and recall of the model. There were
three reasons why the performance of the No. 10 Faster R-
ConvNet was not influenced by the pavement structures and mate-
rials: (1) the difference of the pavement structures and materials
had limited influence on the performance the GPR, which guaran-
teed the quality of the GPR images; (2) the kernels of convolutional
layers had learned low-, medium-, and high-features related to
pavement distresses, which could extract distresses from GPR
images under different conditions during the testing; (3) the pool-
ing layers improved the tolerance of the Faster R-ConvNet to the
limited influence of the pavement structures and materials [42].

3.3. Comparative study

In order to compare the performance of the No. 10 Faster R-
ConvNet with other state-of-the-art methods for detecting asphalt
pavement distresses, we selected three GPR images from the test-
ing dataset to conduct a comparative study, as shown in Fig. 16 (a)-
Fig. 18 (a). Considering some studies [24,27] proved that
traditional unsupervised methods were not suitable for distress
(a) Original GPR image

(c) Result of the cascade ConvNet

Fig. 18. Detection results of the three me
detection, only two surprised methods were employed in the
comparison study. The first one was named cascade ConvNet-
based method [43], where a cascade ConvNet was used to classify
and detect pavement distresses using cropped GPR images. The
second one was named region ConvNet using uncropped GPR
images [26], whose work procedures were similar to the RNPs.
The two models were also trained by the training data set pre-
sented in Section 2.3.

Figs. 16 and 17 present detection results of the three methods
for GPR images from PY Highway in 900 MHz and 600 MHz. All
the three methods detected distresses successfully. It indicated
that the deep-learning methods had a good capacity for handling
complexity background and foreground in GPR images. In this
study, the foreground was pavement distresses in the GPR images,
while the background was the part of GPR images with no distress.
However, the precisions and recalls of the three methods were dif-
ferent due to their different working principles. The performance of
the cascade ConvNet-based method was worst in the three models
because it could only process cropped GPR images. It led its preci-
sion and recall were limited by the sizes of the cropped GPR
images. Thus, there were many backgrounds included in the
bounding box. The performance of the Faster R-CNN was better
than the performance of the region ConvNet. This was because
the Faster R-CNN detected distresses using local features proposed
by the RNP, and a correction was then conducted in the Fast R-
ConvNet part. Thus, the detection results were more precisive than
local features. However, the region ConvNet, whose working prin-
ciple was similar to a RNP, outputted the local features directly as
results. In a word, the Faster R-CNN had a superiority in the work-
ing principles for detecting distresses.

Fig. 18 presents detection results of the three methods for a GPR
image from HP Highway in 300 MHz. It could be found that the
(b) Result of the Faster R-ConvNet

(d) Result of the region ConvNet

thods in HP Highway and 300 MHz.



Fig. 19. Example of the real-time detection.
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performance of the Faster R-CNN and region ConvNet decreased,
while the performance of the cascade ConvNet-based method
was stable. It indicated that the performance of the Faster R-CNN
and region ConvNet were influenced by the transmitting frequen-
cies in some degree, though the results were still acceptable. It also
indicated that the cascade structure for deep learning was a way to
solve the problem.

3.4. A real-time detection

As shown in Fig. 2, a GPR image could only reflect a part of the
highway. To evaluate the entire conditions of highways, a real-
time detection should be realized. The No. 10 Faster R-ConvNet
realized the detection of a GPR image with a pixel resolution of
512 � 512 in GPU mode in approximately 0.03 s. A GPR image
with a pixel resolution of 512 � 512 presented a 0.6 m highway.
The speed of the testing vehicle was 20–25 m/s, which were less
than a window increment speed of the GPR and the runtime of
the Faster R-CNN. Therefore, the detection procedure did not
introduce a delay.

Real-time detection results are shown in Fig. 19. As shown in
Fig. 19, the method based on the Faster R-ConvNet had the capacity
of achieving a real-time pavement distress detection in GPU mode,
which could be used to replace a human-assisted pavement condi-
tion assessment based on real-time GPR data.

4. Conclusions

In this study, the Faster R-ConvNets combining RPNs and a Fast
R-ConvNet were utilized to detect asphalt pavement distresses
using GPR images, and following conclusion can be drawn:

(1) The No. 10 Faster R-ConvNet, whose anchors ratios were 0.3,
0.7, and 1.6 and sizes were 16, 64, and 128, achieved the
86.53%, 87.26%, and 84.93 IoUs of reflection cracks, water-
damage pits, and uneven settlements, respectively. Addi-
tionally, its precisions of the three distresses were 88.31%,
90.56%, and 88.51%. Thus, the No. 10 Faster R-ConvNet was
regarded as the optimal one.

(2) The performance of the No. 10 Faster R-ConvNet was not
obviously influenced by the pavement structures and mate-
rials. However, its performance was influenced by the trans-
mitting frequencies of the GPR due to the detail loss of the
pavement distresses in the GPR images.

(3) Compared with other supervised methods, the Faster R-
ConvNet could detect pavement distresses more precisely
under various real-world conditions in pavements. This
was because the local features generated by the RPN pro-
vided a reasonable area for the Fast R-ConvNet part to
regress the distress location. Additionally, nine anchors with
different sizes and ratios had a better capacity to detect
pavement distresses than cropped images with a fixed size.

(4) A real-time detection was realized to locate distresses in
asphalt pavements. The time for the Faster R-ConvNet to
detect a GPR image with 512 � 512 pixels in GPU mode
was approximately 0.3 s. The results provided the possibility
for a real-time pavement detection using GPR images. The
real-time detection results showed that the performance of
the Faster R-ConvNet was stable and reasonable.
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