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We propose a new classifier based on Dempster-Shafer (DS) theory and a convolutional neural network
(CNN) architecture for set-valued classification. In this classifier, called the evidential deep-learning clas-
sifier, convolutional and pooling layers first extract high-dimensional features from input data. The fea-
tures are then converted into mass functions and aggregated by Dempster’s rule in a DS layer. Finally, an
expected utility layer performs set-valued classification based on mass functions. We propose an end-to-
end learning strategy for jointly updating the network parameters. Additionally, an approach for selecting
partial multi-class acts is proposed. Experiments on image recognition, signal processing, and semantic-
relationship classification tasks demonstrate that the proposed combination of deep CNN, DS layer, and
expected utility layer makes it possible to improve classification accuracy and to make cautious decisions
by assigning confusing patterns to multi-class sets.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

In machine learning, classification refers to the task of predict-
ing the class of a new sample based on a learning set of labeled
instances. The most common classification problem is precise clas-
sification, in which a sample is classified into one and only one of
the possible classes. Unfortunately, such a hard assignment often
leads to misclassification in case of high uncertainty. For example,
ambiguity occurs when the feature vector does not contain suffi-
cient information to identify a precise class, and multiple classes
have similar probabilities. Also, a classifier with only precise clas-
sification may fail to identify outliers belonging to class that is
not represented in the learning set.

Set-valued classification [20,45,38] is a potential way to solve
this problem; it is defined as the assignment of a new observation
into a non-empty subset of classes when the uncertainty is too
high to make a precise classification. For instance, given a class
set X ¼ x1;x2;x3f g, we may not be able to reliably classify a sam-
ple x into a single class, but it may be almost sure that it does not
belong to x3. In this case, it is more cautious to assign x to the set
x1;x2f g. Classification with a reject option in [4,62] can be
regarded as a special case of set-valued classification, rejection
being equivalent to assigning a sample to the entire set of possible
classes. A related problem concerns the treatment of outliers,
which cannot be classified into any of the known classes, a prob-
lem referred to as ‘‘novelty detection” or ‘‘distance rejection”
[16]. Depending on the method, such samples may be assigned
to the empty set, or to the whole set X, reflecting maximum uncer-
tainty [9]. Set-valued classification makes it possible to better
reflect classification uncertainty, increase the cautiousness of clas-
sifiers and ultimately reduce the error rate. Precise classification
can be considered as a special case of set-valued classification, in
which only the sets with one class are considered.

In this study, we propose a new classifier based on Dempster-
Shafer (DS) theory and deep convolutional neural networks
(CNN) for set-valued classification, called the evidential deep-
learning classifier.1 In this classifier, a deep CNN is used to extract
high-order features from raw data. Then, the features are imported
into a distance-based DS layer [9] for constructing mass functions.
Finally, mass functions are used to compute the utilities of acts
assigning to a set of classes for set-valued classification. The whole
network is trained using an end-to-end learning procedure. Addi-
tionally, we provide a strategy for considering only some subsets
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of classes instead of considering all of them. The effectiveness of the
classifier and its decision strategy are demonstrated and discussed
using three types of datasets (image, signal, and semantic relation-
ship). The main contribution of this study is the demonstration that
CNNs can be enhanced with set-valued classification and novelty
detection capabilities thanks to the addition of an additional DS
layer, while maintaining their very good performance in precise clas-
sification tasks.
1.1. Related work

In recent years, with the explosive development of deep learn-
ing [29], several models have been developed for precise classifica-
tion, such as convolutional neural networks (CNNs) [25,31,65],
recurrent neural networks [33,39,40], graph neural networks
[53,54], and deep autoencoders [63,64]. Deep learning is a class
of machine learning methods that uses multiple layers to progres-
sively extract higher-level features from raw data as object repre-
sentation. For example, when processing images using a CNN,
lower layers may identify edges, while higher layers may identify
more abstract concepts relevant to humans such as digits, letters
or faces. Object representation based on deep learning is generally
robust and reliable. In particular, the representation has a strong
tolerance to translation and distortion of raw data. However,
despite the power of the deep learning-based models in precise
classification, we still face the problem of making them more cau-
tious by allowing them to assign highly uncertain samples to sets
of classes.

The Dempster-Shafer (DS) theory of belief functions [7,55], also
referred to as evidence theory, can be harnessed to provide a solu-
tion to the problem. DS theory is a well-established formalism for
reasoning and making decisions with uncertainty [70]. It is based
on representing independent pieces of evidence by completely
monotone capacities and combining them using a generic operator
called Dempster’s rule [55]. In the last two decades, DS theory has
been increasingly applied to pattern recognition and supervised
classification, following three main directions. The first one is clas-
sifier fusion, in which the outputs of several classifiers are trans-
formed into belief functions and aggregated by a suitable
combination rule (e.g., [1,35,48,74]). Another direction is evidential
calibration: the decisions of classifiers are converted into mass
functions with some frequency calibration property (e.g.,
[37,41,42,67,72]). The last approach is to design evidential classifiers
(e.g., [9,13]), which break down the evidence of input features into
elementary mass functions and combine them by Dempster’s rule.
The outputs of an evidential classifier can be used for decision-
making [3,18]. Thanks to the generality and expressiveness of the
DS formalism, the outputs of an evidential classifier provide more
information than those of conventional classifiers (e.g., a neural
network with a softmax layer) that convert an input feature vector
into a probability distribution or any other distribution. For exam-
ple, the expressiveness of an evidential classifier can be used for
uncertainty quantification and ambiguity rejection [8,38]. Over
the years, two main principles for designing an evidential classifier
have been proposed: the model-based and distance-based
approaches. The former uses estimated class-conditional distribu-
tions [57], while the latter constructs mass functions based on dis-
tances to prototypes [9,13]. In practice, the performance of an
evidential classifier mainly depends on two factors: the training
data set and the reliability of object representation.

In the last twenty years we have seen an increase in the size of
benchmark datasets for supervised learning at an unprecedented
rate from 102 to 105 [27] and even 109 instances [49]. However,
little has been done to hybridize recent techniques for object rep-
resentation, such as deep learning, with evidential classifiers for
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decision-making. Some studies combining DS theory and deep
learning has been reported, but most of these studies address
the problem of deep-learning classifier fusion, where the outputs
of several deep-learning models are regarded as pieces of evi-
dence and aggregated by Dempster’s rule of combination. For
example, Soua et al. [58] use deep belief networks to indepen-
dently predict traffic flow using streams of data and event-based
data, and then update the beliefs from the networks by Demp-
ster’s conditional rule to achieve enhanced prediction. Tian et al.
[61] also use Dempster’s rule to fuse the beliefs from several
deep-learning models with different types of data to detect
anomalous network behavior patterns. Das et al. [5] use CNNs
to perform superpixel semantic segmentation with three levels;
DS theory is then utilized to combine the segmentation results
of the three levels into reliable ones. Besides, Guo et al. [19] pro-
pose an ‘‘iFusion” framework, which uses Dempster’s rule to com-
bine different deep-learning discrimination models taking real-
time or heterogeneous data as input. Similar works using DS the-
ory for deep-learning classifier fusion can also be found in the
field of posture recognition [32], remote-sensing images process-
ing [15], and emotion classification [68]. In [11], the author shows
that the operations performed in a multilayer perceptron classifier
can be analyzed from the point of view of DS theory as the appli-
cation of Dempster’s rule; however, he does not propose a new
model. Though Yuan et al. [71] propose a method using DS theory
to measure the uncertainty of outputs from deep neural networks
for decision-making, it still appears that little has been done to
use features from a deep-learning model as inputs of an evidential
classifier to generate informative mass-function outputs for
decision-making allowing set-valued classification, a gap that we
aim to fill in this work.

The rest of the paper is organized as follows. Section 2 starts
with a brief reminder of DS theory, the DS layer for constructing
mass functions, and feature representation via deep CNN. The
new classifier is then introduced in Section 3. Section 4 reports
numerical experiments, which demonstrate the advantages of the
proposed classifier. Finally, we conclude the paper in Section 5.
2. Background

This section first recalls some necessary definitions regarding
DS theory (Section 2.1) and the evidential neural network intro-
duced in [9] (Section 2.2). Then, a brief description of feature rep-
resentation via deep CNN is provided in Section 2.3.

2.1. Dempster-Shafer theory

The main concepts regarding DS theory are briefly presented in
this section, and some basic notations are introduced. Detailed
information can be found in Shafer’s original work [55] and in
the recent review [12].

Let X ¼ x1; . . . ;xMf g be a finite set of states, called the frame of

discernment. A mass function on X is a mapping m from 2X to [0,1]
such that m £ð Þ ¼ 0 andX
A#X

m Að Þ ¼ 1: ð1Þ

For any A#X, each mass m Að Þ is interpreted as a share of a unit
mass of belief allocated to the hypothesis that the truth is in A,
and which cannot be allocated to any strict subset of A based on
the available evidence. Set A is called a focal element of m if
m Að Þ > 0.

Two mass functions m1 and m2 representing independent items
of evidence can be combined conjunctively by Dempster’s rule �
[55] as



Table 1
Utility matrix extended by an OWA operator with c ¼ 0:8.

Classes

x1 x2 x3

f x1f g 1 0 0

f x2f g 0 1 0

f x3f g 0 0 1

f x1 ;x2f g 0.8 0.8 0

f x1 ;x3f g 0.8 0 0.8

f x2 ;x3f g 0 0.8 0.8

f Xf g 0.6819 0.6819 0.6819

Fig. 1. Architecture of an evidential deep-learning classifier.
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m1 �m2ð Þ Að Þ ¼ m1 \m2ð Þ Að Þ
1� m1 \m2ð Þ £ð Þ ð2aÞ

for all A –£, with

m1 \m2ð Þ Að Þ ¼
X

B\C¼A

m1 Bð Þm2 Cð Þ ð2bÞ

and

m1 \m2ð Þ £ð Þ ¼
X

B\C¼£

m1 Bð Þm2 Cð Þ: ð2cÞ

Mass functions m1 and m2 can be combined if and only if the
denominator on the right-hand side of Eq. (2a) is strictly positive.
The operator � is commutative and associative.

For decision-making with belief functions, we define the lower
and upper expected utilities [10] of selecting xi as, respectively,

Em fxi

� �
¼
X
B#X

m Bð Þmin
xj2B

uij; ð3aÞ

and

Em fxi

� �
¼
X
B#X

m Bð Þmax
xj2B

uij; ð3bÞ

where uij 2 0;1½ � is the utility of selecting xi when the true state is
xj, and fxi

denotes the act of selecting xi. A pessimistic decision-
maker (DM) typically selects the act with the largest lower expected
utility, while an optimistic DM maximizes the upper expected util-
ity. The generalized Hurwicz decision criterion [23,24,60,10] mod-
els the DM’s attitude to ambiguity by a pessimism index m and
defines the expected utility of act fxi

as the weighted sum

Em;m fxi

� �
¼ mE fxi

� �
þ 1� mð ÞE fxi

� �
: ð4Þ

It is clear that the pessimistic and optimistic attitudes correspond,
respectively, to m ¼ 1 and m ¼ 0.

2.2. Evidential neural network

Based on DS theory, Denœux [9] proposed a distance-based
neural-network layer for constructing mass functions, also known
as the evidential neural network (ENN) classifier. In the ENN classi-
fier, the proximity of an input vector to prototypes is considered
as evidence about its class. This evidence is converted into mass
functions and combined using Dempster’s rule. This section pro-
vides a short description of the ENN classifier.

We consider a training set X ¼ x1; x2; . . . ; xNf g � RP of N exam-
ples represented with P-dimensional feature vectors, and an ENN
classifier composed of n prototypes p1; . . . ;pn

� �
in RP . For a test

sample x, the ENN classifier constructs mass functions that quan-
tify the uncertainty about its class in X ¼ x1; . . . ;xMf g, using a
three-step procedure. This procedure can be implemented in a
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neural-network layer, which will be plugged into a deep CNN in
Section 3.1. The three-step procedure is defined as follows.

Step 1: The distance-based support between x and each refer-
ence pattern pi is computed as
si ¼ ai exp � gidi
� �2� �

i ¼ 1; . . . ;n; ð5Þ
where di ¼ x� pi
�� �� is the Euclidean distance between x and proto-

type pi, and ai 2 0;1ð Þ and gi 2 R are parameters associated with
prototype pi. Prototype vectors p1; . . . ;pn can be considered as vec-
tors of connection weights between the input layer and a hidden
layer of n Radial basis Function (RBF) units.

Step 2: The mass function mi associated to reference pattern pi

is computed as
mi xj
� �	 
 ¼ hi

js
i; j ¼ 1; . . . ;M ð6aÞ

mi Xð Þ ¼ 1� si; ð6bÞ
where hi
j is the degree of membership of prototype pi to class xj

with
PM

j¼1h
i
j ¼ 1. We denote the vector of masses induced by proto-

type pi as
mi ¼ mi x1f gð Þ; . . . ;mi xMf gð Þ;mi Xð Þ	 
T
:

Eq. (6) can be regarded as computing the activation of units in a sec-
ond hidden layer of the ENN classifier, composed of n modules of
M þ 1 units each. The result of module i corresponds to the belief
masses assigned by mi.

Step 3: The n mass functions mi; i ¼ 1; . . . ;n, are aggregated by
Dempster’s rule (2). The combined mass function is computed
iteratively as l1 ¼ m1 and li ¼ li�1 \mi for i ¼ 2; . . . ;n. We
have
li xj
� �	 
 ¼ li�1 xj

� �	 

mi xj
� �	 


þ li�1 xj
� �	 


mi Xf gð Þ þ li�1 Xð Þmi xj
� �	 
 ð7aÞ



Fig. 2. Architecture of the expected utility layer.
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for i ¼ 2; . . . ;n and j ¼ 1; . . . ;M, and
li Xð Þ ¼ li�1 Xð Þmi Xð Þ i ¼ 2; . . . ;n: ð7bÞ

The vector of outputs from the ENN classifier
m ¼ m x1f gð Þ; . . . ;m xMf gð Þ;m Xð Þð ÞT is finally obtained as
m xj
� �	 
 ¼ ln xj

� �	 
PM
j0¼1ln xj0

� �	 
þ ln Xð Þ
and
m Xð Þ ¼ ln Xð ÞPM
j0¼1ln xj0

� �	 
þ ln Xð Þ :
Table 2
Examples of DS layer outputs

Examples Outputs of a DS layer

m x1f gð Þ m x2f gð Þ m x3f gð Þ m Xð Þ
#1 0.70 0.10 0.10 0.10
#2 0.97 0.01 0.01 0.01
#3 0.50 0.50 0 0
#4 0.40 0.40 0 0.2

Table 3
Example of utilities and losses

Examples Expected utility Loss (x� ¼ x1)

E1 x1f gð Þ E1 x2f gð Þ E1 x3f gð Þ
#1 0.70 0.10 0.10 0.303
#2 0.97 0.01 0.01 0.026
#3 0.50 0.50 0 0.602
#4 0.40 0.40 0 0.796
2.3. Feature representation via deep CNN

In practice, the effectiveness of an ENN classifier heavily
depends on the information contained in its input features. Feature
representation, an essential part of the machine learning workflow,
consists in discovering the predictors needed for classification from
raw data. In recent years, deep learning models [29] have become
very popular because of their ability to construct rich deep feature
representations, allowing them to achieve exceptional perfor-
mance in such tasks as pattern recognition and segmentation
[17,36,73], signal processing [47,50], and even material discovery
[44,59].

Deep CNNs, one of the most widely used deep learning architec-
tures, are a special type of multi-layered neural network and the
main focus of this paper. The most common CNNs consist of convo-
lutional layers, pooling layers, and fully connected layers. Convolu-
tional and pooling layers are defined as stages. A stage converts its
input data into an intermediate representation, working as a fea-
ture extractor. In general, a deep CNN is composed of several
stacked stages that process raw data and repeatedly converts them
into higher-level feature maps. Then, fully connected layers, serv-
ing as a decision maker, assign the input to one of the classes based
on the feature maps. Therefore, the final output of the stacked
stages in a deep CNN can be considered as a feature representation
of the input data. In the study, these high-level features are used as
input to a DS layer capable of set-valued classification, as will be
shown in Section 3.1.

To understand the feature representation of deep CNNs, we
briefly recall the processes of convolutional and pooling layers.
Consider a stage with input z ¼ z1; . . . ; zD

	 

consisting of D input

maps or input channels zi (i ¼ 1; . . . ;D) with size H �W . A convolu-
tional layer consists of several convolution kernels that extract fea-
ture maps from z. A convolution kernel is a small matrix used to
apply a convolution operation to each input map by sliding over
the map, performing an element-wise multiplication with the part
of the input map where the kernel is currently on, summing up the
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multiplied results into a single value, and then adding the bias of
the kernel to the summed value. Thus, the processes in a convolu-
tional layer, consisting of e convolution kernels with size a� b, are
expressed as

cj ¼ f bj þ
X
i

wi;j � zi
 !

; ð8Þ

where wi;j is the convolution kernel between the i-th input map and

the j-th output map; bj is the bias of kernel wi;j; � denotes the con-
volution operation; zi is the i-th input map with size
H �W; i ¼ 1; . . . ;D; cj is the j-th output feature map, with size
H�aþ1

r � W�bþ1
r ; j ¼ 1; . . . ; e; r is the stride with which the kernel slides

over input map zi; f is the activation function, such as the rectified
linear unit ReLU xð Þ ¼ max 0; xð Þ [28]. A pooling operation with an
s� s non-overlapping local region is formulated as

poka;b ¼ b1; . . . ;bs�s	 
T � Or ckas;bs; . . . ; c
k
asþs;bs; . . . ; c

k
asþs;bsþs

� �
; ð9Þ

where poka;b is the element a; bð Þ from the k-th output map, which is
in the a-th row and the b-th column; Or is a sort function frommax-
imum to minimum; � denotes dot product; b1; . . . ;bs�s	 


is the pool-
ing weight vector, such as max pooling
b1; b2; . . . ;bs�s	 
 ¼ 1;0; . . . ; 0ð Þ and mean pooling

b1; . . . ;bs�s	 
 ¼ 1
s� s

; . . . ;
1

s� s

� �
:

3. Proposed classifier

In this section, we describe the proposed classifier. Section 3.1
presents the overall architecture composed of several stages from
a deep CNN for feature representation, a DS layer to construct mass
functions, and an expected utility layer for decision-making. The
details of the expected utility layer are described in Section 3.2,
and the learning strategy for the proposed classifier is exposed in
Section 3.3. Finally, an approach for selecting partial multi-class
acts is introduced in Section 3.4.

3.1. Network architecture

The main idea of this work is to hybridize the ENN classifier pre-
sented in Section 2.2 and the CNN architecture recalled in Sec-
tion 2.3 by ‘‘plugging” a DS layer followed by a utility layer at
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the output of a CNN. The architecture of the proposed method,
called the evidential deep-learning classifier, is illustrated in Fig. 1.
An evidential deep-learning classifier has the ability to perform
set-valued classification and quantify the uncertainty about the
class of the sample on X ¼ x1; . . . ;xMf g by a belief function. Prop-
agation of information through this network can be described by
the following three-step procedure:

Step 1: An input sample is propagated into several stages of a
CNN architecture to extract latent features relevant for classifi-
cation, as done in a probabilistic CNN. In the final stage, the P-
dimensional output vector is a feature representation of the
sample, ready to be fed as input to the DS layer. This architec-
ture provides a robust and reliable representation of the input
sample. Thanks to this representation, the evidential deep-
learning classifier yields similar or even better performance
for precise classification than does a probabilistic classifier with
the same stages. This superiority will be demonstrated by per-
formance comparisons between the evidential and probabilistic
deep-learning classifiers in precise classification tasks
(Section 4).
Step 2: The feature vector computed in Step 1 is fed into the DS
layer, in which it is converted into mass functions aggregated
by Dempster’s rule, as explained in Section 2.2. The output of
the DS layer is an M þ 1ð Þ mass vector
m ¼ m x1f gð Þ; . . . ;m xMf gð Þ;m Xð Þð ÞT ;
which characterizes the classifier’s belief about the probability of
the sample class and quantifies the uncertainty in the object repre-
sentation. The mass m xif gð Þ is a degree of belief that the sample
belongs to class xi. The DS layer tends to allocate masses uniformly
across classes when the feature representation contains confusing
and conflicting information. The additional degree of freedom
Fig. 3. An example of act selection: confusion matrix (a), normalized confusion
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m Xð Þ makes it possible to quantify the lack of evidence and verify
whether the model is well trained [62]. The advantages of the DS
layer will be verified in the performance evaluation of set-valued
classification using evidential deep-learning classifiers reported in
Section 4.

Step 3: The output mass vector m is fed into an expected utility
layer for decision-making, where it is used to compute the
expected utilities of acts. Each act is defined as the assignment
of the sample to a non-empty subset A of X. Thus, the output of
the expected utility layer is an expected-utility vector of size at
most equal to 2M � 1 if all of the possible acts are considered.
The expected utility layer allows the proposed classifier to per-
form set-valued classification. This capability will be demon-
strated by the performance comparison between the
evidential and probabilistic deep-learning classifiers in set-
valued classification and novelty detection tasks reported in
Section 4. The details of the expected utility layer for set-
valued classification are introduced in the next section.
3.2. Expected utility layer

Let X ¼ x1; . . . ;xMf g be the set of classes. For classification
problems with only precise prediction, an act is defined as the
assignment of an example to one and only one of the M classes.

The set of acts is F ¼ fx1
; . . . ; fxM

n o
, where fxi

denotes assignment

to class xi. To make decisions, we define a utility matrix UM�M ,
whose general term uij 2 0;1½ � is the utility of assigning an example
to class xi when the true class is xj. Here, UM�M is called the orig-
inal utility matrix. For decision-making with belief functions, each
act fxi

induces expected utilities, such as the lower and upper
expected utilities defined by (3).
matrix (b), dendrogram (c), and a curve of distance vs. cluster number (d).



Table 4
The three baseline stages used on CIFAR-10 data.

NIN [34] FitNet-4 [43] ViT-L/16 [14]

Input: 32 � 32 � 3

16 � 16 � 3 � 4 patches with
positional encoding

5 � 5 Conv. NIN 64
ReLU

3 � 3 Conv. 32
ReLU

3 � 3 Conv. 32 ReLU

3 � 3 Conv. 32
ReLU

3 � 3 Conv. 32 ReLU

3 � 3 Conv. 32
ReLU

3 � 3 Conv. 32 ReLU

3 � 3 Conv. 48
ReLU

3 � 3 Conv. 48 ReLU

3 � 3 Conv. 48
ReLU

3 � 3 Conv. 48 ReLU

2 � 2 max-pooling
with 2 strides

5 � 5 Conv. NIN 64
ReLU

3 � 3 Conv. 80
ReLU

3 � 3 Conv. 80 ReLU

2 � 2 mean-pooling
with 2 strides

3 � 3 Conv. 80
ReLU

3 � 3 Conv. 80 ReLU

3 � 3 Conv. 80
ReLU

3 � 3 Conv. 80 ReLU

3 � 3 Conv. 80
ReLU

3 � 3 Conv. 80 ReLU

3 � 3 Conv. 80
ReLU

3 � 3 Conv. 80 ReLU

2 � 2 max-pooling
with 2 strides

5 � 5 Conv. NIN 128
ReLU

3 � 3 Conv. 128
ReLU

3 � 3 Conv. 128 ReLU

2 � 2 mean-pooling
with 2 strides

3 � 3 Conv. 128
ReLU

3 � 3 Conv. 128 ReLU

3 � 3 Conv. 128
ReLU

3 � 3 Conv. 128 ReLU

3 � 3 Conv. 128
ReLU

3 � 3 Conv. 128 ReLU

3 � 3 Conv. 128
ReLU

3 � 3 Conv. 128 ReLU

8 � 8 max-pooling
with 2 strides

4 � 4 max-pooling with 2
strides + positional encoding

Average global
pooling

Transformer decoder
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For classification problems with imprecise prediction, Ma and
Denœux [38] proposed an approach to conduct set-valued classifi-
cation under uncertainty by generalizing the set of acts as partially
assigning a sample to a non-empty subset A of X. Thus, the set of

acts becomes F ¼ f A;A 2 2X n£
n o

, in which 2X is the power set

of X and f A denotes the assignment to a subset A. In this study, sub-
set A is defined as a multi-class set if jAj P 2. For decision-making
with F , the original utility matrix UM�M is extended to U 2X�1ð Þ�M ,

where each element buA;j denotes the utility of assigning a sample
to set A of classes when the true label is xj.

When the true class isxj, the utility of assigning a sample to set
A is defined as an Ordered Weighted Average (OWA) aggregation
[69] of the utilities of each precise assignment in A as

buA;j ¼
XAj j

k¼1

gk � uA
kð Þj; ð10Þ

where uA
kð Þj is the k-th largest element in the set uA

ij ;xi 2 A
n o

made

up of the elements in the original utility matrix UM�M , and weights

g ¼ g1; . . . ; gjAj
� �

represent the preference to choose uA
kð Þj when a

classifier has to make a precise decision among a set of possible
choices. The elements in weight vector g represent the DM’s toler-
ance to imprecision. For example, full tolerance to imprecision is
achieved when the assignment act f A has utility 1 once set A con-
tains the true label, no matter how imprecise A is. In the case, only

the maximum utility of elements in set uA
ij;xi 2 A

n o
is considered:

g1; g2; . . . ; gjAj
� �

¼ 1;0; . . . ;0ð Þ. At the other extreme, a DM attaching

no value to imprecision would consider the act f A as equivalent to
selecting one class uniformly at random from A: this is achieved
when

g1; g2; . . . ; gjAj
� �

¼ 1
jAj ;

1
jAj ; . . . ;

1
jAj

� �
:

In this study, following [38], we determine the weight vector g of
the OWA operators by adapting O’Hagan’s method [46]. We define
the imprecision tolerance degree as

TDI gð Þ ¼
XAj j

k¼1

Aj j � k
Aj j � 1

gk ¼ c; ð11Þ

which equals to 1 for the maximum, 0 for the minimum, and 0.5 for
the average. In practice, we only need to consider values of c
between 0.5 and 1 as a precise assignment is preferable to an
imprecise one when c < 0:5 [38]. Given a value of c, we can com-
pute the weights of the OWA operator by maximizing the entropy

ENT gð Þ ¼ �
XAj j

k¼1

gk log gk ð12Þ

subject to the constraints TDI gð Þ ¼ c;
P Aj j

k¼1gk ¼ 1, and gk P 0.

Example 1. Table 1 shows an example of the extended utility
matrix generated by an OWA operator with c ¼ 0:8 for a classifi-
cation problem. The first three rows constitute the original utility
matrix, indicating that the utility equals 1 when assigning a sample
to its true class, otherwise it equals 0. The remaining rows are the
matrix of the aggregated utilities. For example, we get a utility of
0.8 when assigning a sample to set x1;x2f g if the true label is x1.

Based on an extended utility matrix U 2X�1ð Þ�M and the outputs

of a DS layer m, we can compute the expected utility of an act
assigning a sample to set A using the generalized Hurwicz criterion
(4) as
280
Em;m f Að Þ ¼ mEm f Að Þ þ 1� mð ÞEm f Að Þ; ð13aÞ

where Em f Að Þ and Em f Að Þ are, respectively, the lower and upper
expected utilities

Em f Að Þ ¼
X
B#X

m Bð Þmin
xk2B

buA;j; ð13bÞ

Em f Að Þ ¼
X
B#X

m Bð Þmax
xk2B

buA;j; ð13cÞ

and m is the pessimism index, which is considered as a hyperparam-
eter of the proposed classifier. The sample is finally assigned to set A
such that

A ¼ arg max
£–B#X

Em;m f Bð Þ: ð14Þ

Similar to the DS layer, the procedure of assigning a sample to a set
in F using utility theory can be summarized as a layer of the neural
network, called an expected utility layer, as shown in Fig. 2. In this
layer, the inputs and outputs are, respectively, the mass vector m
from the preceding DS layer and the expected utilities of all acts
in F . The connection weight between unit j of the DS layer and out-
put unit A#X corresponding to the assignment to set A is the utility



Fig. 4. Average utility vs. m for the proposed classifiers on the CIFAR-10 dataset: NIN (a), FitNet-4 (b), and ViT-L/16 (c).

Table 5
Test average utilities in precise classification on CIFAR-10 data.

Models NIN [34] FitNet-4 [43] ViT-L/16 [14]

Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier

Utility 0.8959 0.8978 0.9353 0.9361 0.9921 0.9908
p-value (McNemar’s test) 0.0489 0.0492 0.0452

Table 6
Test average utilities for precise classification of the CIFAR-100 data after transfer learning.

Models NIN [34] FitNet-4 [43] ViT-L/16 [14]

CNN classifier Evidential classifier Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier

Utility 0.3442 0.3461 0.6688 0.6714 0.8251 0.8217
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value buA;j. As coefficient c describing the imprecision tolerance
degree is fixed, the connection weights of the expected utility layer
do not need to be updated during training.
3.3. Learning

The evidential deep-learning classifier can be trained by a
stochastic gradient descent algorithm. Given a sample x with class
label x�, we define the prediction loss as

Lm xð Þ ¼ �
XM
k¼1

yk logEm fxk

� �
þ 1� ykð Þ log 1� Em fxk

� �� �
ð15aÞ
281
with

yk ¼
1 if xk ¼ x�
0 if xk –x�

�
: ð15bÞ

The loss Lm xð Þ is minimized when Em fxk

� �
¼ 1 for xk ¼ x� and

Em fxl

� �
¼ 0 for xl –x�.

Example 2. Table 2 shows several examples, whose utilities of
single-valued assignments and losses are shown in Table 3. The
extended utility matrix is shown in Table 1, and m equals 1. We
assume that X ¼ x1;x2;x3f g and x� ¼ x1. Eq. (15) yields differ-
ent losses given a set of DS layer outputs.
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The derivatives of Lm xð Þ of the error w.r.tm in the expected util-
ity layer are

@Lm xð Þ
@m xkf gð Þ ¼ � yk

Em fxk

� � bu xkf g;k þ 1� mð Þ max
i¼1;...;M

bu xkf g;i

� 

; ð16aÞ

@Lm xð Þ
@m Xð Þ ¼ �

XM
k¼1

yk
Em fxk

n o� � 1� mð Þ max
i¼1;...;M

bu xkf g;i: ð16bÞ

The derivatives of Lm xð Þ w.r.t pi
k;gi, and ni in a DS layer are the

same as the original work of Denœux [9]:

@Lm xð Þ
@pi

k

¼ @Lm xð Þ
@si

2 gi
	 
2

si xk � pi
k

	 

; k ¼ 1; . . . ; P; i

¼ 1; . . . ;n; ð17Þ

@Lm xð Þ
@gi

¼ Lm xð Þ
@si

�2gi di
� �2

si
� �

; i ¼ 1; . . . ; n; ð18Þ

and

@Lm xð Þ
@ni

¼ Lm xð Þ
@si

exp � gidi
� �2� �

1� ai
	 


ai; i ¼ 1; . . . ;n; ð19Þ

where P is the dimension of the reference patterns and the input
feature vector and n is the number of prototypes.

In the proposed classifier, the DS layer is connected to the pool-
ing layer of the last convolutional stage, as shown in Fig. 1. Thus,
we can compute the derivatives of the error w.r.t. xk and pok as

@Lm xð Þ
@xk

¼ Lm xð Þ
@pok

¼ �2
Lm xð Þ
@si

gi
	 
2

si
Xn
i¼1

xk � pi
k

	 

; k

¼ 1; . . . ; P; ð20Þ
where pok is the k-th output map in the final pooling layer, which is
a 1� 1 tensor. Error propagation in the remaining stages is per-
formed as in a probabilistic CNN.

3.4. Act selection

As explained in Section 3.2, the set of acts when considering

multi-class assignment is F ¼ f A;A 2 2X n£
n o

, as instances can

be assigned to any non-empty subset A of X. However, the cardi-
nality of F increases exponentially with the number of classes,
which could preclude the application of this approach when the
number M of classes is large.

In [62], we showed that a neural network with convolutional
layers and a DS layer tends to assign samples to multi-class sets
when candidate classes are similar, such as, e.g., ‘‘cat” and ‘‘dog”,
or ‘‘horse” and ‘‘deer”. Thus, it may be advantageous to only con-
sider partial multi-class acts assigning samples to subsets contain-
ing two or more similar classes.

In this study, we propose a strategy to determine similar classes
in the frame of discernment and select partial multi-class acts from
F based on class similarity. Using the selected partial multi-class
acts, rather than all acts in F , we can reduce the compute cost in
set-valued assignments. This strategy can be described as follows.

Step 1: A confusion matrix with only precise assignments is
generated by a trained evidential deep-learning classifier using
the training set. In the confusion matrix, each column repre-
sents the predicted sample distribution in one class.
Step 2: Each column in the confusion matrix is normalized
using its total number. Each normalized column is regarded
as the feature of its corresponding class.
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Step 3: The Euclidean distance between every two features is
computed, and a dendrogram is generated by a hierarchical
agglomerative clustering (HAC) algorithm [6,56]. The distance
between every two features represents the similarity of the
two classes. The distance is close to 0 if two classes are
similar.
Step 4: The distance can be drawn versus the number of
clusters based on the dendrogram, as shown in Fig. 3d. A
point of inflection in the curve can then be used to deter-
mine the threshold for cutting the dendrogram. In this study,
we used the Calinski-Harabasz index (CHI) [2] to determine
this point. The point of inflection is the one in the curve
with the maximum CHI, as illustrated in Fig. 3d of Example
3. The right of the point has a small number of highly sim-
ilar classes. This can be explained by the nature of the HAC
algorithm [6]. Very similar classes are consolidated first as
the algorithm proceeds. Toward the end of the HAC run,
we reach a stage where dissimilar classes are left to be
merged but the distance between them is large; these
classes are not similar and do not need to be clustered in
the act-selection strategy.
Step 5: The distance corresponding to the inflection point is
used as the threshold to cut the dendrogram. Similar patterns
are the classes in the clustered groups with the distance lower
than the threshold. Finally, we select the multi-class acts corre-
sponding to similar classes.
Example 3. Fig. 3 shows an example of act selection, in which a
HAC algorithm with Ward linkage is used to generate a dendro-
gram. Fig. 3d display a point of inflection whose CHI is 1.91 and
corresponding distance is 0.927. The distance is used as the thresh-
old of the Euclidean distance to cut the dendrogram. There are two
pairs of similar patterns: x1;x2f g and x3;x4f g. Thus, the selected
partial multi-class acts are f x1 ;x2f g and f x3 ;x4f g.

4. Experiments

In this section, we present numerical experiments demonstrat-
ing the advantages of the proposed classifier. In Section 4.1, we pro-
vide three metrics for performance evaluation. Experimental
results on image recognition, signal processing and semantic-
relationship classification tasks are then reported and discussed,
respectively, in Sections 4.2, 4.3 and 4.4.

4.1. Evaluation of set-valued classification

In the applications of evidential deep-learning classifiers, we
use the extended utility matrix U 2X�1ð Þ�M for performance evalua-

tion. For a dataset T, the classification performance is evaluated by
the averaged utility as

AU Tð Þ ¼ 1
jTj
XjTj
i¼1

buA ið Þ;yi ; ð21Þ

where yi is the true class of learning example i;A ið Þ is the
selected subset for example i using (14) and, using the notation
introduced in Section 3.2, buA;yi is the utility of assigning sample
i to subset A#X when its true class is yi. When only consider-
ing precise acts, the AU criterion defined by (21) boils down to
classification accuracy. The averaged cardinality is also computed
as

AC Tð Þ ¼ 1
jTj
XjTj
i¼1

jA ið Þj: ð22Þ



Fig. 5. Average utility (a) and average cardinality (b) vs. c for the evidential and probabilistic deep-learning classifiers on the CIFAR-10 dataset.

Table 7
Label classification/utilities with different c.

#1(x�=cat) #2(x�=dog) #3(x�=deer) #4(x�=automobile)

c=0.5 {dog}/0 {dog}/1 {deer}/1 {airplane}/0
c=0.6 {cat,dog}/0.6 {cat,dog}/0.6 {deer}/1 {airplane}/0
c=0.7 {cat,dog}/0.7 {cat,dog}/0.7 {deer,horse}/0.7 {airplane}/0
c=0.8 {cat,dog}/0.8 {cat,dog}/0.8 {deer,horse}/0.8 {airplane}/0
c=0.9 {cat,dog}/0.9 {cat,dog}/0.9 {cat,deer,dog,horse}/0.7104 {cat,deer,dog,horse}/0
c=1.0 X/1.0 X/1.0 X/1.0 X/1.0
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Additionally, we also consider the case where a dataset T 0 ¼ T 0
O; T

0
I

� �
is composed of a subset T 0

O of outliers whose class does not belong
to the frame of discernment X, and a subset T 0

I of inliers whose class
belongs to X. We compare the rate of fX in T 0

I and T 0
O to evaluate the

capacity of a classifier to reject outliers together with ambiguous
samples. This capacity is called novelty detection in [9]. Generally,
a well-trained classifier is expected to have a low rate of fX in T 0

I

but a high rate in T 0
O.

In this study, we compare the proposed classifiers with proba-
bilistic CNNs. To ensure a fair comparison, we adopt the following
strategy for probability-based set-valued classification in CNNs:
f A	�f A0 if and only if E f Að Þ 6 E f A0ð Þ, with E f Að Þ ¼Pxk2Ap xkð Þ � buA;k.
4.2. Image classification experiment

We used the CIFAR-10 dataset to evaluate the performance of
the proposed classifier in image classification. The CIFAR-10 data-
set [26] consists of 60,000 RGB images of size 32� 32 partitioned
in 10 classes. There are 50,000 training examples and 10,000 test-
ing examples. During training, we randomly selected 10,000
images as validation data. We used two datasets (CIFAR-100 [26]
and MNIST [30]) for novelty detection. The CIFAR-100 dataset is
just like the CIFAR-10 except it has 100 classes containing 600
images each, while the MNIST dataset of handwritten digits has
70,000 examples. All examples in the two datasets are used for
novelty detection except some images whose classes are included
in the CIFAR-10 dataset.
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Precise classification. In this experiment, the convolutional
stages of three probabilistic CNNs were combined with the DS
and expected utility layers, as shown in Table 4. The three proba-
bilistic CNNs have the same number of output feature maps but
different convolutional and pooling layers. As shown in Table 5,
the proposed classifiers slightly outperform the probabilistic ones
in precise classification, except with ViT-L/16 feature extraction.
McNemar’s test results indicate a small but statistically significant
effect of the proposed combination on the image classification task
with p-values below 5%. These results suggest that the utility of an
evidential classifier is larger than that of a probabilistic CNN clas-
sifier with the same stage as the evidential one. They also demon-
strate that the use of the convolutional and pooling layers in Step 1
of Section 3.1 allows for good precise-classification performance of
the evidential deep-learning classifier.

Transfer learning. The feasibility of transfer learning on the pro-
posed classifier was also verified in this study. The three evidential
deep-learning classifiers trained on the CIFAR-10 classification
task, as well as the three probabilistic CNNs, were fine-tuned using
the training set of the CIFAR-100 dataset as a new task. Table 6
shows the testing utilities of fine-tuned classifiers on the CIFAR-
100 dataset. The evidential and probabilistic classifiers achieve
close results for precise classification after fine-tuning. Besides,
the average utilities of the evidential deep-learning classifiers are
close to those already reported in [34,43,14]. This demonstrates
the feasibility of transfer learning with the proposed classifiers.

Set-valued classification. Before evaluating the performance of
the proposed classifiers in set-valued assignments, we need to
determine the optimal pessimism index m in Eq. (13a) once given



Fig. 6. Dendrograms for the CIFAR-10 dataset: single linkage (a), complete linkage (b), average linkage (c), and Ward linkage (d).

Table 8
Set-valued assignment rates using the selected and 2X acts (unit:%).

c 0.5 0.6 0.7 0.8 0.9 1

CIFAR-10 Selected
acts

0 0.52 1.74 13.24 19.62 52.04

2X acts 0 0.52 1.76 14.21 22.67 100

UrbanSound 8K Selected
acts

0 2.47 9.10 23.96 49.91 64.43

2X acts 0 2.47 9.71 28.74 55.62 100

SemEval-2010
Task 8

Selected
acts

0 1.69 8.11 17.62 43.11 66.62

2X acts 0 1.69 8.57 27.71 52.77 100
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a value of imprecision tolerance degree c. Based on the m-utility
curves on the training set (Fig. 4), we can determine the optimal

m for any given c. As we consider all of the 2jXj acts, the three pro-
posed classifiers always achieve average utilities of 1 when c
equals 1. The value of m has an apparent effect on the average util-
ities when c is higher than 0.7. These curves show that parameter m
should be carefully tuned to ensure optimal performance of the
proposed classifier in set-valued assignments.

Fig. 5 shows the test average utilities and cardinalities of the
evidential deep-learning classifiers as functions of c with the opti-
mal m. When the imprecision tolerance degree increases, the aver-
age cardinalities increase. This indicates that the proposed
classifiers tend to perform set-valued assignments when given a
large tolerance degree of imprecision. The test average utilities
decrease slightly and then increase when c increases. To explain
this behavior, Table 7 provides four examples with their assign-
ments and corresponding utilities. For the first example, the utility
increases from 0 to 1 as c becomes larger. However, for examples
correctly classified when c ¼ 0:5 (#2 and #3), their utilities first
decrease and then increase back to 1. The majority of examples
in the CIFAR-10 testing set fall in the latter category. Therefore,
the test average utilities decrease slightly and then increase when
c increases from 0.5 to 1.

The use of the DS and expected utility layers has an effect when
there is a lack of evidence in the feature-extraction part. In Fig. 5,
when c is increased from 0.5 to 0.9, the largest gains in average
utility are obtained by the evidential classifier with the NIN stages
[34], whose feature extraction was found to be the worst among
the three proposed classifiers since it achieved the minimum
utility in the precise assignments (Table 5). Thus, the classifier with
the NIN stages is more affected by the DS and expected utility lay-
ers than the other two classifiers. Therefore, we can conclude that
the effects of DS and expected utility layers are more significant if
there is a lack of evidence in the feature extraction part.

As shown in Fig. 5, the proposed model with a DS layer and an
expected layer outperforms probabilistic CNN classifiers for set-
valued classification. The average utilities of the proposed classi-
fiers increase significantly when c increases from 0.5 to 0.9. In con-
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trast, the average utilities of the probabilistic CNN classifiers only
increase sharply when c increases from 0.9 to 1.0. This is evidence
that the proposed classifiers make well-distributed set-valued
classification based on the user’s tolerance degree of imprecision,
while the probabilistic CNN classifiers only assign samples to the
multi-class sets when the tolerance is large. This phenomenon is
caused by the use of DS and expected utility layers in the proposed
classifiers. The DS layer tends to generate uniformly distributed
masses when the features are not informative. As a result, the
expected utility of a set-valued classification is the maximum
among all acts, rather than the utility of a precise classification.
This effect explains the superiority of the proposed approach for
set-valued classification. However, the average utilities of the evi-
dential classifiers are less than those of the probabilistic CNN clas-
sifiers for c ¼ 0:7. The reason is that the probabilistic CNN
classifiers make few set-valued assignments for c ¼ 0:7, and the
evidential classifiers are so cautious that they perform set-valued
assignments for some instances that are correctly classified when
c is less than 0.7, such as #2 and #3 in Table 7.

In [62], we found that some ambiguous patterns always led the
incorrect classification. Thus, we do not need to consider all of the
2X acts, as mentioned in Section 3.4. In this experiment, the perfor-
mances of the classifiers with partial acts are compared to those



Table 9
Proportions of samples correctly assigned to acts in 2X and incorrectly assigned to
selected acts, for different values of c.

c 0.5 0.6 0.7 0.8 0.9 1

CIFAR-10 0 0 0 0.18 0.47 2.87
UrbanSound 8K 0 0 0 0.42 0.95 6.62

SemEval-2010 Task 8 0 0 0.11 0.48 0.74 4.43
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with all 2X acts. Taking the evidential classifier with a network as
in [14] as an example, we used the strategy introduced in Sec-
tion 3.4 to generate the dendrograms, as shown in Fig. 6. When
using Ward linkage [66], we get an inflection point to cut the den-
drogram, with the CHI equal to 1.286 and the corresponding dis-
tance equal to 1.238. The selected multi-class sets consist of
cat; dogf g; deer; horsef g; cat; dog; deer;horsef g, and
cat; dog; deer;horse; frogf g in the comparison study. Table 8 reports
the testing rates of set-valued classification using the selected and
2X acts. The rates of the classifiers with the selected and 2X acts are
close when c is less than 0.9. Besides, the rates of the samples
assigned correctly using 2X acts but incorrectly using the selected
Fig. 7. Rate of fX vs. c for novelty detection in the image-classi
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acts are small when c is less than 0.9, as shown in Table 9. A set-
valued assignment is regarded as correct if the multi-class set con-
tains the true label. Thus, the proposed strategy is useful once an
evidential classifier has a value of c in the range of 0.5–0.9.

Novelty detection Fig. 7 displays the results of novelty detection
using evidential deep-learning and probabilistic classifiers. The
evidential deep-learning classifiers can assign outliers and a few
of the known-class examples to setXwhen values of c are between
0.7 and 0.9, while the probabilistic CNN classifiers cannot, which
demonstrates that the proposed models outperform the probabilis-
tic CNN classifiers for rejecting outliers together with ambiguous
samples. This is due to the fact that, when the feature vector fed
into the DS layer is far from all prototypes, the activations of the
RBF units in the DS layer become close to zero, as shown by Eq.
(5). As a consequence, all the mass functions mi computed by Eq.
(6) assign a large mass to set X, and so does their orthogonal
sum m. The output of the DS layer thus reflects ignorance about
the class of the input sample (whereas the probabilistic output of
the softmax layer does not), leading to the assignment of the sam-
ple to set X.

We also applied McNemar’s test with the CIFAR-100 and MNIST
datasets, where outliers assigned to X are regarded as positive
samples, and the others are negative ones. The results indicate
fication experiment: NIN (a), FitNet-4 (b), and ViT-L/16 (c).



Table 10
The three baseline stages used for UrbanSound 8K.

Stage 1 [47] Stage 2 Stage 3

Pre-processing: clip, data augmentation, and segmentation

Input: 60 � 41 � 2

57 � 6 Conv. 80 ReLU 57 � 6 Conv. 80 ReLU 29 � 3 Conv. 80 ReLU
1 � 1 Conv. 80 ReLU 29 � 3 Conv. 80 ReLU

4 � 3 max-pooling stride 1 � 3 with 50% dropout

1 � 3 Conv. 80 ReLU 1 � 3 Conv. 80 ReLU 1 � 2 Conv. 80 ReLU
1 � 1 Conv. 80 ReLU 1 � 2 Conv. 80 ReLU

1 � 3 max-pooling stride 1� 3 without dropout

Table 11
Test average utilities in precise classification on UrbanSound 8K.

Models Stage 1 [47] Stage 2 Stage 3

Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier

Utility 0.7132 0.7261 0.7164 0.7284 0.7210 0.7302
p-value (McNemar’s test) 0.0234 0.0319 0.0365

Fig. 8. Average utility vs. in m for the proposed classifiers on the UrbanSound 8K dataset: Stage 1 (a), Stage 2 (b), and Stage 3 (c).
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Fig. 10. Rate of fX vs. c for novelty detection in the signal-classification experiment: Stage 1 (a), Stage 2 (b), and Stage 3 (c).

Fig. 9. Average utility (a) and average cardinality (b) vs. c for the proposed classifiers and the probabilistic CNN classifiers on the UrbanSound 8K dataset.
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Fig. 11. Dendrograms for the UrbanSound 8K dataset: single linkage (a), complete linkage (b), average linkage (c), and Ward linkage (d).

Table 12
The three baseline stages used on SemEval-2010 Task 8.

Stage 1 [73] Stage 2 Stage 3

Pre-processing: word representation

Input: 50 � 1 � t, in which t is the number of input sentences

3 � 1 Conv. 200 ReLU 3 � 1 Conv. 200 ReLU 2 � 1 Conv. 200 ReLU
1 � 1 Conv. 200 ReLU 2 � 1 Conv. 200 ReLU

1 � 1 Conv. 100 tanh 1 � 1 Conv. 200 tanh 1 � 1 Conv. 200 tanh
1 � 1 Conv. 100 tanh 1 � 1 Conv. 100 tanh

1 � 1 mean-pooling stride 1� 1

Table 13
Test average utilities in precise classification on SemEval-2010 Task 8.

Models Stage 1 [73] Stage 2 Stage 3

Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier

Utility 0.8255 0.8347 0.8351 0.8425 0.837 0.8436
p-value (McNemar’s test) 0.0301 0.0415 0.0430
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the use of the DS and expected utility layers has a distinct effect on
novelty detection since all p-values are smaller than 0.001. How-
ever, none of classifiers performs well when c is less than 0.7 since
these classifiers favor precise decisions. The classifiers tend to
reject outliers whose features are different from the known classes.
For example, the proposed classifiers reject more samples in the
MNIST dataset than in the CIFAR-100 dataset since the hand-
written digits are very different from the patterns in the CIFAR-
10 dataset.

4.3. Signal classification experiment

In the application of the proposed classifier on signal process-
ing, we used the UrbanSound 8K dataset [51] composed of 8732
short (less than 4 s) excerpts of various urban sound sources (air
conditioner (AI), car horn (CA), playing children (CH), dog bark
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(DO), drilling (DR), engine idling (EN), gun shot (GU), jackhammer
(JA), siren (SI), street music (ST)) prearranged into 10 classes. The
ratio between the training and testing set is about 3:1. We ran-
domly selected 25% of the training samples as validation data. Free
Spoken Digit Dataset (FSDD) [52], was used to evaluate the capac-
ity of novelty detection in the signal classification experiment.
FSDD is an audio/speech dataset with 2,000 recordings (50 of each
digit per speaker) in English pronunciations.

The baseline stages in this experiment are shown in Table 10.
The DS and expected utility layers show a significant difference
in the precise classification as 0:01 < p < 0:05 according to McNe-
mar’s test (Table 11). Similarly to CIFAR-10, this demonstrates that
the performance of the proposed classifiers is better than those of
probabilistic CNN classifiers for precise classification.

After determining the optimal m for each value of c based on the
m-utility curves (Fig. 8), we can compute the test average utilities
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and cardinalities of the evidential deep-learning and CNN classi-
fiers, as shown in Fig. 9. The proposed classifiers outperform the
CNN models for the set-valued classification in the signal process-
ing task. The proposed classifiers make more cautious decisions
than do the probabilistic CNNs since it assigns ambiguous samples
to multi-class sets. Additionally, the performance of the proposed
classifiers exceeds those of the CNN classifiers in novelty detection
(Fig. 10). The use of the DS and expected utility layers has signifi-
cant effects on novelty detection as the results of p-value are close
0 according to McNemar’s test.

For the testing of act-selection strategy, an inflection point was
used to cut off the complete-linkage dendrogram [6] in Fig. 11, in
which CHI is 2.198 and corresponding distance is 1.036. Thus, we
selected partial multi-class sets including
DR; JAf g; AI; ENf g; CH; STf g; DR; JA;AI; ENf g, and
DR; JA;AI; EN;CH; STf g. From Tables 8 and 9, we can see that the
strategy works well if c is less than 0.9. This demonstrates that
the proposed strategy is acceptable when the classifier has a rea-
sonable c.
Fig. 12. Curves in m-utility for the proposed classifiers on the SemEv
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4.4. Semantic-relationship classification experiment

For the semantic-relationship classification task, we used the
SemEval-2010 Task 8 dataset [22]. It contains 10,717 annotated
examples, including 8,000 training instances and 2,717 test
instances. There are 10 semantic relationships in the dataset as
cause-effect (CE), instrument-agency (IA), product-producer (PP),
content-container (CC), entity-origin (EO), entity-destination (ED),
component-whole (CW), member-collection (MC), message-topic
(MT), and other (O). The approach to generate the validation set
in this experiment is the same as those used in the experiments
on the CIFAR-10 and UrbanSound 8K datasets. The FewRel dataset
[21] with 100 semantic-relationship classes and 70,000 examples
was used in novelty detection, in which the known-class examples
were excluded in the experiment.

We referred to the stages shown in Table 12 to design the evi-
dential deep-learning classifiers. In the precise classification, the
use of DS and expected utility layers improves the test average util-
ities of the deep-learning models, as shown in Table 13. Thus, a DS
layer and an expected utility layer instead of a softmax layer intro-
al-2010 Task 8 dataset: Stage 1 (a), Stage 2 (b), and Stage 3 (c).



Fig. 13. Average utility (a) and average cardinality (b) vs. c for the proposed classifiers and the probabilistic CNN classifiers on the SemEval-2010 Task 8 dataset.

Fig. 14. Rate of fX vs. c for novelty detection in the semantic-relationship-classification experiment: Stage 1 (a), Stage 2 (b), and Stage 3 (c).
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Fig. 15. Dendrograms for the SemEval-2010 Task 8 dataset: single linkage (a), complete linkage (b), average linkage (c), and Ward linkage (d).
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duce a positive effect on the networks in the semantic-relationship
classification.

The strategy for determining the optimal values of m in this
experiment was the same as those in the CIFAR-10 and Urban-
Sound 8K experiments (See Fig. 12). The test average utilities in
set-valued classification of the two types of models are shown in
Fig. 13, which demonstrate the superiority of the evidential
deep-learning classifiers. Fig. 14 indicates the acceptable capacity
of novelty detection in the evidential deep-learning classifiers.
Similar as the CIFAR-10 and UrbanSound 8K dataset, the acts gen-
erated from the complete-linkage dendrogram (Fig. 15 and an
inflection point whose CHI is 2.627 and a distance equals 1.107)
works as well as the 2X acts if the classifier has a suitable c.
5. Conclusions

In this paper, we have presented a new neural network classi-
fier based on deep CNN and DS theory for set-valued classification,
called the evidential deep-learning classifier. This new classifier
consists of several stages for feature representation, a DS layer to
construct mass functions, and an expected utility layer to make
set-valued assignments based on the mass functions. The classifier
can be trained in an end-to-end way. Besides, we have proposed a
strategy to select partial acts instead of considering all of them.

A major finding of this study is that the hybridization of deep
CNNs and evidential neural networks by plugging DS and expected
utility layers at the output of a CNN makes it possible to improve
the performance of deep CNN models by assigning ambiguous pat-
terns to multi-class sets. The proposed classifier is able to select a
set of classes when the object representation does not allow us to
select a single class unambiguously, which easily leads to incorrect
classification in probabilistic classifiers. This result provides a
novel direction to improve the cautiousness of deep CNNs for
object recognition. The use of DS and expected utility layers also
improves precise classification performance. The hybridization
also makes it possible to reject outliers together with ambiguous
patterns when the tolerance degree of imprecise is between 0.7
291
and 0.9. Additionally, the strategy of selecting partial multi-class

acts works as well as that of considering all 2jXj acts.
Future work will focus on three main aspects. First, we will

extend the proposed classifier to pixel-wise segmentation, where
each pixel in an image must be assigned to one of the subsets of
X. Secondly, other advanced evidential combination rules, such
as contextual-discounting evidential K-nearest neighbor [13] will
be studied to improve the performance of the proposed classifier.
Finally, we will consider modifications of the model introduced
in this paper to make it applicable to regression problems.
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